
Asynchronous Prefix Recoverability for Fast Distributed Stores
Tianyu Li∗

litianyu@csail.mit.edu
MIT CSAIL

Badrish Chandramouli
badrishc@microsoft.com

Microsoft Research

Jose M. Faleiro
jmf@microsoft.com
Microsoft Research

Samuel Madden
madden@csail.mit.edu

MIT CSAIL

Donald Kossmann
donaldk@microsoft.com

Microsoft Research

ABSTRACT

Accessing and updating data sharded across distributed machines
safely and speedily in the face of failures remains a challenging
problem. Most prominently, applications that share state across
different nodes want their writes to quickly become visible to others,
without giving up recoverability guarantees in case a failure occurs.
Current solutions of a fast cache backed by storage cannot support
this use case easily. In this work, we design a distributed protocol,
called Distributed Prefix Recovery (DPR) that builds on top of a
sharded cache-store architecture with single-key operations, to
provide cross-shard recoverability guarantees. With DPR, many
clients can read and update shared state at sub-millisecond latency,
while receiving periodic prefix durability guarantees. On failure,
DPR quickly restores the system to a prefix-consistent state with a
novel non-blocking rollback scheme. We added DPR to a key-value
store (FASTER) and cache (Redis) and show that we can get high
throughput and low latency similar to in-memory systems, while
lazily providing durability guarantees similar to persistent stores.

ACM Reference Format:

Tianyu Li, Badrish Chandramouli, Jose M. Faleiro, Samuel Madden, and Don-
ald Kossmann. 2021. Asynchronous Prefix Recoverability for Fast Distributed
Stores. In Proceedings of the 2021 International Conference on Management
of Data (SIGMOD ’21), June 20–25, 2021, Virtual Event, China. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3448016.3458454

1 INTRODUCTION

The rise of cloud computing has resulted in applications that in-
creasingly work with data distributed across machines. In a modern
cloud-based relational database or key-value store, the storage tier
is typically provisioned and scaled separately from the compute
tier running application logic. Examples of this include raw cloud
storage such as Amazon S3 [2] and Azure Storage [6], as well as
database tiers that are backed by raw storage, such as Amazon Dy-
namoDB [1]. This model incurs high per-operation latency, which
cannot be hiddenwhen applications perform dependent cross-shard
operations, without introducing complex distributed coordination.

∗Work started during internship at Microsoft Research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3458454

To avoid this latency penalty, many applications resort to caches
(such as Redis [19]) in front of the storage tier. Caches can amelio-
rate the performance limitations of storage; they can immediately
service read and write requests on cache-resident data, limiting syn-
chronous interactions with the storage tier. This, however, comes at
the expense of consistency, recoverability, and increased complexity
of application logic. Specifically, today’s caching-based solutions
have no notion of a “commit” that is resilient to failure. Upon fail-
ure, the system is left in an inconsistent state, where some writes
are recovered and others are not, and reads are either stale or lost.
Clients must ensure idempotence of operations, or reason about
application-level correctness, which is challenging [8, 45].

The problem is made worse on modern serverless offerings such
as Azure Functions [18] or AWS Lambda [17]. Applications on such
platforms are often structured as workflows of operators. For work-
flow durability [14, 15], operators interact synchronously with stor-
age for resilient logging and state persistence, during inter-operator
communication. Caching would risk creating inconsistency in the
face of failures, particularly as the serverless compute layer scales
at a finer grain and works with ephemeral instances [36].

In summary, no existing distributed data processing system pro-
vides the benefits of caching without renouncing strong failure
guarantees and consistent recovery. Such a system can provide
good performance while simplifying application logic and easing
the adoption of distributed cloud storage solutions. We aim to ad-
dress this with our design, called distributed prefix recovery (DPR).

Distributed Prefix Recovery (DPR)

In DPR, storage is split into disjoint partitions or shards, where
each shard spans volatile memory and durable storage. We refer
to such storage as a cache-store; examples include key-value stores
such as FASTER [21], Redis, and logging systems such as Kafka [16].
Applications interact with a distributed cache-store using sessions of
read and write operations, each operation being on a single shard.
DPR offers prefix recoverability to client sessions. Upon fail-
ure, the recovered state corresponds to a recent known valid prefix
for each session [44]. This state respects all dependencies between
operations within a session, where an operation is causally depen-
dent on all preceding completed operations in the same session.
Applications can easily limit unnecessary dependencies and boost
performance by interacting with the store via multiple sessions.

DPR separates the notion of operation completion from op-

eration commit. The application is allowed to work on uncommit-
ted state in caches directly, and DPR guarantees to make application
state durable asynchronously, in a way that respects dependencies.

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3458454

https://doi.org/10.1145/3448016.3458454
https://doi.org/10.1145/3448016.3458454
https://creativecommons.org/licenses/by/4.0/

Applications working with DPR can forge ahead using uncommit-
ted (distributed) state if deemed safe, or choose to defer critical (e.g.,
user-facing) transitions until commit.

By decoupling recoverability from operation completion, appli-
cations working with DPR are not bottlenecked on the latency of
operation commit and are only limited by the memory and network
throughput. Writes to durable storage and distributed coordina-
tion happen off the critical path of request processing. Therefore,
systems implementing DPR can serve compute tasks at close to
local-memory latency and throughput in the common case.
DPR can work with any cache-store. We build DPR on top of
a cache-store abstraction that combines fast but volatile operations
and asynchronous checkpoints. This abstraction covers diverse stor-
age systems including key-value stores, caches, and persistent logs.
As a result, one can add DPR to any existing unmodified system
with little effort, as we demonstrate with D-Redis, a distributed
version of Redis with DPR guarantees. Deeper integration into
a highly-tuned cache-store provides further benefits: we present
D-FASTER, a distributed cache-store that builds on FASTER [21],
our high-performance open-source1 single-node key-value store
that supports concurrent prefix recoverability (CPR) [44] – a simi-
lar guarantee to DPR, but only for a single node. D-FASTER uses
FASTER’s non-blocking checkpoints to orchestrate a DPR commit
as a lightweight metadata-only operation. Upon failure, if some un-
committed state in surviving nodes is lost, D-FASTER coordinates
an asynchronous non-blocking rollback to a prefix-consistent state.
DPR operates without any additional coordination beyond

the normal cross-shard traffic due to client operations. This
property makes DPR lightweight to add to an existing system. It
does so by piggybacking on client messages to orchestrate the
global commit, along with a lightweight metadata store that all
nodes independently access off the critical path. The key insight is
that we can limit coordination to the machines accessed by sessions
that create data dependencies.

Example Use Cases for DPR

Example 1 (Cloud Telemetry). Consider a cloud application
that inserts telemetry data into a distributed cache-store. A telemetry
service can continuously read uncommitted data and write back ag-
gregate per-key metrics, with a guarantee that the aggregates will not
commit without the contributing data committing as well. Further, a
feed service can read such metrics and offer tentative results (e.g., as
a dashboard or feed) at very low latency for immediate consumption,
while also depicting committed views as they become available lazily.
Finally, a fault-detection service can perform data analysis and write
a fault report, with a guarantee that the report will not commit unless
the data it depends on commits as well.

Example 2 (Serverless Workflows). A serverless application
consists of a graph of operators executing user logic. A typical ap-
proach for durability, used in systems such as Azure Durable Func-
tions [14] and Temporal Workflows [15], is to write each operator’s
input to some shard of a persistent log such as Kafka (the cache-store).
Naively executed, every enqueue has to wait for a commit, resulting in
high end-to-end latencies. Using DPR, a dequeue from the cache-store

1FASTER is available at https://github.com/microsoft/FASTER.

by a downstream operator can view enqueues by preceding operators
before they commit, providing lower operation completion latencies,
while at the same time providing lazy commits that the application
may use to expose results to the outside world.

Summary of Contributions

• We propose the DPR model, which enables distributed cache-
stores to offer prefix recovery guarantees. DPR decouples opera-
tion completion from commit to avoid bottlenecking on commit
latency while avoiding cross-shard coordination overhead.

• We present a DPR-based distributed key-value store, D-FASTER,
which features a novel asynchronous non-blocking rollback tech-
nique for active nodes.

• We also describe D-Redis, an unmodified Redis that offers DPR
guarantees by wrapping it in a new library we have developed
(libDPR) that can add DPR to any unmodified cache-store.

• We evaluate D-FASTER and D-Redis in a cloud deployment to
demonstrate their scalability, performance, and recovery guaran-
tees. We show that D-FASTER achieves throughput and latency
at the level of pure in-memory caches while providing recover-
ability.

Before describing these features in detail, we begin with a high-level
overview of the DPR architecture and client model.

2 DPR ARCHITECTURE

DPR makes it possible for systems to expose to clients a unified API
over a sharded set of cache-stores, representing paired caches and
corresponding durable backing stores. Each cache-store completes
client requests and immediately makes their effects visible to other
clients before durability. At the same time, DPR reports commits
asynchronously to the client as prefixes. Clients may choose to
withhold operation result until it is committed for a familiar durable-
store experience or proceed ahead with uncommitted state for
maximum performance. In the latter case, when a failure occurs,
the next call to DPR will return an error with the exact prefix that
survived the failure so clients can react accordingly.

The system restores global state to a consistent previous state
upon failure. It provides prefix consistency [44], where a recovered
state contains all the effects of client operations in a linearizable
execution schedule up to some point, and none after. The schedule
respects the natural session expectation that operations logically
depend on all prior completed operations in the session.

We illustrate this model in Figure 1. The system consists of a
number of shards, each with a cache component and a durable
store. Multiple caches may be backed by the same durable store.
These cache-store shards form a global logical database. Client ap-
plications interact only with the (sharded) cache-store abstraction,
where the cache responds to both read and write requests, with lazy
write-back to the store. The exact mapping of application keys to
shards is orthogonal to DPR and may be dynamic, using techniques
standard in distributed databases [52], such as shared metadata
tables. We uniquely assign exactly one shard as the owner for any
key, and route all read/write requests to the owner. Because cache
operations do not block on the backend durable store, this scheme
is sufficient to support high throughput on a single key without
compromising read freshness or consistency of operations.

https://github.com/microsoft/FASTER

Cache

Cache

Cache

Durable
Store

Durable
Store

Durable
Store

Client 2

Shards

Session 1

Session 2

DB Shards Completed Op Committed Ops

Prefix Commits
(async) …

Client 1

Figure 1: Overall Architecture and Client Model

Clients use the concept of a session to interact with the cache-
store shards. A session consists of a sequence of operations that
access and update data. For example, operations for a key-value API
include read, upsert, and delete, whereas a log supports enqueue
and dequeue.Where our API diverges from traditional architectures
is that we explicitly decouple operation completion from operation
commit. Operation completion does not need to wait on expensive
cross-shard synchronization or flushes to durable storage. Instead,
the system asynchronously informs clients of commits of their
prefixes, and clients can proceed with uncommitted operations.

DPR supports both synchronous and asynchronous operation
completion. Operations in a client session are linearizable [34]; an
operation is logically dependent on all previously completed op-
erations on that session, and these dependencies are honored by
our lazy commit guarantees. DPR builds on the recent notion of
prefix consistency in shared memory within one failure domain
in CPR [44] and extends it to the multi-node setting across failure
domains and sharded memory. Sessions form the logical unit for de-
termining dependencies in client operations with DPR; clients may
establish multiple sessions in order to explicitly decouple dependen-
cies and improve performance. Seen from a traditional transaction
processing viewpoint, state is made visible to applications at op-
eration completion and before commit, but with implicit commit
dependencies that are respected from a recovery perspective. Im-
portantly, sessions may wait for commit at any time and ensure
that all preceding operations have been made durable, making it
easy to behave like traditional durable stores with group commit.

3 DISTRIBUTED PREFIX RECOVERY

We now present the DPR protocol in detail. DPR operates over a
set of clients interacting with a set of abstract shards, which we
call StateObjects. StateObjects provide the following API:
• Op(): executes a read/write operation and returns uncommitted
• Commit() -> (token, committed): commits (or makes durable)
a prefix of previously uncommitted Op()s, and returns a unique
token and description of committed operations for each client.

• Restore(token): restores the StateObject to some committed
state identified by the token.
We note that this API is straightforward to implement in a single-

node cache-store. Op() can be implemented by returning after oper-
ation completion on the cache. Commit() can reuse existing group
commit mechanisms implemented by most modern stores [44].
Group commit boundaries are typically triggered by an internal
timer [49]; instead, one can modify these systems to allow group

commit boundaries to be explicitly triggered via an API call. Finally,
Restore() can leverage failure recovery mechanisms already im-
plemented by existing systems. As a different example, a simple
write-ahead or operation log with periodic group commit [16] may
also be viewed as a StateObject implementation.

A client session issues Op()s in sequence to multiple shards
of StateObjects and maintains a SessionOrder – a linearizable
order of Op()s that respects the natural partial order induced by
operation completion:Op1 precedesOp2 in a SessionOrder ifOp1
completes before Op2 begins. In Figure 2, our running example,
we show two SessionOrders, S1 and S2 each issuing 4 operations
to 3 StateObjects, containing objects A, B, and C respectively.
SessionOrders determine the recovery behavior of DPR – if Op1
precedes Op2, Op2 is dependent on Op1, and should not be re-
covered without Op1. We write the recovery tokens of individual
StateObjects in the form of Object-version, e.g., A-2 is the second
committed token of A. Each token captures some prefix of client
operations performed on the StateObject. In Figure 2, we write
beside each operation the token it is captured in. In order to provide
actionable information to clients on failure, the system produces
DPR-cuts and reports DPR-guarantees to clients:

Definition 3.1. DPR-cut – A DPR-cut is a set of tokens, such that
after calling Restore() with all included tokens, the system is
recovered to a prefix consistent state for every client.

Definition 3.2. DPR-guarantee – A DPR-guarantee is a mapping
from each client to a point on its SessionOrder, such that under
failure, every operation before is recovered, but none after.

As an example, we depict in Figure 2 a DPR-guarantee of up to
operation 2 of S1 (S1−2), and operation 1 of S2 (S2−1), with a dotted
line. The system backs this guarantee with a DPR-cut that consists
ofA-1 and B-1, shown with a dashed circle on the right. Recovering
to this DPR-cut restores the corresponding DPR-guarantee for all
sessions. Our goal is to design a lightweight protocol that: 1) asyn-
chronously gives DPR-guarantees, which we cover in this section,
and 2) correctly restores system state to the guaranteed DPR-cut in
the event of a failure, which we will describe in Section 4.

3.1 Modeling

A consistent DPR-cut must satisfy dependencies introduced by
client sessions. Importantly, we track dependencies at the gran-
ularity of versions, which is the aggregate state of each Commit(),
instead of individual operations. Within versions, there exist op-
eration dependencies across SessionOrder induced by shared ac-
cess (e.g., read-write dependencies on a key). These are resolved
through StateObject implementations, as most modern lineariz-
able StateObject implementations support consistent checkpoint-
ing that respects these dependencies. DPR focuses instead on cross-
shard dependencies, which are always introduced by a client ses-
sion issuing consecutive operations to different StateObjects.
This is true because we assume a single-owner, non-transactional
model where all read and write accesses to a key are sent to the
same StateObject, and thus all such dependencies appear as intra-
version dependencies. We more formally define dependency as
follows. A token B-n depends on A-m if either

S1 S2

Op 1

Op 2

Op 3

Op 4

Op 2

Op 1

Op 3

Op 4

A-1

B-1

B-2

A-2

A-1

A-2

C-2

B-2

A-1

A-2B-1

B-2 C-2

Figure 2: Example of a Precedence Graph – precedence graphs
model token dependencies, and SessionOrders determine how
tokens connect to each other.

Op 1

Op 2

Client
Session

Op 3

Op 4

Op 5

Op 6

A B

Op 1

Op 3

Op 5

Op 7

Op 2

Op 4

Op 6

Op 8

A-1

B-1

Op 9

Op11

Op10

Op12

A-2

B-2

... ...

...

Figure 3: No Cuts without Coordination – calling Commit() in
an uncoordinated manner may never yield a DPR-cut.

• there exists a SessionOrder, where an operation included in
A-m is immediately followed by an operation included in B-n
(dependency by precedence).

• there exists some token C-p, such that B-n depends on C-p, and
C-p depends on A-m (dependency by transitivity).

We can visualize this relationship with the precedence graph. Every
version is a vertex in the graph, and a directed edge goes from
token B-n to A-m if B-n depends on A-m by precedence. We show
an example precedence graph in Figure 2. Intuitively, a set of tokens
form a DPR-cut iff the set of tokens they capture is closed under
the transitive property of dependency.

3.2 Ensuring Progress in DPR

It is important for the DPR protocol to ensure progress by con-
tinuously giving non-trivial guarantees, such that any operation
will be eventually recoverable. One might think that progress is
guaranteed as long as the system periodically calls Commit() on
each StateObject. Unfortunately, this is not the case, and Figure 3
shows a counter-example. Assume there are two single-threaded
StateObjects, A(green) and B(blue). A client issues operations in
sequence that alternates between manipulating A and B. The black
lines denote each call to Commit(), which captures every opera-
tion above the line and emits the token next to it. A-1 and B-1 are
staggered such that they cannot form a DPR-cut. From that point
forward, the Commit() calls are synchronized to happen every 3
operations. By induction, we can see that given any pair of tokens,
they do not form a DPR-cut, and therefore, the system is never able
to give any non-trivial DPR-guarantee. This problem manifests on
the precedence graph as each version having an infinite dependency
set — any token in this trace depends on all future tokens.

To prevent this, StateObjectsmust coordinate calls to Commit().
Consider the following algorithm: each client maintains local ver-
sion counterVs , the largest version number a session has seen, and
appends Vs to every request. A StateObject checks Vs against
its next token version v , and executes the request only if v ≥ Vs ;
otherwise it calls Commit() until v ≥ Vs before executing. The
StateObject returns v to client afterwards, and client sets Vs =
max(Vs ,v). We sketch a proof for why this algorithm ensures DPR
progress. Under this scheme, we havemonotonicity in that a version
never depends on versions with larger version numbers. Observe
that monotonicity is preserved under transitivity. By induction, if
B-n depends on C-p, and C-p depends on A-m, n ≥ p and p ≥ m
by induction hypothesis, and thus n ≥ m. We therefore only need
to prove the algorithm preserves monotonicity under precedence.
This is ensured because Vs can only increase by construction. Our
mechanism is similar to the classic Lamport clock algorithm [39],
where Vs encodes dependency information as part of the client
requests with no additional cross-shard coordination.

3.3 Finding DPR-guarantees

Recall from Section 3.1 that DPR-cuts are transitive closures on the
precedence graph, and we can find the latest DPR-cut building the
maximal such closures. The challenge is that the precedence graph
is distributed. Take Figure 2 again for an example, the dependency
between B-2 and C-2 results from S1 − 4, which is chronologically
after the last client interaction with C , and C is not aware of its
existence. Because DPR coordinates StateObjects solely through
client requests, a StateObject is only aware of precedence that
exists at the time of the requests, or outgoing edges on the graph.
To find DPR-cuts, the algorithm must join this information. Addi-
tionally, the cluster must achieve fault-tolerant consensus on the
current DPR-cut. Otherwise, failure can cause a StateObject to
renege on its guarantee and recover to an earlier cut.

We now sketch an exact algorithm to solve this problem with a
simple implementation, outlined in the upper half of Figure 4. We
persist all information on durable shared storage (e.g., an ACID
database) as the fault-tolerant consensus mechanism, and addition-
ally provision a compute node (the coordinator). Each StateObject
adds a version and its dependencies to the (durable) precedence
graph after each local checkpoint. Periodically, the coordinator tra-
verses the precedence graph to find the maximal transitive closure
and persists it as the current DPR-cut. Because the coordinator
only sees committed versions, the computed cut is always safe,
albeit slightly outdated. We illustrate this on the right of Figure 4.
Here, BuildDependencySet(v) traverses the precedence graph
with breadth-first search starting from v and returns the visited
set, whereas UpdateCutAtomically atomically updates the durable
store such that the cut is never partially read. The compute node
can simply be restarted in case of failure, as it is stateless.

3.4 Approximations and Optimizations

The exact algorithm presented above can have scalability issues in
very large clusters because of thewrite bottleneck on the underlying
store. In particular, the size of the precedence graph may scale
quadratically to the size of the cluster. To improve performance,
we need to avoid persisting the entire graph. Consider an approach

State
Objects

Metadata
Store

DPR
Coordinator

Commits Updates

class DprCoordinator:
 ...
 func FindDpr():
 foreach (v in self.precedenceGraph):
 deps = BuildDependencySet(v)
 if deps all durable:
 UpdateCutAtomically(deps)

CREATE TABLE dpr (
 id VARCHAR,
 persistedVersion BIGINT
)

Exact DPR

Approximate DPR

Updates /
Guarantees

UPDATE dpr SET persistedVersion = v
 WHERE id = xxx

SELECT min(persistedVersion) FROM dpr

1

3

2

1

2

3
Metadata

Store

2

State
Objects

Figure 4: Summary of DPR Tracking Algorithms – we offer
exact and approximate algorithms with accuracy-scalability trade-
offs.

where the coordinator keeps the graph purely in-memory. Upon
failure, the precedence graph is lost; when a new version arrives,
the coordinator cannot be certain of its dependency set in the lost
subgraph and therefore cannot safely advance the DPR cut.

It is possible to overcome this obstacle through approxima-
tions. We show one such algorithm on the bottom left of Figure 4.
StateObjects now write only committed version numbers to the
durable store and discard dependency information. At any time, let
Vmin be the smallest version number in the durable store. Then,
a DPR-cut in the system consists of all tokens of version Vmin .
This is correct because no versions can depend on larger versions.
One problem remains: two StateObjects will not synchronize
their versions if no clients operated across them, and they will
advance versions at their own pace. Approximate DPR introduces a
false dependency between them such that if a StateObject A calls
Commit() less frequently than B, B can only advance its position
in the DPR-cut at A’s pace. To address this, we can additionally
track Vmax , the largest version number in the durable store. We
can then program each StateObject to periodically read its value
and fast-forward its next checkpoint to be at least Vmax , which
allows for a lagging StateObject to catch up in bounded time.

The approximate algorithm does not store the precedence graph,
and is sufficiently lightweight for the DPR cut computation to be
directly pushed down to storage (e.g., through aggregates in SQL)
without the need for a coordinator node. Due to its imprecision,
however, it may be most useful when used as a fault-tolerant fall-
back for the exact algorithm. Consider again the implementation
where the coordinator keeps the precedence graph only in memory,
except now the approximate algorithm is run in parallel. On recov-
ery, the exact algorithm is temporarily unable to commit with an
incomplete graph, but eventually the approximate algorithm will
advance the DPR cut past the missing subgraph, at which point
the coordinator can proceed as normal. Such a hybrid algorithm
has improved scalability over the exact algorithm, but retains high
precision in the failure-free common case.

4 NON-BLOCKING FAILURE RECOVERY

We now present an algorithm that restores the system to a consis-
tent DPR-cut upon StateObject failures. A failure in the system po-
tentially affects all other StateObjects, as any StateObject may
have outstanding dependencies on lost operations. Although un-
avoidable, wewould like to limit its impact by allowing StateObjects
to recover and resume operation and not do so in lock-step with
others. We call this non-blocking recovery.

4.1 Assumptions

Even though recovery is non-blocking from DPR’s perspective,
clients may still observe unavailability if the StateObject imple-
mentation has a blocking Restore() implementation. We describe
in 5 how D-FASTER provides a non-blocking implementation. We
assume throughout this section that an external entity, a cluster
manager such as Kubernetes [9] or Azure Service Fabric [4] helps
with failure detection and restarts. We focus on the handling steps
in response to an identified failure in DPR. The cluster manager
restarts failed servers in bounded time and restores them to their
latest guaranteed checkpoint. The rest of the cluster now needs
to rollback to the last known DPR cut to maintain prefix consis-
tency. The cluster manager orchestrates this by temporarily halting
DPR progress and sending a message to each worker to rollback,
resuming progress only after all workers have reported back with
completion. Clients are notified of failure the next time they per-
form an operation or check on their commit status.

4.2 Tracking World-lines

Although DPR is temporarily blocked during recovery, ideally oper-
ations continue normally without guarantees. However, the system
is temporarily inconsistent during recovery, and client operations
to the system can result in anomalies. Consider the execution trace
given in Figure 5, where some other failure results in both A and B
calling Restore(). A client issues operations to both StateObjects
while system recovery is underway. After A recovers, the next time
the client issues an operation to A, A propagates information about
the failure to the client. The client computes the surviving prefix,
performs any necessary application-level failure handling, and pro-
ceed to issue operation 11 to B. At this time, the client assumes that
it is operating in a post-recovery world, but B has not recovered.
A subsequent call to Restore() from B wipes out operation 11,
which violates the prefix guarantee.

Intuitively, the state of the system is partitioned into a pre-
recovery world and a post-recovery world during recovery. Any
operation in the pre-recovery world is no longer protected by DPR,
and a post-recovery operation must not depend on it. We formalize
this notion with the concept of world-lines. A world-line is an unin-
terrupted trajectory of system state evolution through time, where
the effect of every operation is eventually recoverable as prefix of
later operations. We show a model of this on the right-hand side of
Figure 5, where time flows downwards, and the horizontal position
of a point represents the state of the system. When a failure causes
the system to resume at some prefix, it may evolve differently on-
wards (i.e., a new world-line “branches off” from a prefix). The two
world-lines co-exist until recovery is complete.

Session A B

Rollback

Op 11

Op 12 RestoreErases
Op 11

Restore

Op 10

Op 11Op 12

World-line y

World-line x

Failure

Op 10

Figure 5: Prefix Anomaly during Recovery – StateObjects re-
covering at their own pace naïvely can cause anomalies.

The key to a correct non-blocking recovery implementation
is to ensure that SessionOrders only operate on StateObjects
that are on the same world-line as they are. We use a mechanism
similar to viewstamps [42] in traditional distributed systems, and
augment operation versions with a world-line id. More concretely,
the cluster manager assigns a serial id to each failure; workers use
this to uniquely identify world-lines, as world-lines only spawn
due to failures. Each StateObject and SessionOrder maintains a
world-line counter. Clients append their world-line to every request,
and StateObjects execute a request only if their world-lines match.
Otherwise, the StateObject either returns an error if its world-line
number is larger, or delays execution until after recovery if smaller.
A StateObject advances its world-line by calling Restore(), and
a SessionOrder advances its world-line by computing a surviving
prefix and reporting it to the client. This is similar to the DPR
progress protocol, except that incrementing the counter is now
associated with error-handling actions instead of Commit().

4.3 Proof Sketch

We now briefly sketch how one may show the unified DPR scheme
of DPR guarantees and non-blocking recovery to be correct. We
first define the key properties that constitute correctness:

(1) Prefix Recoverability – All committed operations are persistent,
and form a valid prefix of system state

(2) Progress – Every issued operation is eventually either completed
and committed, or rolled back

(3) Rollback Convergence – Given a trace with finite failures, DPR
eventually restores the system to a valid prefix

Prefix recoverability follows by structural induction on our defi-
nition of dependencies. We require that a valid trace of DPR have
infinitely many Commit() calls for each StateObject. Then, we
can show that our scheme leaves each version with a finite depen-
dency set, which will eventually be persisted, thus committing all of
its operations. Coupled with failure handling that rolls back any un-
committed results, we can show progress. Finally, intuitively, given
finite failures, there exists an infinite suffix of a failure trace that is
failure-free. We can then show rollback convergence by inductively
proving that our failure handling preserves prefix-consistency and
always terminates on said failure-free trace. Additionally, we note
that existing work in the theory community [29, 33, 47, 53] has

shown that algorithms similar to individual pieces of DPR are cor-
rect under a different system model. A formal proof is left for future
work.

5 FAST DPRWITH D-FASTER

We now present D-FASTER, a distributed key-value cache-store
that supports low-latency read/write operations and asynchronous
recoverability through DPR. Clients can interact with D-FASTER
in a traditional client-server setting or locally through co-location
with cache-store servers.

5.1 StateObject Implementation

We use FASTER [21] as our StateObject implementation. FASTER
is a popular open-source single-node multi-threaded key-value
store library that provides fast and scalable linearizable reads, up-
serts, and read-modify-write operations. Clients use sessions, se-
quential logical threads of execution, to interact with FASTER. At
the core of FASTER is a latch-free hash table that maps keys to log-
ical addresses on a persistent record log. FASTER uses HybridLog,
which spans main memory and persistent storage and supports
in-place updates. Only HybridLog records on persistent storage, or
currently being persisted are immutable and updated via read-copy-
updates. Most in-memory records are instead modified in-place,
which effectively compresses the log between flushes, and elimi-
nates contention on the log tail. FASTER provides concurrent prefix
recoverability (CPR) guarantees to its clients, which is similar to
DPR but only across threads on a single-node. Threads in CPR
coordinate loosely to write to the unified log, and fail as a unit, in
contrast to the DPR model. FASTER is the ideal implementation for
a StateObject in our DPR model — the in-memory, mutable por-
tion of the log operates as the fast, caching layer, and the persistent
part of the log serves as the durable store.

5.2 D-FASTER Architecture

We wish to provide an API for D-FASTER that resembles a single-
node experience. Unlike FASTER, D-FASTER cannot be completely
embedded into application code, as it needs to manage cross-worker
communications and DPR maintenance. On a single node, however,
we would like to support co-located execution, where application
threads operate on D-FASTER directly via shared memory. For
example, in a serverless framework, D-FASTER can run on the
servers that execute user functions, and allow co-located functions
to access and share local state at memory speeds.

We illustrate D-FASTER’s architecture in Figure 6. D-FASTER
workers share nothing and coordinate through two services: DPR-
tracking and ownership mapping. DPR-tracking runs the DPR algo-
rithm in Section 3, and ownership tracking maps keys to assigned
workers. A cluster manager monitors the health of these workers
and triggers failure recovery. Within each worker, D-FASTER runs
FASTER, which spans its HybridLog to include cloud storage aswell.
Each D-FASTER worker owns a unique slice of the global keyspace,
managed by a FASTER instance, and uses FASTER’s CPR state ma-
chine to orchestrate asynchronous Restore() and Commit() calls.
Clients lookup key owners through the ownership mapping service
and connect to workers directly.

Cluster
Manager

Metadata Services
D-FASTER

Cluster Ownership
Mapping

DPR
Tracking

Worker

Application
Space

Cloud Shared
Storage

Local Storage

Main Memory
CPR State
Machine

HybridLog
FASTER

Index

FASTER API

Background
Thread PoolBackground

Thread PoolBackground
Threads

D-FASTER

Remote
Execution
Handling

Local
Execution

Remote
Request Execution

Worker Worker

Figure 6: Overview of D-FASTER Architecture – D-FASTER
builds on top of FASTER to provide a unified key-value store inter-
face across shards, and allows for co-located execution.

D-FASTER client sessions are identified by a globally unique
id. When a session operates on a worker, the worker creates a
corresponding FASTER session using the unique id. Application
code issues operations to D-FASTER, which first checks if the local
worker owns the key. If so, the wrapper forwards the operation to
local FASTER and completes the operation on the calling thread.
Otherwise, the wrapper sends the operation to the owner for re-
mote execution. Clients can choose to either wait for the operation
to complete or entrust a background thread with handling the re-
mote worker response through a PENDINGmechanism, discussed in
Section 5.4. Each D-FASTER worker additionally maintains a pool
of background threads that execute requests on behalf of remote
clients, trigger local FASTER checkpoints, and DPR operations.

5.3 Metadata Management

D-FASTER requires three pieces of metadata information to func-
tion: DPR tracking, cluster membership, and key ownership. We
have already covered DPR tracking in Section 3. The other two are
required for any state-of-the-art distributed key-value store, but
their implementation can interplay with DPR, making it necessary
to co-design them. We track all three pieces of information with an
Azure SQL database for fault-tolerance. Clients cache information
of key ownership and cluster membership locally, and only con-
sult the SQL DB when changes occur. Broadly, our approach for
metadata management follows techniques from our prior work –
an elastic client-server version of FASTER called Shadowfax [38];
we focus only on key DPR-related design aspects below.

Cluster Membership Changes. D-FASTER stores a mapping
from workers to their version number as the current DPR cut. We
use this table as the source of truth for cluster membership in
D-FASTER. Adding a worker or removing an empty worker is
equivalent to adding ore dropping a row in the DPR table. Non-
empty workers first migrate all keys before leaving.

Key Ownership Tracking: We use an additional ownership
table to map keys to the workers that currently own them. It is
unrealistic to keep track of ownership information on a per-key
basis, so we introduce the concept of a virtual partition. Each virtual
partition consists of related keys that co-locate, and users provide
a mapping from keys to virtual partitions. Hash- and range-based
partitioning schemes are supported by default.

Ownership Validation and Transfer: Before each operation,
a worker needs to validate its ownership of the key. In D-FASTER

10 11 12 13 14 15

Complete
Pending

Relaxed
DPR

SessionLog

10

11

12

13

14 15

Operation
Precedence

10

11

12

13

14

15

Strict DPR
SessionLog

Figure 7:Equivalence of RelaxedDPR and Strict DPR – relaxed
DPR merely renames operations by their start time.

workers do so against its local view of the ownership mapping,
rather than the remote metadata store, and reject requests that
fail to validate. Workers can use leases to guard against outdated
ownership information, as is standard practice. When transferring
ownership, the old owner renounces ownership locally before up-
dating the metadata store; the key is temporarily without an owner
during transfer, and the client retries until the transfer is complete.
To ensure DPR correctness in the face of ownership transfer, we
defer ownership transfer to checkpoint boundaries, such that own-
ership is static within versions. Shadowfax explores how to perform
ownership transfers; we omit the details in this paper.

5.4 Relaxed CPR/DPR with Pending

Operations

FASTER uses operation begin time to number each operation in
a session, and provides a strict prefix guarantee based on these
serial numbers. Operations that started before a prefix boundary
must finish execution before later operations. With high-latency
I/O devices, sessions that may go dormant after issuing an oper-
ation, or in a distributed setting such as with D-FASTER, such a
strict guarantee would block commits. It is important for client
sessions to issue multiple unrelated requests in parallel to mask
operation latency, and such parallelism should not block commits.
Fortunately, prefix recoverability only requires linearizability for
each SessionOrder, i.e., the linearizable order does not have to
correspond exactly to FASTER serial numbers. Therefore, we need
to simply relax FASTER’s strict prefix scheme while retaining prefix
recoverability. We call our approach relaxed CPR for FASTER and
correspondingly, relaxed DPR for D-FASTER.

Both FASTER and D-FASTER execute a client request immedi-
ately if the request is in local memory, and return a PENDING status
otherwise. Clients either wait on the operation or issue more op-
erations in parallel before waiting on them as a group. The client
session maintains a buffer of (completed and in-progress) asynchro-
nous operations. Later operations do not depend on such PENDING
operations until explicit resolution, by calls to CompletePending()
on the session. Relaxed CPR/DPR defines its SessionOrder using
operation start time, but weakens the prefix consistency guarantee.
Specifically, recovered prefixes may now have missing PENDING
operations that are clearly identified in an exception list as part of

the commit. Relaxed CPR is now the default option in FASTER, but
users may revert to strict CPR if so desired.

We show an example of failure recovery with relaxed DPR in
Figure 7. Operations shown in blue (10, 12, 15) are local and execute
immediately, whereas others execute remotely and go PENDING.
The recovery status of each operation is indicated on the side. This
seemingly leads to a violation of DPR properties: the recovered
prefix (10, 12, 13) misses operation 11. Observe, however, that this
is not an anomaly — 12 and 13 are concurrent with 11 and cannot
depend on it. It is therefore possible to find another equivalent linear
execution order that satisfies strict DPR.We give a concrete example
in Figure 7. We show the operation precedence that constrains our
execution order on the bottom left, representing read-write or write-
write dependencies. We then reorder the previous example into a
strict-DPR-consistent SessionOrder on the right while satisfying
these constraints. One can similary show that relaxed DPR is merely
a restating of the strict DPR guarantee that uses an alternative
ordering within SessionOrders.

5.5 Non-blocking Restore Implementation

We now present how D-FASTER supports non-blocking Restore()
by extending FASTER’s checkpointing mechanism. As discussed
in [44], FASTER’s checkpoints are already non-blocking. This is
achieved through a statemachine abstraction, where threads loosely
coordinate to step through a series of global transitions. The system
maintains a global “current state” variable and the current version
number; each thread periodically refreshes its local view of that
global state, executing logic to catch up as needed. We advance
the system state after all threads have reached that state, or when
some external criteria (e.g., disk write persistence) are met. Nor-
mally, FASTER threads operate in the REST state at some version
v , and threads update mutable records in-place without additional
coordination. When checkpointing, the system first waits for all
threads to observe the start of a checkpoint and move to the global
state to v + 1. Threads catch up to v + 1 at their own pace and
disable in-place updates for records in v , so the system can capture
a precise image of the system state as of v when all threads enter
v + 1. When the checkpoint is complete, the system goes back to
REST and resumes normal operation in v + 1. D-FASTER uses a
similar mechanism for Restore(), as shown in Figure 8. When
Restore() is invoked to recover from v to some earlier vsaf e , the
system disables in-place updates and move to THROW in v + 1.
Similar to checkpointing, this creates a fuzzy cut-off of v entries on
the log — after all threads enter THROW, no more entries from v
can appear in the log. The system then proceeds to mark all entries
in (vsaf e ,v] invalid in PURGE before moving back to REST.

To support operations on the database during rollbacks, we lever-
age FASTER’s hash index implementation that handles hash colli-
sion with chaining. As different versions of an entry share a key, one
can accesses all versions that are not garbage-collected by travers-
ing the hash chain. We modify FASTER to ignore all entries in
(vsaf e ,v] when in THROW or PURGE, so threads only see keys
in or before vsaf e . D-FASTER only garbage-collects FASTER log
entries that are in the DPR guarantee so this mechanism functions.

D-FASTER conveys a failure to the client by throwing an excep-
tion upon completing the transition to Throw. We assume that the

REST

THROW

PURGE

v
v + 1

1 2

3
1
2
3

Rollback request received
All threads have observed the rollback
Rolled back entries marked invalid in log

v-safe v v + 1fuzzy

1 2
3

v entries
invalid

Figure 8: Overview of Rollback State Machine – threads first
coordinate to draw fuzzy end of the lost versions. Readers ignore
these entries while we mark them invalid in the background.

client has properly handled the failure when they issue the next
request, and allow them to operate in v + 1 post-recovery. Imple-
menting rollbacks in the checkpoint state machine also prevents
concurrent checkpoints from occurring, as the system allows at
most one state machine to execute at a time.

6 GENERAL DPRWITH D-REDIS

We now describe a library called libDPR that can help add DPR
semantics to an unmodified cache-store. We use Redis with libDPR
to build D-Redis, Redis with DPR guarantees.

Figure 9 shows the architecture of D-Redis. We color code each
component by the software they belong to – red for the D-Redis
wrapper, blue for unmodified Redis, and green for libDPR.

The D-Redis wrapper consists of two components. The client-
side wrapper provides a session-based interface for applications to
issue operations. Messages are serialized into batches, enhanced
with a DPR-specific header, and sent to the server. The server-
side wrapper reads messages, does DPR-specific work, forwards
operations to Redis, and returns DPR-enhanced responses to the
client, which replies to the application.

libDPR implements all necessary logic to track, find, and report
DPR guarantees. It operates on a per-batch basis. On the client-
side, libDPR assigns sequence numbers to operations in the ses-
sion, tracks committed prefixes and computes dependencies for
message headers. It also tracks committed session prefixes and de-
termines if the client needs to roll back due to server failures. On
the server-side, libDPR is invoked before and after each request
batch is processed. Before a batch is processed, libDPR uses the
header and DPR information to determine if it is safe to execute.
It may need to delay execution, e.g., until a local commit is issued,
or reject a batch in case of failure. Once libDPR clears a batch for
processing, it eventually becomes recoverable. The library supports
custom version tracking by the server wrapper while executing a
batch on the cache-store in parallel to ongoing commits. Finally,
the server-side libDPR computes the response header, including
per-operation version information, to be sent back to the client.
libDPR invokes Commit() and Restore() calls on StateObject,
in order to commit periodically. The library also tracks world-lines
and rolls back the StateObject in events of failure.

Redis

libDPR

Redis
Client

D-Redis

D-Redis
Client

Wrapper
libDPR
Client

D-Redis
Proxy

Client

Proxy

libDPR
Server

Redis Batch BodyDPR Header

DPR
Processing

Message
Buffer

DPR
Finder

Redis
Instance

Figure 9: Architecture of D-Redis Using libDPR

The D-Redis server wrapper is simpler than D-FASTER, because
Redis is single-threaded. There is one latch associated with the
wrapper. We take an exclusive latch before invoking Redis check-
points using the BGSAVE command for Commit(). For each incoming
batch, the wrapper takes a shared latch before calling libDPR and
processing it. This ensures that all operations in a batch belong to
the same version.We use periodic LASTSAVE calls in the background
to determine when a checkpoint is finished. Finally, Restore() is
implemented by restarting the Redis instance in question.

7 EVALUATION

We review our implementation and setup in Section 7.1, and then
address the following questions in subsequent sections:
• Whether DPR preserves FASTER’s scalability and performance
when adding distributed recoverability guarantee (Section 7.2).

• Whether DPR supports low operation and commit latencies at
high throughput, even over cloud storage (Section 7.2).

• Whether a co-locationmodel can benefit applications (Section 7.3).
• Whether the DPR recovery model allows for fast failure recovery
in D-FASTER (Section 7.4).

• Whether libDPR can efficiently add DPR to Redis. (Section 7.5).
• How DPR compares to other recoverability guarantees in terms
of performance impact. (Section 7.6).

7.1 Experimental Setup

Setup – We performed our experimental evaluation on the Azure
public cloud [24]. We ran all experiments on a cluster of Standard
DS14 v2 machines [10] running Windows Server 2019-Datacenter
with 128 vCPUs across 8 VMs (16 vCPUs per VM). Each VM uses
accelerated networking that offloads networking logic onto physi-
cal hardware [7]. DPR’s backend metadata store is an Azure SQL
database [5] with a maximum of 8 vCores and 64 GB data size.
Workload – We used the YCSB-A workload [23] for most experi-
ments shown, with 250 M distinct 8-byte keys and 8-byte values
with uniform or Zipfian access patterns. We describe workloads as
R:BU for the fraction of reads and blind updates. The keyspace is
sharded by hash value into equal chunks, and each VM owns one
shard. For co-located benchmarks we first used a random number

No Chkpts Null Local SSD Cloud SSD

2 4 6 8
#VM

30

60

90

120

Th
ro

ug
hp

ut
(M

 O
p/

s)

(a) uniform 50:50

2 4 6 8
#VM

30

60

90

120

Th
ro

ug
hp

ut
(M

 O
p/

s)

(b) Zipfian(θ = 0.99) 50:50
Figure 10: Scaling out D-FASTER

generator to classify an operation as local or global. For local oper-
ations, we picked keys from the co-located server’s local keyspace,
otherwise, we picked keys from the global keyspace.
Implementation – We implemented D-FASTER in C# on top of
FASTER. The network layer is similar to Shadowfax [38] but runs
natively on C# with co-location support. All network communica-
tion is over TCP. Each client thread maintains a window of out-
standing remote operations with sizew . Clients stop issuing remote
operations and wait when their window is full. Clients accumulate
up to b messages before sending as a batch to reduce network-
ing overhead. We used w = 16b unless otherwise noted, which,
on average, allows two batches to be in-flight simultaneously to
each worker in an 8-machine cluster. The FASTER index is sized at
#keys/2 hash bucket entries. Servers periodically perform fold-over
HybridLog checkpoints by marking the log read-only and flushing.
For all experiments shown, we use approximate DPR on Azure SQL;
we have also experimented with other DPR algorithms but found
minimal differences in performance at a cluster size of 8.
Other Systems – We use Redis as the integration target for libDPR;
Redis clients use pre-computed command batches (batching and
windowing is as before). We also experiment with Apache Cassan-
dra (with the default YCSB driver [13]) and Redis as baselines of
our study on the performance impact of recoverability levels.

7.2 Client-Server Performance

We first show D-FASTER’s throughput (Figure 10 and Figure 11)
and latency (Figure 12) with clients issuing requests from dedicated
client VMs. We issued requests from 8 client machines. Unless
otherwise specified, we took a checkpoint every 100 ms on every D-
FASTERworker.We ran these experiments across 3 different storage
backends – null, local SSD, and Azure Premium SSD (cloud SSD).
The null storage device completes every I/O request instantaneously
but incurs all the overhead associated with checkpointing and DPR.
It represents a theoretical upper bound for the performance of D-
FASTER’s recoverability model. Local SSD is the temporary storage
disk attached to each VM, and Azure Premium SSD is a replicated
cloud storage service that is highly available and fault-tolerant [3].
We observed that checkpoints over Premium SSD took 2 to 3 times
longer to complete than local SSD. We took an initial checkpoint
before the start of measurement, except when the benchmark is
marked as “no checkpoint”. Under “no checkpoint”, the FASTER
log is entirely mutable and we do not invoke the checkpointing
code path, imitating a pure in-memory cache. All experiments in
this subsection run for 30 seconds and report average throughput.

Server Throughput: Figure 10 shows that D-FASTER can ef-
fectively scale-out. D-FASTER achieved close to 60M operations

No Chkpts No DPR DPR

4 8 12 16
#vCPU

30

60

90

120

Th
ro

ug
hp

ut
(M

 O
p/

s)

(a) uniform 50:50

4 8 12 16
#vCPU

30

60

90

120

Th
ro

ug
hp

ut
(M

 O
p/

s)
(b) Zipfian(θ = 0.99) 50:50

Figure 11: Scaling up D-FASTER

0 50 100 150 200 250 300
Latency (ms)

(a) commit lat., b = 1024

0 50 100 150 200 250 300
Latency (ms)

(b) commit lat., b = 64

0 5 10 15 20 25 30
Latency (ms)

(c) operation lat., b = 1024

0 5 10 15 20 25 30
Latency (ms)

(d) operation lat., b = 64

Figure 12: Latency Distribution of D-FASTER

per second with persistence guarantees, which was only about 40%
slower compared to running without guarantees. As expected, us-
ing slower cloud storage resulted in slightly lowered performance,
but as we will show later, this reduction of performance mostly
stems from the underlying FASTER instances spending more time
in the slow code-path completing checkpoints, instead of directly
waiting on storage. We also plot how well D-FASTER scales up on
larger machines in Figure 11. We manually pinned the D-FASTER
process to a subset of cores on each of the 8 VMs. D-FASTER still
scaled up to the number of vCPUs on the VM compared to no check-
points, but at a reduced rate, due to the overhead of checkpointing.
We additionally show D-FASTER’s performance when taking un-
coordinated checkpoints without DPR, and see that DPR added
minimal overhead. When running with Zipfian, we see an improve-
ment in performance, because the frequently accessed keys were
quickly copied and subsequent accesses were in-place in FASTER.
Performance is 20% higher across the board in Figure 10, and thread
scalability is better in Figure 11. We have also experimented with
other configurations, including with read-modify-write workloads
and read-mostly workloads, and observe similarly that DPR does
not slow down D-FASTER, and that D-FASTER operates at close
to in-memory performance despite frequent checkpoints. We omit
these experiments due to space limitations and show only results
from the 50:50 Zipfian configuration in subsequent experiments.

Latency: Figure 12 plots the distribution of operation commit
and operation completion latency for D-FASTER. We sampled 0.1%
of the requests when running 8 servers with all cores enabled, and
recorded the time between operation start and completion, and
later, commit. An average request committed in ≈150ms, or one
checkpoint interval plus the time to perform a checkpoint and DPR-
induced delays. On the other hand, client operation completed in a
few milliseconds; most of this latency was due to client batching.
When we ran the benchmark with a smaller batch size of 64, we

1.0 2.0 4.0 8.0
Latency (ms)

0.5
1

4

16

64

256

Th
ro

ug
hp

ut
(M

 O
p/

s)

b=1b=2
b=4

b=8
b=16
b=32

b=64
b=128

b=256
b=512 b=1024

Figure 13: Throughput-Latency Trade-off

Null Chkpts Local SSD Cloud SSD

500ms 250ms 100ms 50ms 25ms
Checkpoint Interval (ms)

0

40

80

120

Th
ro

ug
hp

ut
(M

 O
p/

s)

Figure 14: Impact of Storage Backend on Throughput

achieved sub-millisecond latency, albeit at reduced throughput.
This reduced load also resulted in faster and more stable commits.
Finally, we observed these latencies to be on par with Redis as well.

Throughput-Latency Trade-off: Figure 13 plots D-FASTER’s
performance with different batch sizes at 100ms checkpoints. Both
the x-axis and y-axis are log-scale. The sweet spot for this trade-
off appeared at b=64, where we achieved the highest throughput
with around 1 millisecond of latency. After this point, we increased
throughput at the expense of latency. The system was saturated at
90M ops/s, achieved with b=512. Increasing batch size beyond that
added latency without throughput benefit.

Sensitivity to Storage Latency: Figure 14 shows the perfor-
mance impact of different storage backends on D-FASTER. We
ran three configurations — null, local storage, and cloud storage
while varying checkpoint intervals. Even though the 3 have or-
ders of magnitude difference in latency, the resulting throughput
difference was only about 15% on less frequent checkpoints. This
is because D-FASTER spent more time in reduced performance
mode when a checkpoint was underway. The performance impact
of cloud storage was more pronounced as we increased checkpoint
frequency. This is because persisting a DPR checkpoint on cloud
storage took 50ms (on average), and D-FASTER thrashed at a check-
point frequency of 50ms or lower. Overall, D-FASTER can tolerate
high-latency storage and retain performance.

7.3 Co-location Performance

We now evaluate the performance of D-FASTER running in co-
location mode. Here co-location means we used the same cluster
configuration from before, but instead issued client requests from
the servers themselves so that there was no network communi-
cation between clients and local servers. Note that some client
requests still needed to be sent to remote servers for remote keys.

b=1
b=8

b=16
b=64

b=256
b=1024

p=0% p=25% p=50% p=75% p=90% p=99% p=100%
Co-location Percentage

0.1
0.5
2.5
10
40

160

Th
ro

ug
hp

ut
(M

 o
ps

/s
)

Figure 15: Co-location Throughput

0 10 20 30 40
Time (s)

0
20
40
60
80

100

Th
ro

ug
hp

ut
 (M

 o
ps

 /
s)

committed ops
aborted ops
completed ops

Figure 16: Impact of Recovery on Throughput

Figure 15 shows the throughput of operations with co-located
D-FASTER running the same benchmark as the previous section,
varying the percentage of requests that are remote. We pinned
one client thread to every vCPU enabled for the benchmark, and
only handled remote requests using spare cycles. Figure 15 shows
that co-located D-FASTER achieved the same level, or even higher
performance as dedicated servers when most requests were co-
located. Performance declined to less than half of what a dedicated
server achieved for a higher remote percentage. This is for two
reasons: 1) the remote code-path is much more expensive than local
execution, and co-located clients took away CPU resources that
could have otherwise been used by servers on high remote percent-
age runs, and 2) co-located clients took up network resources to
send requests, which created contention with request serving. The
advantage of co-located execution is more pronounced for applica-
tions with limited batching within a session. In Figure 15, we also
show the performance of D-FASTER while varying batch sizes. We
plot throughput in log scale due to the large shifts in performance
across configurations. Figure 15 shows that D-FASTER achieved
significantly higher throughput when executing a higher percent-
age of operations locally, as local operations were not impacted by
the reduction in parallelism and batching. This makes D-FASTER
ideal for such applications if there are opportunities for co-location.

7.4 Failure and Recovery

We now show the performance of D-FASTER with failures. We
used the same workload and setup as earlier remote client experi-
ments (Section 7.2). Instead of introducing a crash, we simulated a
worker failure by notifying workers of a new world-line, forcing all
workers to rollback to the latest DPR cut. We plot the throughput
of operation commit and completion in Figure 16 against time. We
ran the system for 45 seconds, collecting throughput every 250 ms,
and introduced 3 total failures – one at the 15-second mark, and
the other two in short succession at the 30-second mark, such that
the third failure happened while the system is recovering from the
second failure. We truncate the first and last 250 ms of data and

Redis D-Redis Redis + Proxy

2 4 6 8
#Shard

1

2

3

4

Th
ro

ug
hp

ut
(M

 O
p/

s)

(a) Saturated (w=8192, b=1024)

2 4 6 8
#Shard

1

2

3

4

Th
ro

ug
hp

ut
(M

 O
p/

s)

(b) Unsaturated (w=1024, b=16)
Figure 17: Throughput Comparison of D-Redis vs. Redis

0 2 4 6 8 10
Latency (ms)
(a) Redis

0 2 4 6 8 10
Latency (ms)
(b) D-Redis

0 2 4 6 8 10
Latency (ms)

(c) Redis + Proxy
Figure 18: Latency Distribution of D-Redis vs. Redis

only show the system running in a stable state. The results show
that D-FASTER recovered quickly from failures in less than 200
ms. During failure, commit progress was temporarily halted as D-
FASTER detects that recovery is in progress, and some operations
were lost in the rollback at 15s. Operation throughput saw only a
minor drop, as clients paused operations to compute their recovery
state and workers delayed requests from post-recovery clients. For
the failure scenario at 30s, D-FASTER treated the nested failures
simply as two failure-and-recovery sequences. The second failure
and recovery did not add noticeable overhead in overall recovery
time, as very few operations succeeded in between the two failures.
Due to the additional coordination overhead between workers, how-
ever, operation throughput had a larger dip. Thus, fewer operations
aborted as fewer operations were executed during the recovery
window. Overall, the experiment shows that our recovery scheme
is efficient, capable of resuming normal operation in 100s of ms
even in the face of repeated failures.

7.5 D-Redis: Unmodified Redis with DPR

We now evaluate the performance of D-Redis in comparison to
Redis. We deployed D-Redis on the same cluster as D-FASTER, with
8 servers each running a Redis instance and a D-Redis proxy, and
executed the same YCSB-A (50:50) workload as before. We ran the
benchmark for 5 minutes with one checkpoint (commit for DPR).
We ran three configurations for each experiment: 1) Redis, 2) Redis
through a proxy that forwards every packet, to control for the
change in networking pattern, and 3) D-Redis.

We show the results in Figure 17. We first saturated Redis with
largew and b and observe that D-Redis did not reduce the through-
put or scalability of Redis while adding prefix recoverability. To
test the impact of D-Redis on latency, we ran the same benchmark
with much smaller w and b, such that the baseline Redis perfor-
mance was slightly below maximum throughput. In this scenario,
D-Redis was still scalable but incurred around 30% higher latency
than the Redis baseline; see Figure 18. Recall that unlike vanilla
Redis, D-Redis clients first talk to a proxy, which forwards requests
to a local Redis instance. To understand the source of increased
latency, we repeated the experiment with a pass-through proxy

Sync DPR Eventual None

0.2

0.4

0.6

0.8

Th
ro

ug
hp

ut
(M

 o
ps

/s
)

N/A N/A

(a) Cassandra

2

4

6

8

Th
ro

ug
hp

ut
(M

 o
ps

/s
)

(b) D-Redis

30

60

90

120

Th
ro

ug
hp

ut
(M

 o
ps

/s
)

N/A

(c) D-FASTER
Figure 19: Throughput Impact of Recoverability Guarantees

without DPR. As shown, D-Redis does no worse than this alterna-
tive. This suggests that the new network pattern (via proxy) is the
dominant factor for the slowdown, rather than the DPR algorithm
itself. Overall, while DPR via proxy can be a quick and effective
addition to existing cache-stores to add prefix recoverability, an
integrated solution such as D-FASTER can avoid the extra proxy
latency with additional developer effort.

7.6 Performance vs. Recoverability

Lastly, to better understand the tradeoffs between performance and
recoverability properties, we evaluate on different systems 4 types
of common recoverability guarantees:
(1) None – not recoverable in failure
(2) Eventual – operation returns immediately with background

persistence (e.g., returning before fsync() completes)
(3) DPR – operation returns with asynchronous guarantees
(4) Synchronous – operation returns only after persistence

We ran 3 systems (D-FASTER, D-Redis, and Apache Cassan-
dra [11]) each supporting some of the listed guarantees, to com-
pare their throughput. We used the same uniform YCSB-A (50:50)
benchmark on an 8-node cluster. For D-FASTER, we emulate even-
tual recoverability by turning off DPR. For D-Redis, we turn on
write-ahead-logging in Redis to guarantee synchronous recoverabil-
ity [12], and turn off DPR for eventual recoverability. For Cassandra,
we disable replication and set commit log option to periodic for
eventual recoverability, and group for synchronous recoverability.
Note that not every system supports every recoverability level.

We show the results in Figure 19. We mark a configuration with
N/A if the system in question does not support it. Note the different Y
axes; performance across different systems is not directly compara-
ble due to differences in our benchmarking setup and performance
goals of respective systems. We observe that in both D-Redis and
D-FASTER, DPR provides performance similar to that of eventual
recoverability, despite providing prefix guarantees. In comparison,
synchronous recoverability schemes have a much larger impact
on system throughput. This trend can be seen in all three systems,
despite the different order of magnitude of throughput they operate
at. This shows that DPR is a general and viable option to provide
prefix recoverability while maintaining high performance.

8 RELATEDWORK

Single node storage systems. Main-memory resident database
systems have long employed asynchronous recoverability mecha-
nisms to avoid bottlenecking on storage latency. Early lock release
allows transactions to release locks before persisting their commit

records [27, 30]. Aether [35] and ERMIA [37] extended early lock re-
lease for better scalability onmodern multi-core hardware. Recently
proposed epoch-based recoverability avoids the synchronization
bottleneck of a centralized log by loosely coordinating threads us-
ing epochs [21, 44, 49, 54]. Amazon Aurora [50] and Orleans [28],
while distributed, funnel transactions through a centralized node
to guarantee recoverability. Unlike this prior work, D-FASTER’s
asynchronous recoverability is fully distributed and thus needs
to additionally handle cross-shard consistency and partial system
failures (in the form of individual node failures).

Distributed storage systems. Strongly consistent distributed stor-
age systems have typically used synchronous recoverability mecha-
nisms; via synchronous replication [20, 22], two-phase commit [41],
or both [25, 32]. Consequently, single-key write throughput is lim-
ited by the protocol latency. To avoid this bottleneck, prior work on
deterministic databases, such as Calvin [48], removes recoverability
logic from the requests’ critical path by replicating transaction com-
mands in a log before execution and deterministically executing
the log. DPR instead returns client operations once they complete
(rather than commit) and guarantees recoverability asynchronously.

Caching and fault-tolerance. Much prior work has proposed
using session-based consistency guarantees to increase the scal-
ability of storage systems [26, 40, 44], which DPR builds on. Tx-
Cache [43] serves transactionally consistent but stale state to ap-
plications and synchronously writes transactions through to stor-
age. ChronoCache [31] similarly uses session-based guarantees
while predictively executing queries to speed up reads further. D-
FASTER instead provides linearizable consistency for client op-
erations and speeds up writes with asynchronous recoverability.
LineageStash [51] provides asynchronous recoverability for task-
parallel systems by tracking non-durable lineage metadata of each
task In D-FASTER, this approach would effectively need to forward
keys and values, which is impractically more state to forward than
task lineage metadata. Cloudburst [46] circumvents the IO latency
bottleneck in serverless storage offerings via weakly consistent
caching: reads can observe stale data and writes to the same key are
asynchronously merged . Effectively, Cloudburst’s weakening of
consistency removes conflicts between requests that would other-
wise need to block to guarantee recoverability. D-FASTER instead
maintains linearizable consistency and focuses on recoverability.

9 CONCLUSION

Accessing and updating shared distributed data in a consistent yet
speedy manner, in the presence of failures, is a challenging and
important problem in today’s cloud and serverless setting. Current
solutions using fast caches over durable stores are insufficient. Our
solution is DPR, a distributed protocol for such “cache-store” ar-
chitectures that decouples operation completion from operation
commit and provides strong consistency and asynchronous recov-
ery guarantees to applications. We build D-FASTER and D-Redis to
show its ability to deliver performance with durability guarantees.

Acknowledgments. We are grateful for the support of the MIT
DSAIL@CSAIL member companies. We also thank Phil Bernstein
and the anonymous reviewers for their comments and suggestions.

REFERENCES

[1] Amazon DynamoDB. https://aws.amazon.com/dynamodb/, 2020.
[2] Amazon S3. https://aws.amazon.com/s3/, 2020.
[3] Azure Disk Storage oerview. https://docs.microsoft.com/en-us/azure/virtual-

machines/managed-disks-overview, 2020.
[4] Azure Service Fabric. https://azure.microsoft.com/en-us/services/service-fabric/,

2020.
[5] Azure SQL Database serverless. https://docs.microsoft.com/en-us/azure/azure-

sql/database/serverless-tier-overview, 2020.
[6] Azure Storage - Secure cloud storage. https://azure.microsoft.com/en-us/services/

storage/, 2020.
[7] Create a Windows VM with accelerated networking using Azure Pow-

erShell. https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-
accelerated-networking-powershell, 2020.

[8] How do I make my Lambda function idempotent to prevent inconsistencies
and data loss in my application? https://aws.amazon.com/premiumsupport/
knowledge-center/lambda-function-idempotent/, 2020.

[9] Kubernetes. https://kubernetes.io/, 2020.
[10] Memory optimized Dv2 and Dsv2-series. https://docs.microsoft.com/en-us/azure/

virtual-machines/dv2-dsv2-series-memory, 2020.
[11] Apache Cassandra. https://cassandra.apache.org/, 2021.
[12] Redis Persistence. https://redis.io/topics/persistence, 2021.
[13] YCSB. https://github.com/brianfrankcooper/YCSB, 2021.
[14] Azure Durable Functions. https://docs.microsoft.com/en-us/azure/azure-

functions/durable/durable-functions-overview, retrieved 12-Feb-2020.
[15] Temporal Workflows. https://temporal.io/, retrieved 12-Feb-2020.
[16] Kafka. https://kafka.apache.org/, retrieved 12-Feb-2021.
[17] Amazon Lambda. https://aws.amazon.com/lambda/, retrieved 19-Sep-2020.
[18] Azure Functions. https://azure.microsoft.com/en-us/services/functions/, re-

trieved 19-Sep-2020.
[19] Redis. https://redis.io/, retrieved 19-Sep-2020.
[20] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon, Y. Li,

A. Lloyd, and V. Yushprakh. Megastore: Providing scalable, highly available
storage for interactive services. In CIDR, 2011.

[21] B. Chandramouli, G. Prasaad, D. Kossmann, J. Levandoski, J. Hunter, and M. Bar-
nett. FASTER: A Concurrent Key-Value Store with In-Place Updates. In Proceed-
ings of the 2018 International Conference on Management of Data, SIGMOD ’18.
ACM, 2018.

[22] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.
Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data serving
platform. PVLDB, 1(2), 2008.

[23] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
cloud serving systems with ycsb. In SoCC, 2010.

[24] M. Copeland, J. Soh, A. Puca, M. Manning, and D. Gollob. Microsoft Azure:
Planning, Deploying, and Managing Your Data Center in the Cloud. Apress, USA,
1st edition, 2015.

[25] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s globally-
distributed database. In OSDI, 2012.

[26] K. Daudjee and K. Salem. Lazy database replication with snapshot isolation. In
Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB
’06, page 715–726. VLDB Endowment, 2006.

[27] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A.Wood.
Implementation techniques for main memory database systems. In SIGMOD,
1984.

[28] T. Eldeeb and P. A. Bernstein. Transactions for distributed actors in the cloud.
2016.

[29] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of
rollback-recovery protocols in message-passing systems. ACM Comput. Surv.,
34(3):375–408, Sept. 2002.

[30] D. Gawlick and D. Kinkade. Varieties of concurrency control in IMS/VS fast path.
DE Bull, 8(2), 1985.

[31] B. Glasbergen, K. Langendoen, M. Abebe, and K. Daudjee. Chronocache: Predic-
tive and adaptive mid-tier query result caching. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’20, page
2391–2406, New York, NY, USA, 2020. Association for Computing Machinery.

[32] J. Gray and L. Lamport. Consensus on transaction commit. TODS, 31(1), 2006.
[33] J. . Helary, A. Mostefaoui, R. H. B. Netzer, and M. Raynal. Preventing useless

checkpoints in distributed computations. In Proceedings of SRDS’97: 16th IEEE
Symposium on Reliable Distributed Systems, pages 183–190, 1997.

[34] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for con-
current objects. TOPLAS, 12(3), 1990.

[35] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and A. Ailamaki. Aether: a
scalable approach to logging. PVLDB, 3(1-2), 2010.

[36] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, J. E. Gonzalez, R. A. Popa,
I. Stoica, and D. A. Patterson. Cloud programming simplified: A berkeley view
on serverless computing, 2019.

[37] K. Kim, T. Wang, R. Johnson, and I. Pandis. Ermia: Fast memory-optimized
database system for heterogeneous workloads. In SIGMOD, 2016.

[38] C. Kulkarni, B. Chandramouli, and R. Stutsman. Achieving High Throughput
and Elasticity in a Larger-than-Memory Store. Proc. VLDB Endow., 14(8), 2021.
https://arxiv.org/abs/2006.03206.

[39] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

[40] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t Settle for
Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,
SOSP ’11, page 401–416, New York, NY, USA, 2011. Association for Computing
Machinery.

[41] C. Mohan, B. Lindsay, and R. Obermarck. Transaction management in the r*
distributed database management system. TODS, 11(4), 1986.

[42] B. M. Oki and B. H. Liskov. Viewstamped replication: A new primary copy
method to support highly-available distributed systems. In PODC, 1988.

[43] D. R. Ports, A. T. Clements, I. Zhang, S. Madden, and B. Liskov. Transactional
consistency and automatic management in an application data cache. In OSDI,
2010.

[44] G. Prasaad, B. Chandramouli, and D. Kossmann. Concurrent Prefix Recovery:
Performing CPR on a Database. In Proceedings of the 2019 International Conference
on Management of Data, SIGMOD ’19, pages 687–704, New York, NY, USA, 2019.
ACM.

[45] V. Sreekanti, C. Wu, S. Chhatrapati, J. E. Gonzalez, J. M. Hellerstein, and J. M.
Faleiro. A fault-tolerance shim for serverless computing. In EuroSys, 2020.

[46] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. M. Faleiro, J. E. Gonzalez, J. M.
Hellerstein, and A. Tumanov. Cloudburst: Stateful functions-as-a-service, 2020.

[47] R. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM Trans.
Comput. Syst., 3(3):204–226, Aug. 1985.

[48] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi. Calvin:
fast distributed transactions for partitioned database systems. In SIGMOD, 2012.

[49] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions in
multicore in-memory databases. In SOSP, 2013.

[50] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal, S. Kr-
ishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao. Amazon Aurora: Design
considerations for high throughput cloud-native relational databases. In SIGMOD,
2017.

[51] S. Wang, J. Liagouris, R. Nishihara, P. Moritz, U. Misra, A. Tumanov, and I. Stoica.
Lineage stash: fault tolerance off the critical path. In SOSP, 2019.

[52] C. Wu, J. Faleiro, Y. Lin, and J. Hellerstein. Anna: A KVS for Any Scale. In 2018
IEEE 34th International Conference on Data Engineering (ICDE), pages 401–412,
2018.

[53] Yi-Min Wang. Consistent global checkpoints that contain a given set of local
checkpoints. IEEE Transactions on Computers, 46(4):456–468, 1997.

[54] W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast databases with fast durability and
recovery through multicore parallelism. In OSDI, 2014.

https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/
https://docs.microsoft.com/en-us/azure/virtual-machines/managed-disks-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/managed-disks-overview
https://azure.microsoft.com/en-us/services/service-fabric/
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-powershell
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-powershell
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://kubernetes.io/
https://docs.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series-memory
https://docs.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series-memory
https://redis.io/topics/persistence
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://temporal.io/
https://kafka.apache.org/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://redis.io/
https://arxiv.org/abs/2006.03206

	Abstract
	1 Introduction
	2 DPR Architecture
	3 Distributed Prefix Recovery
	3.1 Modeling
	3.2 Ensuring Progress in DPR
	3.3 Finding DPR-guarantees
	3.4 Approximations and Optimizations

	4 Non-Blocking Failure Recovery
	4.1 Assumptions
	4.2 Tracking World-lines
	4.3 Proof Sketch

	5 Fast DPR with D-FASTER
	5.1 StateObject Implementation
	5.2 D-FASTER Architecture
	5.3 Metadata Management
	5.4 Relaxed CPR/DPR with Pending Operations
	5.5 Non-blocking Restore Implementation

	6 General DPR with D-Redis
	7 Evaluation
	7.1 Experimental Setup
	7.2 Client-Server Performance
	7.3 Co-location Performance
	7.4 Failure and Recovery
	7.5 D-Redis: Unmodified Redis with DPR
	7.6 Performance vs. Recoverability

	8 Related work
	9 Conclusion
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 48.69, 74.96 Width 249.20 Height 87.84 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 48.6937 74.9613 249.1972 87.8396

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 13
 0
 1

 1

 HistoryList_V1
 qi2base

