
Web-based Programming for Low-cost Gaming Handhelds
Michał Moskal

mimoskal@microsoft.com
Microsoft Research

USA

Peli de Halleux
jhalleux@microsoft.com

Microsoft Research
USA

Thomas Ball
tball@microsoft.com
Microsoft Research

USA

Abhijith Chatra
abchatra@microsoft.com

Microsoft
USA

James Devine
t-jamdev@microsoft.com

Microsoft Research
UK

Steve Hodges
shodges@microsoft.com

Microsoft Research
UK

Shannon Kao
shakao@microsoft.com

Microsoft
USA

Richard Knoll
riknoll@microsoft.com

Microsoft
USA

Galen Nickel
v-gani@microsoft.com

Microsoft
USA

Jacqueline Russell
jacqchen@microsoft.com

Microsoft
USA

Joey Wunderlich
jowunder@microsoft.com

Microsoft
USA

Daryl Zuniga
daryl.zuniga@gmail.com

Microsoft
USA

ABSTRACT
Low-cost microcontroller boards like the BBC micro:bit are used
to engage and inspire students worldwide to learn more about
computing. Easy-to-use web-based programming environments
and low-cost hardware allow novices to build physical computing
systems with the micro:bit – systems that sense and respond to the
real world. However, devices such as the micro:bit may not capture
the attention of every student, as the interests of some may lie in
graphic design, animation, or other areas that are not the main
focus of physical computing.

Video game creation offers the opportunity for students to en-
gage with computing concepts from a different angle, while keep-
ing open the possibilities for physical computing. To date however,
there is no game creation platform that has both the same low-
barrier to entry and low-cost hardware as the BBC micro:bit.

We present MakeCode Arcade, a web app for creating video
games for gaming handhelds, built on the same technologies as
the BBC micro:bit, extended to support multiple microcontrollers
and including a 2D game engine and easy-to-use sprite and music
editors. We also designed a simple hardware specification that re-
sulted in five different companies creating seven Arcade-compatible
handhelds. Qualitative and quantitative evaluation demonstrates
that Arcade enables a modern and fully web-based programming
experience for low-cost microcontroller-based gaming handhelds.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG’21, August 3–6, 2021, Montreal, QC, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8422-3/21/08. . . $15.00
https://doi.org/10.1145/3472538.3472572

KEYWORDS
video games, programming, gaming handhelds, web browser

ACM Reference Format:
Michał Moskal, Peli de Halleux, Thomas Ball, Abhijith Chatra, James Devine,
Steve Hodges, Shannon Kao, Richard Knoll, Galen Nickel, Jacqueline Rus-
sell, Joey Wunderlich, and Daryl Zuniga. 2021. Web-based Programming
for Low-cost Gaming Handhelds. In The 16th International Conference on
the Foundations of Digital Games (FDG) 2021 (FDG’21), August 3–6, 2021,
Montreal, QC, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3472538.3472572

1 INTRODUCTION
Since the introduction of Arduino in 2005 [18], one option open
to educators who want to make computer science lessons more
engaging is the use of physical computing devices based on micro-
controller technology. Such devices allow students to build inter-
active systems that sense and respond to the real world [11]. In
classrooms around the world, physical computing has been shown
to increase student engagement, especially among girls, and helps
with confidence in both educators and students [17].

The BBC micro:bit, shown in Figure 1(a) and (b), is a physical
computing device that has seen solid success in the classroom over
the last five years [2]. The micro:bit has a retail price of about $15
(US), is half the size of a credit card, and incorporates a 5x5 LED
display, two buttons, a programmable microcontroller unit (MCU),
an accelerometer, a magnetometer, Micro-USB interface and battery
port, as well as a Bluetooth Low Energy (BLE) radio. The micro:bit
is now used to teach computer science in over 60 countries, and has
to date shipped over 5 million units. A web-based programming
environment for the micro:bit, Microsoft MakeCode [9], is a key
part of its success. MakeCode enables programs to be created using
drag-and-drop blocks (see Figure 1(c)), run in the web browser
using the micro:bit simulator (left-side of Figure 1(c)), compiled

https://doi.org/10.1145/3472538.3472572
https://doi.org/10.1145/3472538.3472572
https://doi.org/10.1145/3472538.3472572

FDG’21, August 3–6, 2021, Montreal, QC, Canada Moskal, et al.

to machine code, and finally transferred to the device over a USB
cable.

Although the micro:bit offers many exciting and engaging physi-
cal computing experiences, its limited 5x5 display makes it less than
ideal for video games, which have the potential to further engage
students [24]. Our vision is to bring together low-cost yet capable
MCU-based hardware with the web-based simplicity of MakeCode
to create an end-to-end experience for video game programming,
with the potential to add physical computing via external sensors
and actuators. Video game programming for MCU-based devices
has much to offer: the domain is naturally interesting to many stu-
dents, encompasses a wide range of computing and programming
concepts [20], and the combination of video gaming and physical
computing has the potential to unlock new hybrid scenarios [16, 19].

Towards this end, we created a simple and low-cost hardware
design for MCU-based gaming handhelds, backed by a new web-
based application called MakeCode Arcade, shown in Figure 2,
which we developed on top of the open source PXT framework that
MakeCode is built upon. With Arcade, users can design game assets
(sprites, tile maps, melodies), program a game using a drag-and-
drop graphical programming environment, and test/debug/play
their games – all via the web browser –and then deploy them to
compatible gaming handhelds.

To keep costs down, our hardware design only requires a low-
resolution screen, basic sound generation, and cheap tactile controls.
This minimal set of features can be supported on low-cost MCUs,
but their use introduces processor and memory constraints. These
constraints mean that Arcade only supports a retro gaming expe-
rience [3]. Although the look and feel of Arcade calls out to retro
gaming experiences of the past, the Arcade programming experi-
ence is modern and comparable to Scratch [14], both of which use
Google’s Blockly framework [10]. A wide variety of video games
can be implemented with blocks, while the underlying full-featured
object-oriented APIs are exposed in TypeScript (JavaScript with
types, see www.typescriptlang.org) for more advanced scenarios.

Our main contributions are:
• The design of a gaming handheld specification, with a sim-
ple and inexpensive realization using commodity MCUs and
hardware components. Our goal here is to spur third-party
hardware manufacturers to create Arcade-compatible hand-
helds with their own unique features – we do not presume to
know what combinations of gaming and physical computing
will appeal to users.

• The design of layered game APIs that provide a low floor for
novices to easily get started using graphical blocks.

• The implementation of the core game engine in a subset
of TypeScript called Static TypeScript [4], supported by the
PXT framework; the same game engine runs in both the web
browser and on the gaming handhelds.

• Major modifications to the PXT framework to support a
variety of MCUs, and improve the performance of PXT’s
compiler and runtime.

We evaluate the deployment of Arcade via:
• A qualitative assessment of seven gaming handhelds that
have been produced by third parties in 2019-2020 based on
our core design, ranging in retail price from $25 to $50 (US).

• A synthetic benchmark to evaluate game engine perfor-
mance and characterize the limits of the gaming handhelds.

• Qualitative and quantitative assessment of games written by
the Arcade community over three game jam [21] contests
run in 2020.

Most of the programs created by the Arcade community in the game
jams run successfully on the lowest-powered device produced by
the third parties, showing that with careful design it is possible to
bring together a modern web-based programming experience with
low-cost gaming handhelds.

The rest of the paper is organized as follows: Section 2 discusses
background and related work, Section 3 describes the design goals
and constraints of Arcade, Section 4 discusses the major challenges
in the implementation of Arcade, Section 5 presents our evaluation,
and Section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK
In his book on “retrogames” (old computer games), Aycock[3] says:

“One theme that runs throughout this book is the idea
of constraints. Retrogame programmers were limited
in ways that would be nearly incomprehensible to a
modern programmer.”

Aycock posits that constraints on video games come in three forms:
the computing system on which the game runs, constraints on the
developer, and constraints on the player. A key point of Arcade is to
embrace the constraints of retro video games in terms of their low-
resolution graphics and the limited memory and processing power
available to their programmers, exemplified by the low-cost MCU-
based hardware we choose to use. At the same time, we approach
programming from a more modern perspective, leveraging the
power of the modern web browser on capable laptop and desktop
systems.

Related work breaks roughly into two categories: (1) environ-
ments specifically for retro video game creation; (2) game creation
environments for novices. Arcade occupies a unique point in the
design space, providing a web-based game creation environment
for video games, with first-class support for a variety of gaming
handhelds.

2.1 Retro game creation environments and
communities

The Gamebuino META [1] is a gaming handheld device based on
the Arduino Zero that uses the ARM Cortex M0 CPU, with 256 KB
flash and 32 KB RAM. The META can be programmed using the
Arduino IDE (C/C++) or with CircuitPython. In comparison, Arcade
allows web-based programming using Blockly and/or JavaScript.
Our analysis of the design space (Section 3) suggests that the faster
Cortex M4 CPU with at least 96 KB of RAM is a better starting point
for responsive games that use double buffering (to be fair, it has
been three years since the debut of the META and we benefit from
the fact that Moore’s law still applies to MCU-based technology).

GB Studio [13] is a game creation environment that runs on
Windows, MacOS, and Linux, and allows the user’s game to be
exported as a Game Boy compatible ROM file that can be played in
several Game Boy emulators (OpenEMU and KiGB). GB Studio’s

www.typescriptlang.org

Web-based Programming for Low-cost Gaming Handhelds FDG’21, August 3–6, 2021, Montreal, QC, Canada

(a)

(b)

(c)

Figure 1: The BBCmicro:bit: (a) front; (b) back; (c) MakeCode micro:bit web app, with popular “Rock Paper Scissors” program.

programming model is menu-based and heavily depends on built-in
behaviors of a large assortment of sprite kinds. In contrast, Arcade
provides a general-purpose programming experience.

There also are small but vibrant communities that focus on
writing new games for classic gaming systems (e.g. https://www.
retroguru.com). These communities often use the tools of that era
(6502, 68000 assembler) and target specific machines (via emula-
tors), or write in ANSI C for multi-platform gaming. ROM hacking,
the process of modifying the ROMs of classic games, is also popular
but is the domain of the highly technical.

PICO-8 is a very popular application for designing, programming
(via the Lua scripting language), and playing retro video games on
modern operating systems [23]. As stated on the PICO-8 web site,
“A fantasy console is like a regular console, but without the incon-
venience of actual hardware.” PICO-8 games, as well as the creation
environment, are limited to a 128x128 pixel, 16-color display; the
PICO-8 virtual machine exposes memory maps and similar 8-bit
inspired features to the programmer. PICO-8 gaming requires a full
operating system to run the emulator, while Arcade compiles games
to run directly on low-resource MCUs. TIC-80 [15] shares PICO-
8’s approach, also defining a “fantasy console” with intentional
limitations copied from the retrogame era.

2.2 Novice game creation environments
There aremany game programming environments for children/novices,
primarily with the purpose of introducing computing concepts and
programming through themedium of video games [24]. Many of the
environments use block-based programming and eschew the use of
text-based programming languages. As the games run on modern
computers (either as a native application or in the web browser),
they often take advantage of graphics (for example, smooth 3D
graphics made possible by a GPU) and media features that fall out-
side of the constraints of the gaming handhelds we target. Two of
the popular educational environments are:

• Alice [6, 12], which uses an agent-based object-oriented
paradigm for novice programming of interactive animations.
Wernet et. al [22] showed that middle-school students were
able to program games with Storytelling Alice (a version of
Alice with more support for high-level animations) in about
20 hours over a two-week session – most of these games
used 3D.

• Scratch [14], which uses Blockly for drag-and-drop pro-
gramming. Like Alice, the Scratch programming model is
actor-based with each sprite having an associated set of

https://www. retroguru.com
https://www. retroguru.com

FDG’21, August 3–6, 2021, Montreal, QC, Canada Moskal, et al.

Figure 2: MakeCode Arcade web app (top) and devices (bottom) running the program shown in the web app. Left picture: GHI
BrainPad, Kittenbot Meowbit, TinkerGen GameGo. Right picture: experimental micro:bit shield, Adafruit PyBadge.

scripts for the variety of events that can take place (colli-
sions, button-press, etc.) and using message broadcast to
coordinate with other sprites.

In contrast to both Alice and Scratch, the Arcade programming
model is not actor-based. It uses a standard game update loop in
which the programmer can iterate over all sprites to synchronize
their activity, as well as traditional event handlers for reacting to
user input and colliding sprites. Furthermore, Arcade supports com-
pilation to machine code and deployment to MCU-based hardware.

Although Scratch has the capability to work with hardware such
as the BBC micro:bit, the devices are treated as I/O peripherals: the
user’s program executes in the web browser and I/O commands are
sent from/to the peripheral device.

The popularity of Python is ever increasing, especially with its
use in data science and machine learning, and Pygame is a well-
known python library for creating games [7]. While many Pygame
games have a decidedly retro feel to them, they require at least a
Raspberry Pi computer to run.

Web-based Programming for Low-cost Gaming Handhelds FDG’21, August 3–6, 2021, Montreal, QC, Canada

3 ARCADE DESIGN SPACE
The vision of Arcade is to provide a web app that allows users to
create a wide variety of video games that can then be compiled and
deployed to low-cost MCU-based gaming handhelds. The twomajor
constraints we operated under are as follows: we decided to build
Arcade using the PXT framework that underlies the MakeCode web
app for the BBC micro:bit, as it already supports coding in the web
browser with compilation to ARM-based MCUs; we wanted to cre-
ate an ecosystem of Arcade hardware, leveraging third party com-
panies to design, manufacture and distribute Arcade-compatible
devices.

Arcade was guided by the following three goals: (1) to define a
hardware specification that allows third parties to innovate and cre-
ate novel gaming handhelds that will integrate seamlessly with the
Arcade software stack; (2) to create a 2D game engine using Static
TypeScript (the core language supported by PXT that is compiled
to machine code) that will perform acceptably for a wide variety
of games, on both browser and handheld; (3) to provide simple
user-facing APIs for programming against the game engine, as
well as the ability extend the core game engine with genre-specific
libraries.

3.1 Hardware Specification
Cost is a key part of accessibility; to make Arcade as accessible as
possible we aimed for a retail price of under $20 (US) for the simplest
gaming handhelds. To reach this price and maintain margins typical
for consumer electronics, the hardware bill of materials must be
around $5 or less.

The dominant costs in gaming handhelds are the LCD screen and
the MCU. In the $2 range, LCDs are typically 1.4 inch at 128x128
pixels, or 1.8 inch at 160x128 and 18-bit color. There also are screens
in the $4+ range between 2.0 and 3.2 inch at 320x240. To enable
market diversity, we decided on a 3:4 aspect ratio and 160x120
resolution as a compromise between the smaller and larger screens.
This allows us to use 94% of the area of a 1.8 inch screen and scale
up efficiently to 320x240 for more expensive displays.

MCU capability also is important when considering the cost of
gaming handhelds. MCUs under $2 typically have no more than
128 KB of RAM and 512 KB of flash (non-volatile memory, which
is slow to write and used to store program and data), and run
at no more than 120 MHz. The RAM size constraints restrict the
resolution and bit-depth of displays. For example, a screen buffer of
160x120 at 18-bit color depth would require a memory buffer size
of 42 KB. For smooth gameplay, a second screen buffer is needed.
With various sprite operations, the handling of in-game dialogs,
and user program variables, the demands of the platform would
quickly exceed the capabilities of many low cost MCUs. Instead of
increasing hardware cost, we decided to restrict the color depth of
the display to 4-bit indexed color.1 The color palette, referred to by
this 4-bit index, can be dynamically changed at run time.

For user input, Arcade minimally requires 4 directional buttons
(a d-pad or analog joystick can also be used), two action buttons
(A and B), and 1 utility button (menu/pause). Most Arcade devices
also have a hardware reset button and/or an on/off switch. Other

1 It might have been possible to use 8-bit color, but even with 4 bits we are already
often close to RAM limits.

hardware components such as a speaker and a USB connector for
programming the device, together with assembly and supporting
passive components typically comes to less than $1. Optional com-
ponents, like a battery or enclosure can add a few more dollars.
This combination of features and functionality is similar to that of
the classic Nintendo Game Boy.

3.2 Retro Game Assets and Core Engine
We focus our attention on supporting 2D graphics, which covers
the majority of retro games.2 The core low-level data structures
required are bitmaps for encoding color images, tile maps, and sprite
animations. Tile maps are a space-saving device for representing
a game level, which is a grid of color images. As images are often
repeated in the grid, each entry of a tile map simply refers to the
index of a particular image (along with some other meta-data, e.g.
whether or not sprites can pass through it). A simple but powerful
UI for creating/modifying images, tile maps, and animations is
absolutely essential, as users will spend a lot of time crafting game
assets. The game engine needs to be designed to work on MCUs, as
described above, where memory is severely limited (96 KB of RAM
being the minimum).

3.3 High-level APIs and Extensibility
While low-level data structures are needed by the game engine to
effectively run on MCUs, we present a high-level view of game ab-
stractions to programmers using a simple object model exposed via
TypeScript APIs. The PXT framework supports annotating Type-
Script APIs with metadata to expose a further simplified view of
these APIs via the Blockly framework.

Despite its restrictions, there are a wide variety of video game
genres that are possible within the retro domain: adventure, racing,
platform, puzzle, tower defense, sports, shooter, etc. To simplify
programming, each of these genres may require additional APIs,
so it’s important to provide a core set of APIs that support a wide
variety of game genres, as well as specific libraries that simplify
programming games in a particular genre.

4 ARCADE IMPLEMENTATION, BOTTOM-UP
This section describes themain advances that were required to bring
Arcade to life, startingwith the hardware design and firmware at the
bottom of the stack, and working up to the PXT framework, APIs
and user interface. Some design decisions required major changes
to the PXT framework, as we will note.

4.1 Hardware and Firmware
PXT was designed to support a single device type per web app [9].
A major challenge we faced was to give manufacturers a choice
of MCU and value-added peripheral components to create their
Arcade-compatible gaming handheld(s), while ensuring that the
machine code generated by PXT would always work.

2 Various pseudo-3D effects, e.g. “mode 7” road racing and ray casting à la original
Wolfenstein 3D, can be implemented too. But these don’t benefit from our sprite and
tilemap abstractions.

FDG’21, August 3–6, 2021, Montreal, QC, Canada Moskal, et al.

Figure 3: Dialog for choosing device.

While there is little choice for inexpensive, widely available
small screens3, there are many MCUs that fit our needs. Because
PXT already generates ARM Thumb code from Static TypeScript,
we decided to only support ARM-based MCUs. Arcade currently
supports several MCU variants, all of which happen to be based on
an ARM Cortex-M4F core:4

• D5 - a Microchip ATSAMD51G19A (192 KB RAM, 512 KB
flash, 120 MHz);

• F4 - one of the STMicroelectronics STM32F4xx MCUs, rang-
ing from STM32F401xE (96 KB RAM, 512 KB flash, 84MHz)
to STM32F412xG (256 KB RAM, 1024 KB flash, 96 MHz)

• N3 - Nordic Semiconductor NRF52833 (128 KB RAM, 512 KB
flash, 64 MHz) and N4 - NRF52840 (256 KB RAM, 1024 KB
flash, 64 MHz);

All these MCUs have USB device circuitry and expose a virtual
USB drive when connected to a computer. The PXT framework
compiles a user’s program to a binary, which can be copied to that
drive to re-program the device. This programming is handled by a
bootloader, which is installed by the manufacturer at the top of the
MCU’s flash memory. The bootloader takes care not to overwrite
itself.

While the machine code generated from the user’s program and
the game engine is the same for all these MCUs, the supporting
runtime is different. Even though the MCUs share the same ARM
processing core, they have different peripherals for external inter-
faces (e.g. SPI for talking to the screen, USB for programming, or
DAC for sound generation), and different internal features (clocks,
timers, access to flash, etc.). Thus, depending on the choice of MCU,
a different binary is generated by PXT.5 As shown in Figure 3, the
user chooses the MCU variant by selecting a particular handheld
from a grid with pictures. There are also generic fallback options
3 There are many manufacturers but the screens themselves are commoditized: they
look the same and have the same interface.
4 The compiled TypeScript code runs on various other Cortex cores, and also on
ARM11.
5 It would be theoretically possible to detect theMCU at runtime, and access peripherals
accordingly. However, this would significantly increase the size of the runtime, leaving
little space for a user’s program and game assets.

for each MCU variant; for example, selecting BrainPad, Meowbit,
or F4 has the same effect.

On top of MCU variance, third-party manufacturers can build
their Arcade handhelds in different ways: they can choose the
smaller 1.8 inch screen or a bigger one; they can include various
optional peripherals such as an accelerometer, vibration motor,
and/or RGB LEDs; they can also connect these periperhals to dif-
ferent physical pins of the MCU. We thus require manufacturers
to include configuration data in the bootloader area of the flash.
The configuration is a simple integer key to integer value mapping,
where the keys are pre-defined in the PXT framework. Typical keys
are accelerometer type, or accelerometer SDA pin. This data is used
at runtime to access the appropriate hardware.

Typically, in the embedded world, if a single binary is expected to
run on multiple types of hardware, some MCU pins are physically
tied to 0 or 1 and used as feature flags. We believe that storing this
configuration data in the bootloader space is unique to Arcade, and
it allows a much larger space of configurations to be expressed.6
Hardware designers don’t need to ask us for permission for building
the devices they want, they just need to specify the configuration
data correctly – thus fostering an open ecosystem of hardware.

In addition to the MCUs listed above, Arcade games can run on
a variety of more powerful hardware:

• in web browser, as supported by PXT, where the game runs
inside the simulator we created (see left-hand side of Fig-
ure 2);

• Raspberry Pi Zero, with a powerful and power-hungryARM11
chip (512MB RAM, 1GHz; note the 1000x more memory and
10x faster clock compared to the MCUs) - via native compi-
lation to Linux ELF format;

• various C++ native apps using libSDL (iOS, Android, Win-
dows, Mac, Linux) via compilation to a custom byte-code
that runs in a virtual machine (VM).

6 A yet more flexible option would be to express peripheral configuration data in
manufacturer-provided firmware code, but our sense is that this may add too much
complexity for hardware manufacturers.

Web-based Programming for Low-cost Gaming Handhelds FDG’21, August 3–6, 2021, Montreal, QC, Canada

4.2 Language, Compiler, and Runtime
As mentioned before, PXT uses a subset of TypeScript dubbed Static
TypeScript (STS) [4]. The main limitation of STS compared to regu-
lar TypeScript is the lack of eval and prototype inheritance. As in
regular TypeScript, values are ultimately typed at runtime, there
is only one numeric type (64-bit IEEE double; 31-bit tagged inte-
gers are used as a transparent performance optimization). Classes,
interfaces, namespaces, and first-class functions are also supported.

The STS compiler is written in regular TypeScript and can run
in a web browser, generating ARM Thumb machine code (as well
as continuation-passing-style JavaScript and VM byte-code). The
generated binaries are linked with a pre-compiled runtime imple-
mented in C and C++. The runtime contains a garbage collector,
methods of built-in data types (numbers, strings, binary buffers,
arrays, dictionaries, functions, but also bitmap images), and support
code for exceptions, runtime type reflection, etc. In case of MCUs,
the runtime builds on CODAL [9], a C++ library that exposes com-
mon abstractions for various hardware, as well as a non-preemptive
thread scheduler. The Raspberry Pi and VM ports rely instead on
regular POSIX APIs.

The Arcade game engine served as a stress test for the STS
system, which previously had been used mainly for small user
programs and low-level code that didn’t make much use of the
object system of TypeScript, and so had a very modest memory
requirements. We replaced PXT’s reference counting framework
with a precise mark-and-sweep garbage collector and implemented
several previously unsupported language features to make it easier
to write the game engine: dynamic type checks and field access,
getters/setters, exceptions, and Unicode strings (encoded trans-
parently as UTF-8 to save memory). The games stressed system
performance and led to performance optimizations of the runtime
and generated code. Also, with the growth of the game engine and
user programs, the in-browser compiler had to be made faster, and
eventually incremental.

4.3 Game Engine
The Arcade game engine is just over 11,000 lines of Static TypeScript
comprising 75 classes, 145 exported functions and 19 enumerations.
This count includes 769 lines of meta-data comments that define
the mapping from TypeScript APIs to Blockly. Altogether, there
are 107 blocks. The game engine is organized in six categories, into
which the above APIs and blocks map:

• A Sprite has an associated image, (x,y) position, velocity,
acceleration, and friction; any number of sprites may be
allocated, which means that a game that runs fine in the web
browser may run out of memory on the gaming handheld.

• The Controller category has functions and event handlers for
the d-pad and the A and B buttons; one of the most useful
functions binds the d-pad to a sprite to allow the player to
move the sprite (by mapping directions to sprite velocities).

• The Game category has functions and event handlers for
the basic life cycle of the game: splash screen, game update
handler, dialogs, and game over screen. More details on the
game loop are given below.

• the Music category enables the creation of sound effects and
music with up to four voices;

• The Scene category is critical for games that involve multiple
levels – each scene of a game corresponds to a game level
with its own set of event handlers, tile map, and camera.
Scenes are arranged in a stack, with pop and push operations.

• The Info category contains functions for managing the score,
player lives and multi-player games.

The game loop sequences all the actions and updates to the cur-
rent game scene, based on physics and events sent to the sprites.
The loop frame interval is timed internally to provide frequent
enough updates for smooth scene transitions [5]. In each frame,
the following steps take place:

• The controller state is updated, identifying whether buttons
are pressed, released, or held down.

• Velocity is set on sprites controlled by the user, depending
on which buttons are pressed.

• Physics are applied to the sprites, computing the next posi-
tions of all sprites given their velocity, acceleration, and fric-
tion values.7 Collisions are detected and appropriate events
are run.

• Game update events are run.
• The current state of the game is rendered to the screen.

The game engine also supports text, sprite animations, particle
effects and a system menu.

The game engine is implemented with an eye towards perfor-
mance when compiled to run on hardware. The most prominent
example is the internal usage of fixed point math for sprite position,
velocity, etc. While all the MCUs that Arcade currently runs on
feature a hardware floating point unit (FPU), they all only support
single-precision IEEE floats. JavaScript (and hence TypeScript) se-
mantics mandates usage of double-precision floats for all numbers,8
so the FPU cannot be used, while software floating point is around
two orders of magnitude slower. Thus, when numbers fit a 31-bit
signed integer (one bit is used as a tag), STS uses integer operations
saving both time and memory (64-bit doubles are boxed). All physi-
cal properties of sprites can be fractional (eg., a sprite can have a
speed of 20 pixels per second, which can be 0.5 pixel per frame, so
even the position needs to hold fractional values), and thus they
are saved as fixed point values with 8 bits after the binary dot.

4.4 Blocks and TypeScript Editors
Figure 4(a) shows the Arcade web app with the Blocks editor active.
On the left-hand side is the Blockly toolbox, which lists the main
categories of blocks available to the programmer. As can be seen, the
first six categories are the game engine APIs, while the remaining
categories are programming constructs. The Game category has
been selected, showing a list of the available blocks. The first two
blocks are top-level event handlers for updating game state. The
blocks can be dragged onto the programming canvas, which shows
the “on game update” event handler and the user code inside it for
determining if a sprite (variable “mySprite”) is moving or has gone
out of bounds.

7 The physics engine can be turned off or replaced by a different one.
8 Departing from JavaScript semantics to use single-precision would play havoc with
bitwise operations, which all use 32-bit integers. While 64-bit floats can precisely
represent 32-bit integers (in fact, up to 53 bits), the 32-bit float cannot.

FDG’21, August 3–6, 2021, Montreal, QC, Canada Moskal, et al.

(a)

(b)

Figure 4: (a) Blockly toolbox for the Game namespace and the game update handler; (b) corresponding code in TypeScript.

In Figure 4(b), we have toggled to the TypeScript editor (it’s
labelled JavaScript for marketing reasons), which shows the Type-
Script code corresponding to the blocks in Figure 4(a). Also note
that the toolbox is still available: in this case, the user can drag a
code snippet (the TypeScript code corresponding to a Block) into
the text editor.

The user is free to switch between the various editors. If the
user uses a programming construct in the TypeScript editor (for
example, a class) that is not editable in the Blocks editor, a greyed-
out block representing that code appears in the Blocks editor. All
code created in the Blocks editor can be modified in the TypeScript
editor.

4.5 Asset Editors
As Figure 5 shows, in addition to the Blocks and TypeScript editors
that are standard in the PXT framework, there also is an Assets
option that we added to the framework, which gives access to the
images, tile maps and animations, a gallery of images, and asset
editors. The image editor can be accessed directly from the Blocks
and TypeScript editors: for example, line 34 of the TypeScript code
in Figure 4(b) references an image literal. To the left of the line
number 34 is a paint icon that brings up the image editor directly
from the source code editor.

Web-based Programming for Low-cost Gaming Handhelds FDG’21, August 3–6, 2021, Montreal, QC, Canada

Figure 5: Assets view.

Figure 6: Some Arcade extensions.

4.6 Simulator
The top-left of Figure 2 shows the web-based simulator of the
Arcade gaming handheld, which runs in a separate iframe in the
web app. The user code and game engine runs in the iframe. The
JavaScript of the simulator corresponds directly to our C++ runtime,
providing functions so the game engine can write to the 160x120
screen (represented in theDOM) and capturingmouse and keyboard
events that trigger d-pad and A/B button events in the game engine.

4.7 Extensions
The PXT framework supports the addition of approved extensions,
which are authored in Static TypeScript and hosted in GitHub repos.
As shown in the extension dialog of Figure 6, the user can add an
extension to the web app, which results in a new category in the
toolbox with new blocks. We originally developed sprite anima-
tions as a PXT extension, which was useful for experimenting with
the APIs and blocks for animations without having to make new
releases of the web app; once we were happy with the extension, it
was incorporated into the web app.

5 EVALUATION
We started the development of Arcade in January of 2018, first
creating our own gaming handheld prototype, writing the game
engine, and getting the PXT-based web app to generate code for
the prototype. We were then ready to demonstrate the complete
system to third-party manufacturers and interest them in producing
devices of their own design. The first handheld became available in
January of 2019 and six more handhelds have been produced since
then; all are still available as of the writing of this paper.

In this section, we evaluate the deployment of Arcade in 2019-
2020 in four ways: (1) we describe the seven handhelds that third-
party manufacturers produced; (2) we characterize the performance
of the game engine in the web browser and on handhelds using a
synthetic benchmark; (4) we analyze the performance of 38 games
created by the Arcade community over three “game jam” contests
run in 2020; (4) we measure attributes of 120 games created by the
Arcade community and their use of extensions.

5.1 Gaming handhelds: Third-party
manufacturers

Table 1 lists seven different handheld devices made specifically
for Arcade. It also includes the micro:bit V2, which can be turned

FDG’21, August 3–6, 2021, Montreal, QC, Canada Moskal, et al.

Table 1: Gaming handhelds created for Arcade. All devices except for Raspberry Pi have 512 KB flash and 1.8 inch screen. In
the case of themicro:bit, screen size and battery depends on shield, and the price of shield is estimated at $15+ (US). For Pi Zero
(P0), the price depends on how the end-user assembles the system (other devices in the list came ready to play). The minimal
bill of materials for a P0 is around three times higher than an F4. See Figure 2 for pictures.

Device From MCU RAM Freq Price Battery Expansion Case Remarks
KB MHz $ (US) mAh port

GHI BrainPad Arcade US F4 96 84 35 lipo port micro:bit no optional WiFi
Kittenbot Meowbit CN F4 96 84 40 400 micro:bit silicone SD card port, gyro
TinkerGen GameGo CN F4 96 84 37 400 none silicone + laser-cut gyro
Adafruit PyBadge LC US D5 192 120 25 lipo port Feather no 1 RGB LED, no accel
Adafruit PyBadge US D5 192 120 35 lipo port Feather no 5 RGB LEDs, optional WiFi
Adafruit PyGamer (kit) US D5 192 120 50 350 Feather laser-cut analog joystick, good speaker
Kitronik Arcade UK D5 192 120 41 3xAA custom laser-cut vibration motor, no accel
micro:bit V2 + shield UK N3 128 64 30+ in shield blocked varies compass, radio
Raspberry Pi Zero UK P0 524288 1000 varies NA blocked varies ext. screen+controls, no accel

into a Arcade device using a “shield” accessory that adds a screen
and buttons, and the RPi Zero for comparison (although it’s not a
handheld device).

Most handhelds come with an accelerometer and various other
on-board components. They expose pins for physical computing
scenarios using either a micro:bit-compatible edge connector or one
based on Adafruit Feather boards. Some come as bare circuit boards,
others have enclosures. They all have either a battery (around 5
hours of game time), or a least a battery port.

The seven handhelds are made by five companies from three
countries. They represent a diversity of form-factor, cost, and op-
tional components. We’ve also seen a number of hobbyists target
Arcade, helped by our instructions on how to build a device from
existing MCU development boards.

5.2 Core Performance
To get a sense of the number of moving and interacting sprites that
each MCU family can process at a reasonable number of frames-
per-second (FPS), we wrote a synthetic benchmark that creates N
sprites, moving with random speed that bounce off the edges of the
screen. On a high-end 2020 MacBook Pro, the benchmark ran in
the web browser at 280 FPS for 100 sprites, 60 FPS for 1000 sprites,
and 20 FPS for 2000 sprites.

The top graph of Figure 7 plots the FPS of the benchmark as the
number of sprites (N) increases. In our experience no flickering was
perceptible at frames rate above around 24 FPS, allowing all MCUs
to support at least 30 sprites. For the F4 and N3 MCU families,9
performance drops to around 20 FPS at 40 sprites, while the faster
D5 family maintains over 20 FPS up until 70 sprites. At 100 sprites,
all devices are basically unusable, while browsers even on low-end
Chromebooks perform acceptably.

5.3 Arcade game jams
During 2020, we ran three online “game jam” contests in which
Arcade users were challenged to submit games in a particular theme:
Garden (June 10 - July 1)10, Traffic (Sept. 14 - Oct. 5)11, Ocean (Nov.
9 Interestingly, N3 and F4 achieve similar performance despite significant differences
in clock speed. We suspect this due to a superior flash caching strategy in N3.
10https://arcade.makecode.com/gamejam/garden
11https://arcade.makecode.com/gamejam/traffic

30 - Dec. 11)12. The main rules were to make a game related to the
jam theme and to keep the games safe for children. The rules did
not mention or require the use of a Arcade gaming handheld. As
part of each contest, our team judged all the entries and selected
the top three games and honorable mentions. Over the three game
jams, we selected 38 games, which we analyze below.

5.3.1 Game jam game examples. Here we provide a description of
three game jam games made with Arcade.

Potato. (Figure 8, left)13 starts with a large potato growing in the
center of a garden scene. Each press of button A encourages the
potato to grow, and points are earned as it grows. Hitting the menu
button allows you to spend your points on vegetables and plants to
add to the garden. Plants and vegetables encourage bees to come
to the garden, increasing points earned on each potato growth.
Progress is saved between browser sessions and is preserved in
flash memory on hardware.

Snail Hike. (Figure 8, middle)14 is a highly polished game with
carefully thought out assets and level design. The main premise
of the game is to guide ten snails along a 2D platform towards an
exit. Along the way, the player has to solve puzzles to enable snails
to reach the exit. The player sprite has complex jump and glide
mechanics with polished transition animations.

UFOs Control Traffic. (Figure 8, right)15 presents a top-down view
of a highway with cars travelling from top to bottom. Hovering
above the highway is an alien spacecraft (UFO). Vehicles and high-
way are color coded, and the job of the UFO is to move vehicles
to the corresponding highway before they reach the terminating
point of the highway. Players have three lives, decremented upon
an incorrect matching, and points are awarded upon each correct
matching.

5.3.2 Game jam game performance. The Arcade game engine col-
lects basic stats during a game’s execution: the current number of
allocated sprites and the current FPS. All the games ran without

12https://arcade.makecode.com/gamejam/ocean
13https://arcade.makecode.com/42885-92487-13042-52240
14https://arcade.makecode.com/27830-69912-67539-85378
15https://arcade.makecode.com/63418-25020-58432-17936

https://arcade.makecode.com/gamejam/garden
https://arcade.makecode.com/gamejam/traffic
https://arcade.makecode.com/gamejam/ocean
https://arcade.makecode.com/42885-92487-13042-52240
https://arcade.makecode.com/27830-69912-67539-85378
https://arcade.makecode.com/63418-25020-58432-17936

Web-based Programming for Low-cost Gaming Handhelds FDG’21, August 3–6, 2021, Montreal, QC, Canada

0

20

40

60

80

100

120

140

160

180

10 20 30 40 50 60 70 80 90 100

Fr
am

es
 p

er
 se

co
nd

Number of sprites

D5 (120MHz) F4 (84MHz) N3 (64MHz, 1.8") N3 (64MHz, 2.8")

0

5

10

15

20

25

30

35

40

45

50

0-50 51-100 101-250 251-500 501-1000 1000+

N
um

be
r o

f g
am

es

Number of blocks Number of lines

0

5

10

15

20

25

30

0-5k 5k-10k 10k-25k 25k-50k 50k-100k 100k+

N
um

be
r o

f g
am

es

Assets: number of pixels

Figure 7: Top: result of running synthetic benchmark on the
three MCU families supported by Arcade (D5, F4, N3). Mid-
dle and bottom: Static measures of 120 games from Arcade
community forum and submitted to game jams.

error in the web browser, most of which had frame rates exceed-
ing several hundred FPS. We tried to compile and run each of the
games on the lowest-powered gaming handheld (an F4 with 96 KB
of RAM), with the following results:

• Twenty (20) of the games achieved sustained FPS of over 24
(median of 35 FPS); in a few of these games, FPS dropped
lower over time as the programs didn’t clean up sprites; these
games allocated from 3 to 19 sprites, with a median of 12
sprites.

• For another twelve games, six had an FPS of 20 or higher,
two had an FPS of around 18, two had an FPS of around 12,
and two had an FPS around 3. Not surprisingly, these games
tended to allocate many more sprites.

Figure 8: Screenshots from three Arcade Game Jam games.
Potato (left), Snail Hike (middle), and UFOs Control Traffic
(right)

• Three of the games failed to compile because they were too
large and would not fit in the space available in the device’s
non-volatile flash memory.

• Two of the games ran out of memory and one of the games
crashed.

In summary, most of the best games submitted by the community
for an online game jam ran fine on the lowest-powered Arcade
gaming handheld.

5.4 Static game measures and use of extensions
To extend the sample size of games, we also collected creations
that have gathered the most “hearts” in the Arcade forum, where
users share their games. This dataset has 120 games (out of over
630 games shared in the forum). Of these:

• 11% are written in TypeScript, while the rest are written in
blocks.

• 54% use GitHub extensions (between 1 and 12) with a median
of three extensions used.

• The median size of TypeScript code (either written directly,
or generated from blocks) is 171 lines, the median number
of blocks is 199; see Fig. 7, middle for distribution.

• 97% of games encode sprite assets either in source code or
with the asset manager (which is a relatively recent addition
to Arcade); the median size of these assets is 27,000 pixels.

The most popular GitHub extensions have the following func-
tions: modify game palette and fade between palettes; attach life
bars etc. to sprites; create sprites that contain just text; attach cus-
tom data to sprites; advanced functionality for tilemaps; store set-
tings in non-volatile flash; start custom timers; attach actions to
custom button combos on the controller; create a custom game
menu.

6 CONCLUSION & FUTUREWORK
We have presented MakeCode Arcade, a web-based platform for
creating video games. The programming environment contains
customized blocks for game programming, a simulator for testing
gameplay, and editors for creating sprites and sounds. Compiled
games can be transferred to compatible devices via USB. Evaluation
of community projects shows that low-cost hardware and a modern
game programming experience are not mutually exclusive.

We plan to further combine Arcade and physical computing
via Jacdac [8] 16, a new protocol for physical computing. Jacdac

16https://aka.ms/jacdac

https://aka.ms/jacdac

FDG’21, August 3–6, 2021, Montreal, QC, Canada Moskal, et al.

provides an extensible plug-and-play experience without compro-
mising microcontroller efficiency and price. Through Jacdac acces-
sories, users will be able to combine retro games programming and
the physical world in new and creative ways.

REFERENCES
[1] AADALIE. 2021. Gamebuino. https://gamebuino.com/.
[2] Jonny Austin, Howard Baker, Thomas Ball, James Devine, Joe Finney, Peli

De Halleux, Steve Hodges, Michał Moskal, and Gareth Stockdale. 2020. The
BBC micro:bit: from the UK to the world. Commun. ACM 63, 3 (2020), 62–69.

[3] John Aycock. 2016. Retrogame Archeology - Exploring Old Computer Games.
Springer. https://doi.org/10.1007/978-3-319-30004-7

[4] Thomas Ball, Peli de Halleux, and Michal Moskal. 2019. Static TypeScript: an
implementation of a static compiler for the TypeScript language. In Proceedings
of the 16th ACM SIGPLAN International Conference on Managed Programming
Languages and Runtimes, MPLR 2019, Athens, Greece, October 21-22, 2019, Antony L.
Hosking and Irene Finocchi (Eds.). 105–116.

[5] Mark Claypool and Kajal Claypool. 2009. Perspectives, Frame Rates and Reso-
lutions: It’s All in the Game. In Proceedings of the 4th International Conference
on Foundations of Digital Games (Orlando, Florida) (FDG ’09). Association for
Computing Machinery, New York, NY, USA, 42–49. https://doi.org/10.1145/
1536513.1536530

[6] Stephen Cooper, Wanda Dann, and Randy Pausch. 2003. Teaching objects-first in
introductory computer science. In 34th SIGCSE Technical Symposium on Computer
Science Education. ACM, 191–195.

[7] Paul Craven. 2016. Program Arcade Games: With Python and Pygame. APress.
[8] James Devine. 2020. Enabling intuitive and efficient physical computing. Lancaster

University (United Kingdom).
[9] James Devine, Joe Finney, Peli de Halleux, Michal Moskal, Thomas Ball, and Steve

Hodges. 2018. MakeCode and CODAL: intuitive and efficient embedded systems
programming for education. In Proceedings of the 19th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Embedded Systems,
LCTES 2018, Philadelphia, PA, USA, June 19-20, 2018. 19–30.

[10] Neil Fraser. 2015. Ten things we’ve learned from Blockly. In 2015 IEEE Blocks and
Beyond Workshop (Blocks and Beyond). 49–50. https://doi.org/10.1109/BLOCKS.
2015.7369000

[11] Steve Hodges, Sue Sentance, Joe Finney, and Thomas Ball. 2020. Physical com-
puting: A key element of modern computer science education. Computer 53, 4
(2020), 20–30.

[12] Caitlin Kelleher, Randy F. Pausch, and Sara B. Kiesler. 2007. Storytelling Alice
motivates middle school girls to learn computer programming. In Conference on

Human Factors in Computing Systems, CHI. ACM, 1455–1464.
[13] Chris Maltby. 2021. GB Studio. https://www.gbstudio.dev/.
[14] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn

Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay S. Silver, Brian
Silverman, and Yasmin B. Kafai. 2009. Scratch: programming for all. Commun.
ACM 52, 11 (2009), 60–67.

[15] Filippo Rivato. 2021. TIC80. https://tic80.com/.
[16] Andreas Schrader, Bernhard Jung, and Darren Carlson. 2005. Tangible In-

terfaces for Pervasive Gaming. In Digital Games Research Conference 2005,
Changing Views: Worlds in Play, June 16-20, 2005, Vancouver, British Columbia,
Canada. http://www.digra.org/digital-library/publications/tangible-interfaces-
for-pervasive-gaming/

[17] Sue Sentance, JaneWaite, Steve Hodges, EmilyMacLeod, and Lucy Yeomans. 2017.
"Creating Cool Stuff": Pupils’ Experience of the BBC Micro:Bit. In Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education
(SIGCSE ’17). ACM, 531–536. https://doi.org/10.1145/3017680.3017749

[18] Charles R. Severance. 2014. Massimo Banzi: Building Arduino. IEEE Computer
47, 1 (2014), 11–12. https://doi.org/10.1109/MC.2014.19

[19] Teddy Seyed, Peli de Halleux, Michal Moskal, James Devine, Joe Finney, Steve
Hodges, and Thomas Ball. 2019. MakerArcade: Using Gaming and Physical
Computing for Playful Making, Learning, and Creativity. In Extended Abstracts
of the 2019 CHI Conference on Human Factors in Computing Systems, CHI 2019,
Glasgow, Scotland, UK, May 04-09, 2019, Regan L. Mandryk, Stephen A. Brewster,
Mark Hancock, Geraldine Fitzpatrick, Anna L. Cox, Vassilis Kostakos, and Mark
Perry (Eds.). ACM. https://doi.org/10.1145/3290607.3312809

[20] Steven Simmons, Betsy DiSalvo, and Mark Guzdial. 2012. Using Game De-
velopment to Reveal Programming Competency. In Proceedings of the Interna-
tional Conference on the Foundations of Digital Games (Raleigh, North Carolina)
(FDG ’12). Association for Computing Machinery, New York, NY, USA, 89–96.
https://doi.org/10.1145/2282338.2282359

[21] Quang N. Vu and Cor-Paul Bezemer. 2020. An Empirical Study of the Charac-
teristics of Popular Game Jams and Their High-Ranking Submissions on Itch.Io.
In International Conference on the Foundations of Digital Games (Bugibba, Malta)
(FDG ’20). Association for Computing Machinery, New York, NY, USA, Article 20,
11 pages. https://doi.org/10.1145/3402942.3402981

[22] Linda Werner, Jill Denner, Michelle Bliesner, and Pat Rex. 2009. Can Middle-
Schoolers Use Storytelling Alice to Make Games? Results of a Pilot Study. In
Proceedings of the 4th International Conference on Foundations of Digital Games
(Orlando, Florida) (FDG ’09). Association for Computing Machinery, New York,
NY, USA, 207–214. https://doi.org/10.1145/1536513.1536552

[23] Joseph White. 2021. PICO-8 Fantasy Console. https://www.lexaloffle.com/pico-
8.php.

[24] Quinn Burke Yasmin B. Kafai. 2016. Connected Gaming: What Making Video
Games Can Teach Us about Learning and Literacy. The MIT Press.

https://gamebuino.com/
https://doi.org/10.1007/978-3-319-30004-7
https://doi.org/10.1145/1536513.1536530
https://doi.org/10.1145/1536513.1536530
https://doi.org/10.1109/BLOCKS.2015.7369000
https://doi.org/10.1109/BLOCKS.2015.7369000
https://www.gbstudio.dev/
https://tic80.com/
http://www.digra.org/digital-library/publications/tangible-interfaces-for-pervasive-gaming/
http://www.digra.org/digital-library/publications/tangible-interfaces-for-pervasive-gaming/
https://doi.org/10.1145/3017680.3017749
https://doi.org/10.1109/MC.2014.19
https://doi.org/10.1145/3290607.3312809
https://doi.org/10.1145/2282338.2282359
https://doi.org/10.1145/3402942.3402981
https://doi.org/10.1145/1536513.1536552
https://www.lexaloffle.com/pico-8.php
https://www.lexaloffle.com/pico-8.php

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Retro game creation environments and communities
	2.2 Novice game creation environments

	3 Arcade Design Space
	3.1 Hardware Specification
	3.2 Retro Game Assets and Core Engine
	3.3 High-level APIs and Extensibility

	4 Arcade Implementation, Bottom-up
	4.1 Hardware and Firmware
	4.2 Language, Compiler, and Runtime
	4.3 Game Engine
	4.4 Blocks and TypeScript Editors
	4.5 Asset Editors
	4.6 Simulator
	4.7 Extensions

	5 Evaluation
	5.1 Gaming handhelds: Third-party manufacturers
	5.2 Core Performance
	5.3 Arcade game jams
	5.4 Static game measures and use of extensions

	6 Conclusion & Future work
	References

