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Abstract
We consider the problem of explaining the robustness of neu-
ral networks used to compute time-frequency masks for speech
enhancement to mismatched noise conditions. We employ the
Deep SHapley Additive exPlanations (DeepSHAP) feature at-
tribution method to quantify the contribution of every time-
frequency bin in the input noisy speech signal to every time-
frequency bin in the output time-frequency mask. We define an
objective metric — referred to as the speech relevance score —
that summarizes the obtained SHAP values and show that it cor-
relates with the enhancement performance, as measured by the
word error rate on the CHiME-4 real evaluation dataset. We use
the speech relevance score to explain the generalization ability
of three speech enhancement models trained using synthetically
generated speech-shaped noise, noise from a professional sound
effects library, or real CHiME-4 noise. To the best of our knowl-
edge, this is the first study on neural network explainability in
the context of speech enhancement.
Index Terms: Deep learning, speech enhancement, feature at-
tribution, explainable AI

1. Introduction
Speech enhancement models are often trained in a supervised
fashion using simulated data. The simulated data is generated
by mixing speech and noise at different signal-to-noise ratios
(SNRs) and a deep neural network (DNN) is trained to estimate
either the speech and noise spectra or a time-frequency mask
[1–3]. Different kinds of noises have been used to simulate
noisy speech [4–7]. In the CHIME-4 challenge [8] for exam-
ple, real noises recorded using 6 different microphones were
used to simulate noisy speech. A commercially available sound
effects library was used in [9]. Synthetically generated noise
such as white or pink noise is also often used [10]. This raises
the question of what kind of noise is best suited to train the net-
work. Real noise matching the conditions in which the speech
enhancement model is to be deployed is a good choice. Yet
recording noise scenes that cover all these conditions is expen-
sive and often infeasible. An alternative is to use synthetically
generated noise, provided that the impact on the enhancement
performance is not drastic.

In this article we show that a speech enhancement model
trained with synthetically generated speech-shaped noise (SSN)
greatly improves the automatic speech recognition (ASR) per-
formance on the CHiME-4 dataset. We focus on explaining this
result, as a first step towards predicting the generalization abil-
ity of speech enhancement models and choosing optimal train-
ing noises in the future. To do so, we use a feature attribu-
tion method [11–13] and propose a metric to quantify the im-
portance of each input time-frequency bin in the estimation of
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the output mask. There are multiple feature attribution meth-
ods proposed in the literature [14–20]. Many of these methods,
such as deconvolution networks [16] and grad-cam [21,22], are
designed for a particular DNN architecture, such as a convolu-
tional neural network (CNN). Others such as DeepLIFT [20] are
designed for a wider range of architectures. DeepSHAP [23]
combines ideas from SHapley Additive exPlanations (SHAP)
[23] and DeepLIFT. It was shown in [23] that multiple feature
attribution techniques such as layer wise relevance propagation
(LRP), local interpretable model-agnostic explanations (LIME)
[24] and DeepLIFT are special cases of DeepSHAP, therefore
we use DeepSHAP to explain the performance of speech en-
hancement models in this work. Existing studies on the expla-
nation of neural network models for speech processing have fo-
cused on classification tasks [25–28]. To the best of our knowl-
edge, this is the first study on feature attribution for speech en-
hancement — a sequence-to-sequence regression task.

The rest of the article is organized as follows. Section 2 pro-
vides an overview of DeepSHAP. Section 3 describes the appli-
cation of DeepSHAP to speech enhancement models. Section 4
proposes an objective measure to summarize the obtained fea-
ture attribution values. Section 5 details our experimental setup
and Section 6 discusses the obtained results. We conclude in
Section 7.

2. DeepSHAP
DeepSHAP [23] combines the principles of DeepLIFT and
SHAP. Consider an input feature vector x defined as x =
[x1, . . . , xD], where D is the feature dimension. For easier ex-
planation, we assume that the output of the model F(x) is a
scalar.

SHAP computes the relevance of a particular feature xd by
observing the change in the output with respect to the presence
vs. absence of that feature. To avoid retraining the network for
every combination of present vs. absent features, the absence of
a feature is approximated by replacing it by its expected value.
Let x′ = {x ′

1, . . . . x
′
D} denote the simplified feature vector

of dimension D where x ′
d ∈ {0, 1} denotes the presence or

absence of the corresponding feature in x, and let hx(x′) = x
denote the mapping function which converts the binary vector
x′ to the original space:

[hx(x′)]d =

{
xd if x′d = 1

E(xd) if x′d = 0.
(1)

SHAP approximates the network output as a linear combina-
tion of the simplified inputs, F(hx(x′)) ≈ φ0 +

∑D
d=1 φd x

′
d .

Each weight φd is referred to as a SHAP value. It can be either
positive or negative and it directly quantifies the relevance of
the corresponding feature.

In practice, the replacement of every absent feature by
its expected value is a poor approximation when applied to



the whole network. DeepSHAP combines efficient, analytical
computation of SHAP values for simple network modules (lin-
ear, maxout, activation) with DeepLIFT’s mutiplier composi-
tion rule to backpropagate these attribution values down to the
input layer.

3. Computing SHAP values for speech
enhancement models

In the context of multichannel speech enhancement, the input
signal x(t) is a vector consisting of the signals acquired at I mi-
crophones, i.e., x(t) = [x1(t), . . . , x I (t)]T with t the time in-
dex, and it contains a single speech source c(t) and noise u(t):

x(t) = c(t) + u(t). (2)

The signals are represented in the time-frequency domain via
the short time Fourier transform (STFT). A DNNF(·) is trained
to estimate the ideal ratio mask (IRM)

M(n, f) =
|c1(n, f)|

|c1(n, f)|+ |u1(n, f)| (3)

using a single-channel input magnitude STFT — say chan-
nel 1, i.e., M̂ = F(|X1|), where |X1| and M̂ are N × F
matrices containing the magnitude STFT coefficients of x1(t)

and the estimated mask values M̂(n, f) for all time frames
n ∈ {1, . . . , N} and frequency bins f ∈ {1, . . . , F}.

A natural way of using DeepSHAP is to assume that each
magnitude STFT coefficient |x1(n′, f ′)| is an input feature
and to compute the contribution of that feature to every time-
frequency bin M̂(n, f) of the output mask. This results in
N × F relevance matrices ΦTF(n, f) of size N × F each, i.e.,
one matrix per output time-frequency bin, which we refer to as
time-frequency SHAP. In order to reduce the number of matri-
ces to be computed and analyzed, an alternative is to sum up the
attribution values across (output) frequency as

ΦT(n) =
∑
f

ΦTF(n, f). (4)

This doesn’t require the computation of every ΦTF(n, f). In-
stead, the SHAP values are summed at the output layer, and
a single backpropagation to the inputs is performed. The F
resulting matrices ΦT(n) — which we refer to as time SHAP
— are also N × F matrices, showing the relevance for every
time frame of the output mask. Similarly, attribution values can
also be summed over the whole utterance as ΦU =

∑
n ΦT(n).

We refer to ΦU as utterance SHAP. It can be observed that∑
n,f ΦTF(n, f) =

∑
n ΦT(n) = ΦU. ΦTF(n, f) gives the

highest possible granularity of relevance while ΦU gives the
lowest possible granularity.

In our preliminary experiments, we have observed that the
time-frequency SHAP maps ΦTF(n, f) obtained for different
frequency bins f in a single frame n are similar to each other,
while the utterance SHAP maps ΦU tend to suppress details
that were found to be locally relevant. This phenomenon can
be observed in Fig. 1. We therefore choose ΦT(n) for our fol-
lowing analysis. Fig. 1 also shows that both positive and neg-
ative SHAP values point to time-frequency bins dominated by
speech. Therefore, we use the absolute value of the SHAP attri-
butions in the rest of this work.

4. Speech relevance score
Analyzing feature attributions is non-trivial. This is usually
done by human visualization which is subjective by nature. In

this section we propose an objective measure to summarize the
SHAP values obtained for speech enhancement models.

The job of a speech enhancement model is to remove the
time-frequency bins associated with noise while retaining the
time-frequency bins associated with speech. We argue that a
well-trained speech enhancement model, with good generaliza-
tion ability, should mostly look at the time-frequency bins be-
longing to speech. This is particularly true while evaluating the
model in unseen noise conditions, where a speech enhancement
model will only have access to speech patterns learned from the
training dataset with no prior knowledge about the noise spec-
tra.

Based on this assumption we propose the following mea-
sure, which we refer to as the speech relevance score (η), to
summarize the estimated SHAP values:

η =

∑
n∈speech #{φ>T+IBM(n)}∑

n∈speech #{φ>T (n)} , (5)

where #{φ>T (n)} represents the number of time-frequency
bins in ΦT(n) whose absolute value is greater than a threshold
T and #{φ>T+IBM(n)} represents the number of bins among
those which are also identified as speech in the ideal binary
mask (IBM) defined as

IBM(n, f) =

{
1 if |c1(n, f)| > |u1(n, f)|
0 otherwise.

(6)

A visual representation of #{φ>T (n)} and
#{φ>T+IBM(n)} for a small speech segment is shown in
Fig. 2.

We chose the IBM over the IRM to define η, since η is then
akin to the classical precision measure used for classification
tasks, which is easy to interpret. The measure is computed only
for frames containing speech. The threshold T denotes the T -
th percentile of the absolute SHAP values in each frame. The
number #{φ>T (n)} of time-frequency bins with large enough
SHAP value increases with decreasing T . Note that we use IBM
only to compute the speech relevance score while the model is
trained to estimate IRM.

As mentioned above, the speech relevance score is akin to
a precision measure. The computation of a recall measure is
not feasible here, since there is no ground truth regarding which
time-frequency bins must contribute to mask estimation. In par-
ticular it cannot be assumed that the mask values in a given
time frame must depend on all time-frequency bins belonging
to speech (in all time frames).

5. Experimental setup
5.1. Dataset

Experiments are conducted using the CHiME-4 dataset [8],
which consists of Wall Street Journal sentences spoken by talk-
ers situated in challenging noisy environments recorded using a
6-channel tablet-based microphone array. The original dataset
considers four different categories of environments: bus, cafe,
pedestrian area, and street junction. It comes with a data simu-
lation tool, which mixes original non-reverberated WSJ0 utter-
ances with background noise, ensuring the same SNR distribu-
tion as real noisy recordings on every channel.

In order to train the speech enhancement network, we gen-
erate three different training datasets corresponding to three dif-
ferent noise conditions, namely
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Figure 1: Example SHAP values computed for a noisy speech signal. The four subplots (from left to right) represent the input spectro-
gram after mean and variance normalization, the time-frequency SHAP map ΦTF(n, f) for n = 36 and f = 1635 Hz, the time SHAP
map ΦT(n) for n = 36 and the utterance SHAP map ΦU, respectively.

Figure 2: Input spectrogram, φ>T (n) and φ>T+IBM(n) used to
compute speech relevance score for a speech signal containing
30 frames.

1. CHiME: real CHiME-4 noise recordings

2. Speech shaped noise (SSN): a form of synthetically gen-
erated noise which is obtained by applying a “speech-
like” filter to white noise [29–31]. In the following, a
different speech-like filter is computed for every noisy
utterance by randomly drawing 6 clean speech utterances
and averaging their STFT magnitude spectra across all
time frames

3. Network: noise from the Network Sound Effects library1

as used in [9], containing sounds from various categories
such as music, weather, rail, etc.

There are 7, 138 utterances for training and 1, 640 for vali-
dation for each noise condition. The distribution of SNR values
is the same across all conditions and as in the original CHiME-4
dataset.

5.2. DNN architectures for speech enhancement

The DNNs for speech enhancement are trained to estimate the
IRM using the STFT magnitude spectra of x5 (i.e., channel 5 of
the multichannel mixture signal) as inputs. The STFT window
size was 50 ms with a 25 ms shift. The input dimension of the

1https://www.sound-ideas.com/Product/199/
Network-Sound-Effects-Library

network was 401. The input STFT magnitude spectra was mean
and variance normalized.

The DNN architecture contained two bidirectional long
short term memory (Bi-LSTM) layers followed by layer nor-
malization [32] and a linear layer containing 401 hidden units.
The output was constrained to lie in the range [0 − 1] using a
sigmoid nonlinearity. The speech enhancement models trained
on the three different noise conditions are denoted as FCHIME,
FSSN, and FNETWORK, respectively. The estimated mask along
with multichannel signals from all channels (with the exception
of channel 2) is used to compute a rank-1 constrained multi-
channel Wiener filter [33] which is then used to obtain the en-
hanced speech.

5.3. ASR evaluation

We evaluate the ASR performance resulting from speech en-
hancement on the real evaluation set (et05 real) and the sim-
ulated development set (dt05 simu) of the original CHiME-4
dataset using the baseline ASR system provided by the CHiME-
4 challenge organizers. This system follows the nnet1 recipe
of the Kaldi ASR toolkit [34], involving a 7-layer multi layered
perceptron (MLP)-based acoustic model and a 3-gram language
model. It was trained on both real and simulated noisy speech.

5.4. Speech relevance score computation

We compute the speech relevance score on several simulated
datasets for which the ground truth IBM is known, including
the original CHiME-4 simulated evaluation set (dt05 simu).
The SHAP toolkit2 was used to compute SHAP values. The
expected value of the inputs at every layer was computed over
40 random utterances from the considered dataset. For exam-
ple, if SHAP values are to be computed for an utterance in
dt05 simu, then 40 random utterances from dt05 simu are
used for that purpose. We used the DeepExplainer3 component
of the toolkit, which computes the SHAP values analytically for
simple DNN modules (linear, sigmoid) or using the gradient for
complex modules (Bi-LSTM) and backpropagates them with
DeepLIFT’s multiplier composition rule. A threshold value of
T = 99.9 is used unless mentioned otherwise (see Section 6.2).

2https://github.com/slundberg/shap
3https://github.com/slundberg/shap/blob/

master/shap/explainers/deep/deep_pytorch.py



A high value of T results in a lower number of time-frequency
bins to compute η.

6. Results
6.1. ASR

Table 1 shows the ASR results on the et05 real dataset using
different speech enhancement models. The same ASR model
was used for all the experiments. A baseline WER of 25.9%
was obtained when no speech enhancement was performed.
The WER improved to 11.7% by enhancing speech using the
FCHIME model. The WERs obtained using the speech enhance-
ment models trained with SSN and Network noise are 14.0%
and 15.1%, respectively. The improved performance with the
speech enhancement model trained using CHiME noise can be
attributed to the matched condition between the training and
evaluation data. Nevertheless, the results obtained using speech
enhancement models trained with SSN and Network noise are
significantly better than the baseline showing the usefulness of
these noises for training a speech enhancement model. Sim-
ilar gains in the ASR performance can be observed on the
dt05 simu dataset.

Table 1: WER (%) on the CHiME-4 real evaluation
(et05 real) and simulated development (dt05 simu)
datasets.

Training Noise et05 real (%) dt05 simu(%)
Baseline (No Enhancement) 25.9 12.7

CHiME 11.7 6.7
SSN 14.0 7.3

Network 15.1 7.7

6.2. Speech relevance score

Table 2 shows the speech relevance score obtained on
dt05 simu (η cannot be computed for et05 real due to
non-availability of the corresponding clean speech) for all the
speech enhancement models with different threshold values.
The results are obtained using a total of 300 utterances. A
speech relevance score of 94.8% was obtained using FCHIME,
meaning that for a threshold T = 99.9, 94.8% of the time-
frequency bins in the input spectrogram which were used to ex-
plain the output mask were dominated by speech. The speech
relevance score values in Table 2 follow the trends observed in
the ASR results of Table 1. Better η values are seen for the
FCHIME model, which gave the best ASR performance. The
negligible difference between the speech relevance score val-
ues for FSSN and FNETWORK reflects the difference in the ASR
results of the corresponding models on dt05 simu, albeit in
favor of FNETWORK. The speech relevance score varies with re-
spect to the threshold T , indicating that the time-frequency bins
with lower SHAP values are not dominated by speech. We can
therefore conclude that FCHIME works better than other models
because it relies on speech-dominated time-frequency bins to
estimate the mask.

6.3. Generalization capability of speech enhancement mod-
els

To better understand how the models generalize, we create two
different simulated datasets which we refer to as Gen-train and
Gen-test set. The Gen-train set contains noisy speech obtained
by mixing clean speech signal with noise from the same type

Table 2: Speech relevance score (η) (%) values using different
thresholds on dt05 simu.

Model T = 99.9 T = 99.0 T = 98.0

FCHIME 94.8 92.2 90.5
FSSN 89.6 87.2 85.4
FNETWORK 90.3 89.5 88.7

Table 3: Average speech relevance score obtained on 300 ran-
dom utterances in the training and test setups. The speech rele-
vance score for FCHIME was 80.5%.

Experiment setup FNETWORK (%) FSSN (%)
Gen-Train 81.7 86.2
Gen-Test 68.3 77.0

Change (%) 16.4 10.7

as the one used to train the model (matched noise). The noisy
speech in the Gen-test set, on the other hand, are obtained by
mixing the clean speech signal with CHiME noise (unmatched
noise). SHAP values are computed for FSSN and FNETWORK

models in both the setups. A model with good generalization
ability will have a lower difference in the speech relevance score
between the Gen-train and Gen-test.

Table 3 shows the average speech relevance score com-
puted on Gen-Train and Gen-Test datasets containing 300 sam-
ples each. FSSN has a lower change in speech relevance score
(10.7%) as compared to FNETWORK (16.4%) indicating better
generalization capability for FSSN.

7. Conclusion
In this article we approached the problem of explaining the pre-
dictions of a speech enhancement model. DeepSHAP, a fea-
ture attribution method, is employed to figure out which time-
frequency bins of the input spectrogram are used by the DNN to
estimate the mask. Based on the idea that a well-trained model
should look at time-frequency bins dominated by speech instead
of those dominated by noise, we proposed speech relevance
score — a measure to evaluate feature attributions. We showed
that speech enhancement models having a higher speech rele-
vance score give better ASR performance. We also showed that
the generalization capability of a speech enhancement model
trained using synthetically generated SSN is better than that of
a speech enhancement model trained using Network noise.
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