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Abstract

Most recent progress in natural language understanding (NLU) has been driven, in1

part, by benchmarks such as GLUE, SuperGLUE, SQuAD, etc. In fact, many NLU2

models have now matched or exceeded “human-level” performance on many tasks3

in these benchmarks. Most of these benchmarks, however, give models access4

to relatively large amounts of labeled data for training. As such, the models are5

provided far more data than required by humans to achieve strong performance.6

That has motivated a line of work that focuses on improving few-shot learning7

performance of NLU models. However, there is a lack of standardized evalua-8

tion benchmarks for few-shot NLU resulting in different experimental settings9

in different papers. To help accelerate this line of work, we introduce CLUES1,10

a benchmark for evaluating the few-shot learning capabilities of NLU models.11

We demonstrate that while recent models reach human performance when they12

have access to large amounts of labeled data, there is a huge gap in performance13

in the few-shot setting for most tasks. We also demonstrate differences between14

alternative model families and adaptation techniques in the few shot setting. Finally,15

we discuss several principles and choices in designing the experimental settings for16

evaluating the true few-shot learning performance and suggest a unified standard-17

ized approach to few-shot learning evaluation. We aim to encourage research on18

NLU models that can generalize to new tasks with a small number of examples.19

1 Introduction20

Benchmarks have provided researchers with well-defined challenges with clear metrics and have21

driven significant progress on natural language understanding (NLU). In fact, several recent bench-22

marks such as GLUE [1] and SuperGLUE [2] have made it clear that many current large-scale models23

can match or exceed "human-level" performance on NLU tasks in these benchmarks, e.g. [3]. Current24

NLU benchmarks have significant limitations. First, tasks are often limited to those that can be easily25

represented as classification tasks. Second, and most importantly, there are models that match or26

exceed "human-level" performance given large amounts of task-specific labeled training data in most27

of these benchmarks. In contrast, humans can perform complex tasks given only a few demonstrations.28

These limitations severely undermine claims of achieving broad human-level performance on NLU29

tasks. In this regard, the CLUES benchmark provides a fair setting to compare machine and human30

performance given a few training examples across diverse tasks.31

We introduce a new few-shot NLU benchmark (CLUES), that aims to address these limitations.32

Few-shot evaluation of NLU performance has emerged as an important task and is considered to33

reflect important aspects of human-level language understanding ability. The CLUES benchmark fills34

1Constrained Language Understanding Evaluation Standard
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the need for a standardized approach to few-shot evaluation and a benchmark to measure progress in35

true few-shot learning [4] while expanding the scope beyond sentence classification tasks.36

One of the goals of creating this benchmark is to create a standardized approach to evaluating methods37

for few-shot learning of NLU tasks. A wide variety of approaches to NLU tasks have emerged;38

many rely on large pre-trained autoencoding, autoregressive and sequence-to-sequence models. To39

accommodate different model types and a broader set of tasks beyond sentence classification, we40

frame all of the tasks in CLUES, including sentence classification tasks, as a ‘set of spans’ extraction41

tasks; in which the model outputs a set of text spans.2. This allows us to provide a novel unified42

metric across multiple tasks included in the benchmark such as sentence classification, question43

answering, and named entity recognition.44

One of the key criteria for including a task in the CLUES benchmark is that there is a clear gap between45

human and machine performance. We provide results for both human and machine performance on46

all tasks. Our human evaluation demonstrates that people are able to perform all tasks at a high level47

of performance when given only a few labeled examples or even in the zero-shot setting in which48

they are only given a task description. In order to evaluate machine performance we consider a range49

of model architectures, a range of model sizes, as well as a set of alternative adaptation techniques.50

The adaptation techniques include classic full-model fine-tuning approaches, novel task-specific51

prompt tuning approaches and, in-context learning in the case of GPT-3. While interesting patterns52

of performance emerged, the key result is that there is a significant gap in performance between53

current models and human level performance for the tasks in the CLUES benchmark highlighting54

the need for research to improve few-shot learning for NLU tasks. We hope that our benchmark will55

encourage NLU research in methods that can learn and generalize to new tasks with a small number56

of examples.57

2 Related Work58

Few-shot Learning in NLU Few-shot learning is the problem of learning a new task with a small59

number of annotated examples. It has been gaining more traction with advances in large-scale60

pre-trained language models (e.g.,BERT [8], T5 [5]), which have demonstrated great ability to learn61

new tasks efficiently. This inspired a line of work on best practices for finetuning pre-trained language62

models with few labeled samples [9, 10, 11]. GPT models [12, 13] spurred interest in prompt-based63

or in-context learning, where discrete text prompts are used to condition language models to perform64

specific tasks. Additional studies explored prompt tuning, where prompts are learned through back65

propagation using labeled examples [14, 15, 16].66

Another line of work explored semi-supervised learning; where unlabeled data, alongside usually67

small amounts of labeled data, is used for learning [17, 18, 19]. Recent studies have also explored68

meta-learning in NLU where the models have access to data from many training tasks to learn from,69

and evaluate the few-shot learning ability on unseen test tasks [20, 21, 22]. In this work, we do not70

address the meta-learning setting [23]. Rather, our benchmark consists of a carefully chosen set71

of fixed tasks, each with its own (small) training set and test set. The size of the training set is the72

number of shots, and the model is allowed to adapt to it using various methods, such as classical73

finetuning, prompt-based finetuning, or GPT-3 style in-context learning.74

NLU Benchmarks Recent progress in NLU has been driven by the focus on improving performance75

of benchmark datasets such as MNLI [24] GLUE [1], SuperGLUE [2], SQuAD [25]. For many76

of these benchmarks, state-of-the-art systems have achieved the best possible performance (often77

exceeding human-level performance) [3]. However, most these benchmarks assume the model has78

access to large amounts of manually labeled data. This led to few-shot setting gaining significant79

interest as an important aspect of measuring NLU performance.80

Most work for few-shot learning in NLU uses randomly chosen subsets of exiting datasets for81

evaluation, e.g. [26]. The lack of standard approaches to evaluation and standardized benchmark82

(with the exception of recently proposed benchmarks for meta-learning evaluation [23]) leads to83

challenges with estimating the performance of and comparing different few-shot learning approaches84

[4]. This work aims to bridge this gap.85

2We take inspiration from recent works [5, 6, 7] to unify multiple NLU tasks.
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Table 1: CLUES benchmark design principles.

Task Selection Task Formulation Evaluation

1. Significant gap between human and
machine performance

2. High coverage and diversity of NLU
task types

3. Tasks where context is crucial and fac-
toid knowledge alone is insufficient
for answering questions correctly

4. Tasks must be unbiased towards or
against any existing class of models

1. Uniform task format to unify
different types of tasks and
model families to encourage
broad usage and adoption

2. The contexts and questions
should be phrased in unam-
biguous, natural language

3. Similar to task selection, the
questions or prompts should
also be model agnostic

1. Unified metric to compare and
aggregate model performance
across diverse tasks

2. No separate validation set to
mimic a true few-shot learn-
ing setting

3. Mean and variance across
runs on multiple training splits
with different random seeds

We follow recent work that explored unifying the formats of different tasks, in order to facilitate86

transfer learning especially using large-scale pre-trained language models. For example, DecaNLP87

[6] processed all tasks into a unified question answering format, UFO-Entail [27] formulated multiple88

choice QA and co-reference resolution as textual entailment task, and T5 [5] studied unifying all89

tasks in text-to-text format.90

3 CLUES91

We seek to provide a standardized evaluation of different few-shot learning approaches and demon-92

strate a significant gap in the few-shot learning performance between humans and machines for NLU93

tasks. Our aim is to promote progress in bridging this gap. In particular, our benchmark is intended94

to evaluate general-purpose models across diverse NLU tasks in few-shot settings. We use the term95

general-purpose to indicate that a single model can be used for all tasks, possibly with task-specific96

fine-tuning. Note that we do not address the multi-task or cross-task few-shot learning which has97

been the subject of other studies [23].98

Benchmark Composition Each task T = (td,DTrain,DTest) in our collection consists of (a)99

a natural language task description td, (b) training sets DTrain of labeled examples for different100

shots, and (c) a test set DTest. Each labeled example consists of a natural language context, a natural101

language question, and a set of answers (spans) that could also be potentially empty. DTrain for102

any task contains a total of 30 labeled examples. However, we support benchmarking of 10-shot,103

20-shot, and 30-shot performances, for which we organize our training set DTrain into subsets104

DTrain
10 ⊆ DTrain

20 ⊆ DTrain
30 = DTrain, where each |DTrain

k | = k. Furthermore, given the variance105

in few-shot model performance across different seeds and splits of the data, for each k-shot setting,106

we provide 5 training splits (satisfying the subset inclusion criteria above for each split across multiple107

shots) and a single test set for reporting both the mean and variance in model performance.108

3.1 Task Selection109

We consider the selection of tasks based on the principles outlined in Table 1 with the chosen tasks110

summarized in Table 2. In what follows we explain our choices and how we applied the principles.111

We divide the set of tasks into three distinct categories, namely, classification, sequence labeling112

and machine reading comprehension to cover a wide spectrum of NLU scenarios. We further unify113

all of these tasks with a single format by posing them as a ‘span extraction’ problem (discussed in114

Section 3.2).115

For classification, we focus on both sentence classification and sentence-pair classification. Sentiment116

Analysis (SA) and Natural Language Inference (NLI) are both popular benchmark tasks. We choose117

SST-2 [28] for sentiment classification as it poses an interesting challenge given its short context118

and also as a representative task used in several recent few-shot learning works [16, 19, 29]. For the119

language inference task, we choose MNLI [30]. Previous work has demonstrated that the performance120

of different models on the GLUE benchmark [1] tend to correlate with the performance on MNLI,121

making it a good representative of all tasks in GLUE [31, 32].122
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Contrary to instance-level classification tasks, sequence labeling is more challenging due to its123

focus on token-level classification and the dependencies among different tokens. We consider the124

popular Named Entity Recognition task that aims to identify names of person, organization and125

location. To this end, we consider both the widely used benchmark task CoNLL03 [33] and the126

more recently released WikiAnn [34]. We make these tasks more challenging by introducing empty127

answers (discussed in Section 3.2).128

Table 2: Task descriptions and statistics.
Corpus |Train| |Test| Task Domain

Sentence Classification Tasks

SST-2 10/20/30 210 SA reviews
MNLI 10/20/30 210 NLI misc.

Machine Reading Comprehension Tasks

SQuADv2 10/20/30 200 QA Wiki
ReCoRD 10/20/30 200 QA news

Sequence Labeling Tasks

CoNLL03 10/20/30 600 NER news
WikiANN 10/20/30 600 NER Wiki

Finally, as the third sub-class of tasks, we con-129

sider machine reading comprehension (MRC).130

MRC tasks require a machine to answer ques-131

tions based on a given context. This is a chal-132

lenging task given the requirement of both nat-133

ural language understanding as well as (com-134

monsense) knowledge reasoning. To this end,135

we chose one of the most widely used ex-136

tractive reading comprehension tasks, SQuAD-137

v2 [35], a standard-bearer reading comprehen-138

sion dataset created from Wikipedia with man-139

ual annotations. The introduction of unanswer-140

able questions makes the task more challenging141

by preventing simple pattern matching between142

question and answer sentence. However, it still143

lacks more sophisticated understanding that re-144

quire reasoning over commonsense knowledge or understanding across multiple sentences in the145

passage. To further probe a deeper understanding of the machines, we leverage ReCoRD [36] –146

consisting of curated CNN/DailyMail news articles where queries are filtered out if they are either147

ambiguous to the human readers or easily solvable by existing MRC systems.148

3.2 Task Formulation149

Following the Task Formulation principles in Table 1, we next describe how we sampled and modified150

examples from available datasets to form our benchmark.151

Unifying NLU Tasks with a Single Format Pre-trained language models leverage a single base152

encoder to perform all tasks by adding task-specific prediction layers on top of the encoder. This153

requires different prediction layers for different task formats, for instance, span decoders for question-154

answering and other MRC tasks, and classification layers for text classification tasks. This further155

requires different training strategies for different tasks.156

In order to address these challenges, we follow and extend recent works [5, 6, 7] to unify all task157

formats to a set of spans extraction task given a question and a context as input, where the set could158

also be potentially empty. The spans are to be extracted from either the context or the question. While159

most tasks like MNLI or SQuAD will have unique spans (i.e. set of size 1) as answers, other tasks160

like CoNLL03 can also have an empty set or a set of more than 1 element as answers. Refer to161

Table 3 for some illustrative examples.162

Sampling of Training and Test Data In this benchmark, we are interested in few-shot learning163

capabilities and hence we only need enough data to reliably estimate their performance. To this end,164

we use existing data sets for every task and sample labeled examples to adapt to our setting. In this,165

we follow similar principles as in [16, 19, 37, 38, 23] to randomly sample labeled examples from the166

above datasets into DTrain and DTest.167

Specifically, for classification tasks, we sample k ∈ {10, 20, 30} labeled examples as few-shot168

training sets from the available training data for a given task, and ≈ 200 labeled examples as the169

held-out evaluation set sampled from the corresponding test data3. For NER tasks, we consider a170

test set of 200 examples for each entity type from {PER, ORG, LOC}. Refer to Table 2 for task171

statistics. For sequence labeling and machine reading comprehension tasks, we sample k labeled172

examples for each question type corresponding to each entity type for the given task as training173

examples. For example, the NER task poses three question types of the form Find the names of174

3MNLI consists of 210 test samples having a balanced distribution over 7 genres with 30 samples each.
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Table 3: Examples of labeled examples in our tasks. We unify all natural language understanding
tasks with the format {context, question/prompt, answer} where the answer is given as a set of spans.
For clarity, we highlight the span(s) in the context and/or question that correspond to each answer.

Task Context Question/Prompt Answer

SST-2 The movie was very boring positive or negative? {‘negative’}
MNLI The Old One always comforted Ca’daan,

except today. <SEP> Ca’daan knew the
Old One very well.

entail, contradict, or neutral? {‘neutral’}

SQuAD Nikola Tesla (10 July 1856 – 7 January
1943) was a Serbian American inventor

When was Tesla born? {‘10 July 1856’}

ReCoRD The copyright infringement case alleges
that the Zeppelin song was taken from
the single “Taurus" by the 1960s band

According to claims in the suit,
“Parts of ‘Stairway to Heaven,’ · · ·
sound almost identical to significant
portions of X. What is X?

{‘"Taurus"’}

CoNLL03 U.N. official Ekeus heads for Baghdad
to meet prime minister Allawi

Set all person names {‘Ekeus’,
‘Allawi’}

WikiANN He was in private practice in Berks
County , Pennsylvania from 1949-1970 .

Set all the locations in the context {‘Berks County’ ,
‘Pennsylvania’}

all ENT in the given context, where ENT ∈ {PER, ORG, LOC}. By virtue of such construction,175

the answer corresponding to some of the entity types for a given context may correspond to empty176

spans. This makes the task more challenging for models that heavily rely on pattern matching and177

memorization (e.g., spotting entities encountered during pre-training) and probes the natural language178

understanding capabilities based on context.179

To establish a true few-shot learning setting for this benchmark, we do not include a separate vali-180

dation set for any task. This is to prevent users from using validation sets for training that drastically181

changes the amount of available supervision and model performance [4] and correspondingly makes182

comparison of different models difficult. Alternatively, we recommend using a portion of training set183

as development set if needed following [4]. Furthermore, to evaluate the effectiveness of additional184

labeled examples in the few-shot setting, we construct training sets that are subsets of each other.185

Given the wide variance in the performance of large pre-trained models in the few-shot setting for186

different random seeds and training examples [4], we provide five different training splits for each shot187

satisfying the above subset inclusion criteria, such that DTraini
10 ⊂ DTraini

20 ⊂ DTraini
30 : i ∈ [1, 5].188

This allows us to report both the aggregated model performance and variance across the splits –189

evaluated on the single test set for each task as provided in this benchmark. The variance can be used190

as an indicator for model robustness and its stability for few-shot learning.191

3.3 Evaluation Metric192

We evaluate a model M in the few-shot setting with access to the task description along with a few193

labeled examples k ∈ {10, 20, 30}. As we unify all tasks to be span extraction, we devise a unified194

metric which can be used to evaluate all tasks in our benchmark. Specifically, we devise a metric195

named S1, that computes an instance-based score based on exact string match between elements from196

the prediction set and the corresponding ground-truth answer set4 aggregated across all the instances.197

Formally, given a set of spans for model predictions p, and a set of spans for ground truth answers a198

for one instance, the per instance S1 is defined as follows:199

S1(p,a) =


2

1
p(p,a)+

1
r(p,a)

if a 6= ∅,p 6= ∅, p(p,a)r(p,a) 6= 0

1 if a = ∅,p = ∅
0 otherwise

(1)

where p(p,a) and r(p,a) is the precision and recall, respectively defined as p(p,a) =
∑

i 1(pi ∈200

a)/|p|, r(p,a) =
∑

i 1(pi ∈ a)/|a|. For a test set consisting of multiple instances, the overall201

S1 is computed as the average of S1 of all the instances. For classification tasks, the prediction and202

ground-truth answer sets consist of a single element which makes S1 equivalent to accuracy for such203

tasks. Throughout this paper we report S1 over all tasks across the benchmark.204

4Similar to F1, S1 is derived from precision and recall, but based on sets.
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4 Human Performance205

Human performance has been reported on several NLU tasks, however, the annotation methods used206

to estimate the human performance are not always consistent in how much information about the tasks207

is provided to the human. Similar to [39], we estimate human performance such that it is consistent208

across different tasks and is comparable to machine learning models’ performance in few-shot settings.209

We provided non-expert annotators with a few examples and a short task description. In the zero-shot210

scenario, the annotators didn’t receive any examples. We provide the examples of our annotation211

platform and short task description in Appendix. In the following sections, we explain the data212

collection and human evaluation processes.213

4.1 Data Collection Method214

We designed an annotation framework on a crowd-sourcing platform to establish human performance215

on CLUES tasks. For each task, we use 10, 20, and 30 examples from the training set and all216

of the test set, as used for model training and evaluation. The workers completed a training step217

(where they were shown the few-shot training examples) and a testing step (where they annotated the218

test examples) and they were compensated based on an hourly rate ($12/hour). Each example was219

annotated by three annotators and they were compensated based on the hourly rate to promote fair220

compensation and high quality annotations.221

Training Step In the training step, for each task we have three scenarios including 10, 20, and 30222

examples. Recall that the larger training sets are the super-set of the smaller sets. For each scenario,223

we recruit three new workers to ensure that the annotators are only exposed to these specific training224

examples. While annotators are working on the training examples, they receive a short description of225

the task and after they submit the annotation for each example (from the training set), the correct226

answer will be revealed to them in a real-time fashion. Our platform does not allow the annotators to227

change their judgement after seeing the correct answer. Therefore, we can use the training step to228

filter out annotators whose performance is very low compared to average annotators in the group.229

Annotation Step In the annotation step, we have four scenarios including the three few-shot scenarios230

described in training stage and a zero-shot scenario. In the few-shot scenarios, we ask the same group231

of annotators who worked on the corresponding training examples to work on the test examples. In232

the zero-shot scenario, we recruit three new judges who have never worked on the task. Note that we233

collect three annotations from three different workers for each of these four scenarios.234

4.2 Human Performance Estimates235

To calculate human performance, we measure the performance of each annotator and report the236

mean and standard deviation of three crowd-workers. The human performance on our test set is237

shown in Table 4. We also present the zero-shot scenario in this table to better understand if human238

requires training for any of these tasks. SST and ReCoRD tasks demonstrate none or very minimal239

improvement in few-shot setting compared to zero-shot setting. This implies that human annotators240

are mostly relying on their own knowledge and the short task description to complete these tasks.241

While, on average, human performance tends to improve with more data in the training step for most242

tasks, we observe that it tends to decline for some tasks when the number of training examples is243

increased from 20 to 30. This is an interesting and surprising observation and suggests that additional244

studies are needed to better understand how humans leverage the provided examples and whether245

there is a point, beyond which, providing more examples could result in no or even negative value.246

Note that each cell in Table 4 has been annotated by a different set of three annotators and each set of247

examples used in the training step is a superset of the smaller set (e.g. the 30 shots is a super-set of 20248

shots). While this allows us to compare the performance of different annotators in different settings,249

it does not control for the overall quality of each annotator group, which could be a factor for some250

of the differences. We provide more analysis of human annotators on the training task in Appendix.251

We also note that our human evaluation results differ from the results in [39] for some of the common252

tasks. This could be attributed to many reasons including variance in annotator performance or253

different aggregation settings and metrics. Most notably, in this work, we reported the mean and254

standard deviation of annotators performance while [39] reported the performance of majority votes.255

In addition, we are using a different metric (S1 score) as described earlier.256
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Sentence Classification Named Entity Recognition Machine Reading Comprehension
#Shots SST-2 MNLI CoNLL03 WikiANN SQuADv2 ReCoRD

0 83.5± 0.6 64.4± 0.6 85.4± 1.8 82.2± 0.4 70.6± 1.0 94.6± 0.5

10 79.8± 1.2 78.1± 0.2 87.7± 2.0 81.4± 1.1 71.9± 8.0 94.1± 0.5

20 83.0± 0.5 78.6± 1.7 89.7± 0.4 83.5± 0.1 76.4± 0.5 94.2± 0.8

30 83.7± 0.6 69.4± 0.8 87.4± 2.1 82.6± 0.4 73.5± 2.0 91.9± 0.2

Table 4: Human performance on test set. We report S1 score and its variance across 3 annotators.

5 Results and Discussions257

5.1 Fine-tuning Strategies258

To evaluate the few-shot learning performance, we consider three different representative fine-tuning259

strategies, recently developed for pre-trained language models (PLMs).260

(a) Classic fine-tuning: Popularized by [8], classic fine-tuning is a widely-used approach of adapting261

PLMs for down-stream tasks. It updates both task-specific head and weights from PLMs jointly. Here,262

we unify all tasks as span-extraction as shown in Table 3. For all considered PLMs, we assume263

that inputs are prepended with a special token (ST) at the beginning, e.g., ST=[CLS] for BERT.264

The input text sequence is split by a PLM-specific tokenizer into subword units wt, t = 1, . . . , T .265

Then, a PLM takes the sub-word sequence as input to generate the contextualized representations,266

h1, . . . ,hT ∈ Rd, which are the final hidden states from the PLM.267

For a span-extraction head, the probability space consists of token positions of target spans. As shown268

in Table 3, a target span can be found either in the question or in the context. Given a pair of question q269

and a passage p in the form of "ST [question] [passage]", the PLM produces contextualized270

embeddings for all input tokens. Specifically, for each token position t in the input, the final hidden271

vector ht ∈ Rd is the contextualized token embedding. The span-begin score is computed as272

sb(i) = wT
b hi using a weight vector wb ∈ Rd. The probability for a span start i is Pb(i) =

exp(sb(i))
Zb

,273

where Zb is the normalizing factor over all positions. The span-end score se(j) and probability Pe(j)274

are defined similarly. The probability of an answer span (i, j) is P (i, j) = Pb(i)Pe(j). The training275

is then carried out by maximizing the log-likelihood of the answer span.276

(b) Prompt-based fine-tuning: Due to the gap between pre-training and task objectives, the few-shot277

setting is particularly challenging for classic fine-tuning, where the limited labeled data is inadequate278

for adapting the task-specific head and PLM weights effectively. Prompt-based fine-tuning addresses279

this gap, by formulating the task objective in a format as close to the pretraining objective as possible.280

It directly leverages the pre-trained (masked) language model as the task head, without introducing281

additional parameters, and has been shown to outperform classic fine-tuning on several few-shot282

natural language understanding and generation tasks [16, 15, 14, 40]. Here, we adopt the same set283

of pattern templates and verbalizers as in [16] for SST-2 and MNLI with different PLMs. We refer284

interested readers to the above work for details. For NER and MRC with diverse output space, it is285

quite complicated to adapt prompt-based fine-tuning, and we thus defer that to future work.286

(c) GPT-3 in-context learning: In addition, we conduct evaluations of in-context learning by directly287

querying GPT-3 without any parameter update. Prediction results are obtained via the GPT-3 API288

with k labeled examples as demonstrations for each example in the test set. We construct the input289

context by using the labeled data as examples and feeding them to the API for prediction.290

5.2 Analysis of Results291

In the following, we evaluate the performance of representative state-of-the-art PLMs with different292

adaptation strategies as discussed above. First, we compare the performance between few-shot and293

fully supervised settings in our benchmark for different PLMs with varying sizes. Here, we include294

5 PLMs from different model families, i.e., auto-encoding masked LM (BERT [8], RoBERTa [41],295

DeBERTa [3]), auto-regressive LM (GPT-3 [42]) and sequence-to-sequence (T5 [43]). For each task,296

we report macro-averaged results for each model trained on five different splits and evaluated on the297
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corresponding test split along with the standard deviation. The results are summarized in Table 5 for298

classification tasks, and Table 6 for NER and MRC, respectively.299

Fine-tuning strategies: For classification tasks (SST-2 and MNLI), we find that prompt-based300

fine-tuning significantly outperforms its classic fine-tuning counterpart across the board. However,301

this advantage disappears in the fully supervised setting where both strategies perform similarly.302

In addition, GPT-3 in-context learning is very effective for SST-2, surpassing all few-shot training303

baselines (both classic and prompt-based strategies) and almost matching human performance. In304

contrast, GPT-3 in-context learning produces random guesses for MNLI, indicating the impact of task305

difficulty on few-shot learning. For both NER and MRC tasks, it is complicated to adapt the current306

prompt-based approaches. However, given its promising results in classification, it is an interesting307

future direction for designing new prompting mechanisms for such tasks. Additionally, the lengthy308

input prohibits the adoption of in-context learning with GPT-3 for these task types as well.309

Table 5: Performance comparison of humans vs. PLMs on few-shot text classification. FT, PT and
ICL stand for classic fine-tuning, prompt-based fine-tuning and in-context learning, respectively.
Model variance is reported across five splits for each setting.

SST-2 MNLI

Shots (K) 10 20 30 All 10 20 30 All

Human 79.8 83.0 83.7 - 78.1 78.57 69.4

BERTBase FT 46.2 (5.6) 54.0 (2.8) 53.6 (5.5) 98.1 37.0 (5.2) 35.2 (2.7) 35.4 (3.2) 81.6
(110M) PT 63.9 (10.0) 76.7 (6.6) 79.4 (5.6) 91.9 40.4 (1.8) 42.1 (4.4) 42.5 (3.2) 81.0

BERTLarge FT 46.3 (5.5) 55.5 (3.4) 55.4 (2.5) 99.1 33.7 (0.4) 28.2 (14.8) 33.3 (1.4) 80.9
(336M) PT 63.2 (11.3) 78.2 (9.9) 82.7 (4.1) 91.0 41.7 (1.0) 43.7 (2.1) 45.3 (2.0) 81.9

RoBERTaLarge FT 38.4 (21.7) 52.3 (5.6) 53.2 (5.6) 98.6 34.3 (2.8) 33.4 (0.9) 34.0 (1.1) 85.5
(355M) PT 88.8 (3.9) 89.0 (1.1) 90.2 (1.8) 93.8 57.7 (3.6) 58.6 (2.9) 61.6 (3.5) 87.1

DeBERTaLarge FT 43.0 (11.9) 40.8 (22.6) 47.7 (9.0) 100.0 27.4 (14.1) 33.6 (2.5) 26.7 (11.0) 87.6
(400M) PT 83.4 (5.3) 87.8 (3.5) 88.4 (3.3) 91.9 44.5 (8.2) 60.7 (5.3) 62.9 (3.1) 88.1

T5Large (770M) FT 51.2 (1.8) 53.4 (3.2) 52.3 (2.9) 97.6 39.8 (3.3) 37.9 (4.3) 36.8 (3.8) 85.9

GPT-3 (175B) ICL 85.9 (3.7) 92.0 (0.7) 91.0 (1.6) - 33.5 (0.7) 33.1 (0.3) 33.2 (0.2) -

Model capacity: In the fully supervised setting with adequate training data, the performance of310

different models generally increase with increasing model size. However, for the few-shot setting,311

we do not observe any consistent trend or impact of the model size on the performance with classic312

fine-tuning for most tasks. However, for the two tasks that prompt tuning is used for (SST-2 and313

MNLI), bigger models tend to perform better.314

Training labels: There is a significant performance gap between few-shot and fully supervised315

settings. For classic fine-tuning, there is no consistent trend of performance improvement with a316

few added training examples; whereas a limited additional number of labeled examples can improve317

the model performance with prompt-based fine-tuning – suggesting that the latter method is more318

effective in leveraging additional labeled examples for the few-shot setting.319

Model variance: For classic fine-tuning, bigger models are observed to have significantly higher320

performance variance over different training splits, with BERTBase (the smallest model considered)321

exhibiting the least variance across all tasks. Interestingly, for prompt-based fine-tuning, larger322

models have less variance as they are likely to learn more effectively with pre-trained language323

modeling head. However, DeBERTa and T5 are exceptions which can be partially attributed to the324

difference in the pre-training strategy and the corpus.325

Task difficulty: For a simple task like SST-2, few-shot performances with prompt-based tuning326

and in-context learning with GPT-3 are very competitive, and close to (or even better than) human327

performance. In contrast, for more complex tasks like NER and MRC, most of the pre-trained models328

with varying sizes obtain close to random performance. Therefore, it is very important to develop329

more effective few-shot learning methods for such tasks.330

Model vs. human performance: In the fully supervised setting, all the models exceed human331

performance substantially for all considered tasks. However, in the few-shot setting, there is a huge332

gap between the model performance and that of the humans. The only exception is SST-2 where333

few-shot GPT-3 outperforms humans. We still retain this task as we observe significant few-shot334
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performance gap between humans and all other models. Furthermore, this gap is more pronounced335

for more complex tasks like NER and MRC where humans perform very well with only a few336

demonstrative examples whereas all the PLMs perform close to random.337

Table 6: Performance comparison of humans vs. PLMs on few-shot benchmark for NER (CoNLL03
and WikiAnn) and MRC (SQuAD and ReCoRD). Only standard fine-tuning performance is reported
along with model variance across five splits for each setting (GPT-3 results discussed in Section 5.2).

CoNLL03 WikiANN

Shots (K) 10 20 30 All 10 20 30 All

Human 87.7 89.7 87.4 - 81.4 83.5 82.6 -

BERTBase 51.3 (0) 51.3 (0) 51.3 (0) 89.3 62.8 (0) 62.8 (0) 62.8 (0) 88.8

BERTLarge 51.3 (0) 51.3 (0) 51.3 (0) 89.8 62.8 (0) 62.6 (0.4) 62.5 (0.6) 91.0

RoBERTaLarge 50.8 (0.5) 44.6 (5.1) 44.7 (2.6) 93.2 58.5 (8.8) 56.9 (3.4) 48.4 (6.7) 91.2

DeBERTaLarge 50.1 (1.2) 47.8 (2.5) 48.2 (2.9) 93.6 58.5 (3.3) 57.9 (5.8) 58.3 (6.2) 91.1

T5Large 46.3 (6.9) 50.0 (0.7) 51.2 (0.1) 92.2 61.7 (0.7) 62.1 (0.2) 62.4 (0.6) 87.4

SQuAD v2 ReCoRD

Shots (K) 10 20 30 All 10 20 30 All

Human 71.9 76.4 73.5 - 94.1 94.2 91.9 -

BERTBase 46.0 (2.4) 34.9 (9.0) 32.6 (5.8) 76.3 10.3 (1.8) 11.7 (2.4) 13.1 (3.3) 54.4

BERTLarge 42.3 (5.6) 35.8 (9.7) 35.3 (6.4) 81.8 9.9 (5.2) 11.8 (4.9) 14.9 (3.4) 66.0

RoBERTaLarge 38.1 (7.2) 40.1 (6.4) 43.5 (4.4) 89.4 12.0 (1.9) 9.9 (6.2) 16.0 (2.8) 80.3

DeBERTaLarge 41.4 (7.3) 44.4 (4.5) 38.7 (7.4) 90.0 15.7 (5.0) 16.8 (5.7) 21.1 (3.6) 80.7

T5Large 43.6 (3.5) 28.7 (13.0) 43.7 (2.7) 87.2 11.9 (2.7) 11.7 (1.5) 12.0 (3.8) 77.3

6 Conclusion and Future Work338

This work has been motivated by the lack of standardized benchmarks and principles to evaluate339

few-shot NLU models. More importantly, this benchmark has been designed for a fair comparison340

between human and machine performance on diverse NLU tasks given a few demonstrative examples.341

Recent studies demonstrate several issues in evaluating true few-shot learning including the usage342

of additional held-out examples for tuning hyper-parameters, prompts and templates, and the high343

variance in the model performance given the choice of seeds and few-shot training examples. To344

mitigate these issues for training and evaluating few-shot models, the CLUES benchmark adopts and345

demonstrates the impact of the following design principles.346

Variance matters. We provide five different splits with different seeds for k ∈ {10, 20, 30} training347

examples and a single test set to measure the robustness and generalizability of large language models.348

We observe a wide variance in the few-shot performance with classic fine-tuning that is exacerbated349

by the model size (refer to Appendix), although the impact is less on prompt-based fine-tuning.350

Validation matters. We do not provide additional validation examples to preserve the true few-shot351

nature of the tasks following [4]. As an artefact of this choice, we train every model for a fixed352

number of epochs and learning rate. In order to demonstrate the impact of validation set on few-shot353

performance, we perform a simple experiment. We fix the number of shots as K = 10 and the base354

encoder as BERT-base. We use one of the five training splits as held-out validation set. We train the355

model on each of the four remaining splits while selecting the best model for each split based on356

validation loss. We observe the average performance of these models on our test set for SST-2 to be357

7% higher than that reported in Table 5 for classic fine-tuning without using any validation set.358

Task difficulty matters. While prior few-shot learning works primarily explore instance classification359

tasks to demonstrate few-shot learning capabilities of large language models, the CLUES benchmark360

incorporates diverse structured classification and reading comprehension tasks. As the complexity of361

the tasks increase, we observe significantly larger gaps in the few-shot model performance compared362

to both the fully supervised and human performance.363
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