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ABSTRACT
Public cloud providers offer access to hardware resources

and users rent resources by choosing among many VM sizes.

While users choose the CPU core count and main memory

size per VM, they cannot specify last-level cache (LLC) re-

quirements. LLC is typically shared among all cores of a

modern CPU causing cache contention and performance in-

terference among co-located VMs. Consequently, a user’s

only way to avoid this interference is purchasing a full-server

VM to prevent co-tenants. Although researchers have studied

LLC partitioning and despite its availability in commodity

processors, LLC QoS has not been offered to public cloud

users today. Existing techniques rely mostly on performance

profiling, which is not feasible in public cloud settings with

opaque VMs. Moreover, prior work does not address how to

deliver differentiated LLC allocations at scale.

In this work, we develop CacheSlicer, the first system

that provides cluster-level support for LLC management in

a public cloud. We show how to provide LLC allocations in

a major public cloud provider to enable differentiated VM

categories, from which users select VMs that match their

workloads. We integrate it into the Azure VM scheduler and

show its effectiveness through extensive evaluations.
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• Computer systems organization→ Cloud computing;
• Software and its engineering→ Virtual machines.
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1 INTRODUCTION
Virtual machines (VMs) are the primary resource allocation

unit of public clouds. Each VM type typically defines the

number of cores, amount of memory, amount of disk space,

and disk and network bandwidth that VMs of the type should

receive. The cloud user selects the VM type that suits their

workload best. Performance-conscious users tend to rent

more expensive (aka premium) VMs and expect consistent

performance from them. Thus, public cloud platforms care-

fully manage these resources.

Unfortunately, a key resource is often not managed at all:

the last-level cache (LLC). In modern CPUs, cores share the

LLC to increase utilization, simplify coherence, and acceler-

ate core-to-core communication [44, 60]. However, the LLC

usage is not tightly controlled and a VM may consume a dis-

proportionate amount of space, displacing cache lines from

other co-located VMs (aka “noisy neighbor” effect). Thus, in

a public cloud, a premium VM may suffer significant LLC

interference from co-located VMs, and this interference may

change over time [46, 48]. For performance consistency, users

currently must rent expensive full-server VMs [82].

Cloud providers could improve performance consistency

for smaller VMs by drastically reducing the number of VMs

per server. However, this would cause lower utilization and

requiremore servers to be purchased. Alternatively, providers

could leverage LLC partitioning schemes proposed in the

literature, such as those that use software techniques [31, 61,

66, 78, 80], hardware mechanisms [6, 57, 59, 75], and combi-

nations of software and hardware [11, 62, 70, 72]. However,

the prior work has one or more serious drawbacks when it

comes to public cloud adoption. A major one is reliance on

profiling metrics such as instructions per cycle (IPC) [11, 18,

34, 50], cache miss rate [51, 72, 74], memory bandwidth con-

tention [18], or application-level progress [23, 37, 82]. Such

approaches work well when applications and their perfor-

mance characteristics are known or can be directly inspected.

In contrast, public clouds differ from other datacenters in that

VMs are almost always opaque to the platform [13]. Cloud

https://doi.org/10.1145/3472883.3487006
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customers are rarely willing to provide application-level per-

formance information about their workloads (via explicit

interfaces) or allow the platform to deeply inspect their VMs

(via event or system call counters). Consequently from the

provider point of view, application-level performance met-

rics are known only to the customer, and achieving higher

or lower IPC says nothing about a VM’s performance when

it could be just busy-waiting on a lock [22]. Moreover, pro-

filing allows simple adversarial exploits where a VM can

get more LLC space (e.g., by artificially increasing its cache

misses) [22], choking its co-tenants and relies on dynamic

LLC repartitioning, defeating the goal of achieving consistent

performance.

Ultimately, there are three research challenges in allocat-

ing LLC for performance consistency in the cloud: 1) create

workload-agnostic metrics for quantifying LLC contention

and reasoning about allocations; 2) define the LLC space

allocations of various VM offerings (like CPU and memory

allocations, a premium VM type should define the amount of

LLC space the VM should receive), so that LLC space usage

is maximized without producing excessive contention for

the cheaper VM types; and 3) account for LLC allocation as

an additional dimension in cluster-wide VM placement in a

way that does not excessively harm VM packing.

With these challenges in mind, in this paper we present

CacheSlicer, the first system providing cluster-level sup-
port for LLC management of VMs in public clouds. It
introduces new metrics that enable providers to assess con-

tention and manage LLC space without detailed information

about VM workloads. CacheSlicer provides differentiated

VM categories to users: cache-sensitive (CS) VMs with guar-

anteed isolation; standard VMs with best-effort isolation;

and low-cost VMs with no isolation guarantees. Users can

select the category that best matches their workloads’ needs.

CacheSlicer comprises three components: 1) a table-based

API to specify LLC management policies, 2) an optimiza-

tion scheme to determine best policies, and 3) an LLC-aware

VM scheduler to enforce them. At each server, it uses hard-

ware way partitioning as available frommultiple vendors [15,

30, 73]. The table-based API allows convenient control of

cluster-level configurations with rich semantics. LLC policy

updates are as easy as updating a single configuration file.

CacheSlicer’s policy optimizer assists the cloud provider in

increasing the LLC space for standard VMs without exces-

sively hurting worst-case resource contention among VMs.

Finally, the LLC-aware VM scheduler of CacheSlicer main-

tains a cluster-wide view of current LLC allocations, and

places arriving VMs onto servers to make the best use of

resources while respecting the VMs’ categories.

Our results show that managing LLC space in a cluster-

wide manner and optimizing the LLC allocations are highly
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Figure 1: With Intel CAT, each hardware thread is mapped to
a class of service (CLOS), and each class is assigned a capacity
bitmask (CBM) representing consecutive set of LLC ways.

beneficial, and that CacheSlicer successfully provides the

quality of service it promises to all defined VM categories.

Our main contributions are the following:

• We propose metrics to assess and manage LLC allocation

for opaque VMs in public clouds;

• Using data from the production clusters ofMicrosoft Azure,

we quantify the extent of LLC competition among VMs;

• We propose a scheme that leverages the metrics to opti-

mize the LLC allocations of different VM types/categories;

• We modify the Azure VM scheduler to account for LLC

allocation in cluster-wide placement decisions; and

• We evaluate our system extensively using real VM traces

from multiple production clusters.

2 BACKGROUND
2.1 LLC Way Partitioning
Hardware way partitioning is supported in several com-

mercial processors from Intel [30], Cavium [72], and Qual-

comm [73]. We focus on Intel’s Cache Allocation Technology

(CAT) because it is widely available on commodity servers

in data centers. CAT limits where each hardware thread can

allocate its cache lines. Each hardware thread is mapped to

a class of service (CLOS), and each class of service is then

assigned a capacity bitmask (CBM) specifying the LLC ways

where cache lines are allocated. Figure 1 shows a simpli-

fied example with only three classes of service (depicted in

different colors) and their capacity bitmasks for a 10-way

LLC. In contrast for Xeon E5-2600 v3 family [62], which is

a commercial processor, LLC has 20 ways and CAT uses 16

classes of service and 20-bit capacity bitmasks. CAT is con-

figured by setting machine-specific registers (MSR) or using

libraries [2, 4, 30]. Although CAT has several limitations –

including a limited number of classes of service, constrained

capacity bitmasks to only consecutive LLC ways, slow up-

date time [21], and reduced cache associativity – it is the

most-widely used technique for LLC partitioning.

2.2 VM Scheduling at Microsoft Azure
At Azure, a cluster contains hundreds or thousands of identi-

cal servers, and each cluster has a VM scheduler that assigns

an arriving VM to one of the servers in the cluster to pack

VMs on servers tightly [27]. The VM scheduler solves an

online form of multi-dimensional bin-packing [9, 27, 69],

and therefore it employs heuristics implemented as a set of

scheduling rules applied sequentially.
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VM VM Size 
(Cores) Ways WPC IWPC EWPC RCF

A 1 4 4 2 2.67 0.33

B 2 4 2 1 1.67 0.17

C 1 4 4 4 4 0

Figure 2: These three LLC allocations have the same number
of ways, but no two of them are similar.

Each scheduling rule filters or reorders the list of candidate

servers, and a rule can be either hard or soft. A hard rule

expresses a constraint, and therefore if no candidate server

satisfies it, the VM allocation request is rejected resulting in

a scheduling failure. A soft rule expresses a preference and is

ignored if it discards all candidate servers. The scheduler has

been in production for several years and proven successful in

maintaining low scheduling failures and tight VM packing.

3 MEASURING VM LLC ALLOCATION
In this section, we first define LLC allocation metrics that

capture the quality of VM LLC allocation, and then explain

the intuition behind them and how they relate to perfor-

mance. Finally, we quantify the degree of LLC competition

in Azure’s production clusters using these metrics. In the

next section, we show how CacheSlicer uses these metrics

to provide different categories of LLC QoS.

3.1 Metrics for VM LLC Allocation
First, to measure the size of LLC allocated to a VM, we count

the LLC ways allocated to it since the unit of LLC allocation

is a single cache way. To accommodate VMs with different

sizes, we normalize LLC allocation using the VM size in CPU

cores to define Ways per Core (WPC) for 𝑉𝑀𝑖 :

𝑊𝑃𝐶𝑖 =
# Ways allocated to 𝑉𝑀𝑖

𝑉𝑀𝑖 size in cores

(1)

For example, Figure 2 shows three VMs (A, B, and C), each is

allocated 4 LLCways, but theirWPC is 4, 2, and 4 respectively

since they have different sizes.

Second, VMs A and C have the same WPC, but C has ex-

clusive access to its LLC allocation, which is the requirement

for CS VMs. We define Isolated-WPC (IWPC) for 𝑉𝑀𝑖 as:

𝐼𝑊 𝑃𝐶𝑖 =
#Exclusive ways allocated to 𝑉𝑀𝑖

𝑉𝑀𝑖 size in cores

(2)

Third, to reflect how LLC ways are shared among VMs,

we define the Expected-WPC (EWPC) for 𝑉𝑀𝑖 as:

𝐸𝑊𝑃𝐶𝑖 =
∑︁
𝜔 ∈𝑊

1

Size in cores of all VMs assigned to 𝜔
(3)

where𝑊 is the set of ways assigned to the 𝑉𝑀𝑖 . Intuitively,

EWPCmeasures the number of ways assigned to a VMwhen

proportionally sharing some of those ways with other VMs.

For example, in the case of VMA, 𝐸𝑊𝑃𝐶𝐴 = 1

1
+ 1
1
+ 1

1+2+
1

1+2 ≈
2.67, since the first two ways experience no sharing, whereas

the third and fourth ways are shared between VM A (1 core)

and VM B (2 cores).

For any 𝑉𝑀𝑖 , 𝐼𝑊 𝑃𝐶𝑖 ≤ 𝐸𝑊𝑃𝐶𝑖 ≤ 𝑊𝑃𝐶𝑖 . We use these

metrics to assess competition on LLC.
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Figure 3: The impact of LLC partition size and sharing using
SPEC CPU2017 benchmarks. Each LLC way is 1MB.

Competition among VMs. EWPC is measured in num-

ber of ways, which is inconvenient because different VMs

may have different numbers of ways. To avoid this problem,

we need to compute the normalized amount of competition

between a VM and its co-tenant VMs. Thus, we define Re-

source Competition Factor (RCF) for 𝑉𝑀𝑖 as follows:

𝑅𝐶𝐹𝑖 = 1 − 𝐸𝑊𝑃𝐶𝑖

𝑊𝑃𝐶𝑖
(4)

Here, 0 ≤ 𝑅𝐶𝐹𝑖 < 1. Intuitively, RCF quantifies competition

as a function of LLC way-sharing. If 𝑉𝑀𝑖 does not share

ways with any co-tenant VM, then 𝑅𝐶𝐹𝑖 = 0 and its LLC

is isolated with 𝐼𝑊 𝑃𝐶𝑖 = 𝐸𝑊𝑃𝐶𝑖 = 𝑊𝑃𝐶𝑖 . On the other

hand, a VM with RCF close to 1 has high exposure to many

competing co-tenant cores that share the LLC with it.

Discussion. So far, we defined the metrics using a snap-

shot of the hosting server, but these metrics vary over the

lifetime of a VM as the set of co-tenant VMs change dynam-

ically with arriving and departing VMs. In the rest of this

work, the VM metrics we report are the averages over the

VM lifetime. Also, note that there is no loss of generality

when we measure VM size in CPU cores. Alternatives in-

clude a combination of DRAM size and the number of CPU

cores. The motivation for using CPU core count includes the

following: (1) CPU core count has a strong correlation with

the allocated memory size in cloud VM offerings [16]. (2)

A VM with more cores can stress shared LLC more than a

VM with fewer cores. (3) The inter-core cache interference

is higher than intra-core interference [33].

3.2 WPC, RCF, and Performance
Instead of providing an absolute performance QoS to un-

known workloads, we are interested in delivering guaran-

teed LLC allocation QoS withmonotonic dependence of
allocation metrics to performance [64]. Consider the fol-
lowing statements: (1) Given the same degree of competition,

decreasing a VM’s LLC partition size cannot improve its

performance; and (2) Given the same LLC partition size, in-

creasing competition in a VM’s LLC share cannot improve

its performance.

To confirm these statements, we run SPEC CPU2017 rate
benchmarks [10, 38] on the CAT-capable Intel Xeon E5-

2620 v4 CPU with 20MB of LLC and 20 LLC ways. Each

benchmark uses a core and runs together with the longest
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benchmark, wrf_r, in three configurations: (1) 5 ways with

no overlap (𝑅𝐶𝐹 = 0), (2) 5 ways with complete overlap

(𝑅𝐶𝐹 = 1

1+1 = 0.5), and (3) 3 ways with complete overlap

(𝑅𝐶𝐹 = 0.5). Figure 3 illustrates the performance of each

benchmark normalized to that of 5 ways with no overlap.

We can see that increasing competition (comparing two left-

most bars in each group) or reducing the LLC partition size

(comparing the two rightmost bars in each group) never

improves the performance of these benchmarks. Without

explicitly modeling competition, others have also observed

similar trends between sharing and size for SPEC CPU2006

benchmarks [30, 32, 43, 55]. Figure 3 also shows that increas-

ing the competition and reducing LLC size affect different

workloads differently. CacheSlicer is designed around the

practical constraint that public cloud providers treat VMs as

opaque and are unaware of the workloads running on them.

Thus, we do not explore this tradeoff and rely on universally

monotonic metrics of RCF and WPC. We describe how we

use these two metrics in Section 4.1.

3.3 RCF in the Wild
Now that we are equipped with a metric to measure LLC

competition, we use it to shed light on the current state of

Azure’s clusters. Figure 4 shows the cumulative distribution

function (CDF) of RCF for all VMs during a day. Each curve

corresponds to VMs of a single cluster. All servers in a cluster

have the same hardware type, but different clusters have

various hardware types
1
.

This data is interesting as it shows that server clusters

experience a similar LLC competition pattern, despite vary-

ing in server type, hosting a diverse mix of VMs, and being

located in different regions. The data also shows that the LLC

competition is high – roughly 70-80% of VMs in every cluster

experience an RCF higher than 80%. As severe LLC sharing

is a common issue across the fleet, CacheSlicer’s ability to

deliver user-controlled LLC guarantees is highly valuable.

4 LLC ALLOCATION POLICY AND
OPTIMIZATION

In this section, we first introduce VM categories enabled

by CacheSlicer. These categories allow users to choose VM

types with the required LLC QoS. To enable this, we first

present a compact, flexible, and scalable representation for-

mat for LLC allocation policies. Next, we present how we

made Azure’s VM scheduler LLC-aware. A major piece of

CacheSlicer is the policy optimizer which uses the modified

scheduler and production simulator with real traces to find

best LLC allocations. Finally, we present how we conduct

partial sharing of LLC allocations at the server-level.

1
The total number and types of clusters are business confidential.

Figure 4: Cumulative distribution of RCF in Azure clusters
over a day. Each curve corresponds to VMs in one cluster.
The bottom box plot shows the RCF distribution for all VMs.

4.1 LLC-Differentiated VM Categories
We define three VM categories and their LLC QoS:

(1) Cache-sensitive (CS) VMs: These VMs benefit from re-

served LLC size with full isolation (𝑅𝐶𝐹 = 0, 𝐼𝑊 𝑃𝐶 =

𝐸𝑊𝑃𝐶 =𝑊𝑃𝐶) for their lifetime. VMs in this category

have various sizes, from which the user can pick. This

means that the user can pay less compared to today’s full-

server VMs required when dealing with CS workloads.

At the same time, the provider achieves higher resource

utilization by tighter co-location.

(2) Standard (ST) VMs: We define standard VMs to strike a

balance between performance and predictability. This is

done through optimizing their LLC allocations for larger

cache size (WPC) while maintaining low sharing (RCF).

We describe this optimization process in Section 4.4.

(3) Low-cost (LC) VMs: Low-cost VMs have no performance

predictability guarantees. They share a dynamic portion

of the LLC, which we describe in Section 4.4.

While CacheSlicer is built primarily based on these cate-

gories, all mechanisms, representations, and APIs are de-

signed to be extensible for an arbitrary number of categories.

Discussion. Note that cache sensitivity and latency
sensitivity are not the same. While the former captures

the significance of LLC for a workload’s performance, the

latter is an end-to-end QoS expectation from the workload.

CS workloads can be latency-sensitive (LS), such as database

management systems [47], or not, such as computational

fluid dynamics (437.leslie3d [29] has highest LLC sen-

sitivity in SPEC CPU2006 [30]). LS workloads can be CS,

such as websearch [42], or not, such as memkeyval which

is network bandwidth limited [42]. In fact, Chen et al. [14]
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VM 
Scheduler

Cluster 1 
(A-type servers)

Cluster 2
(A-type servers)

Cluster 3
(B-type servers)

VM 
Scheduler

LLC Policy 
Table 2

VM 
Scheduler

LLC Policy 
Table 1

VM Type # Ways Policy Group Sharing Set
T1 W1 = * G1 = 0 S1 = {0}
T2 W2 = * G2 = 0 S2 = {0}
T3 W3 = 2 G3 = 1 S3 = { }
T4 W4 = 4 G4 = 2 S4 = {0, 2}
… … … …

LLC Policy 
Table 1

Figure 5: Each cluster has an LLC allocation policy table.
The cluster VM scheduler and servers use the same table.
Different clusters can have different tables.

found many LS cloud applications “not highly sensitive to
LLC allocations.” Another example is serverless applications

that require low execution time but are not CS [63]. CacheS-

licer specifically targets delivering hard LLC QoS guarantees

to CS workloads.

4.2 LLC Allocation Policies
Early in the project, we realized the need for a declarative

way to represent a broad set of LLC allocation policies, includ-

ing providing a VM with isolated LLC ways and allocating

a partition of LLC ways to be shared among specific VMs.

This representation expresses the search space the LLC al-

location policies explored by CacheSlicer’s policy optimizer.

Moreover, it must be clean and clear, obviating the need for

code modifications when policies change and allowing sys-

tem developers and administrators to maintain and deploy

this capability in production clusters. We present LLC Policy

Table (LLC-PT) as a solution to meet these needs. Figure 5

shows a high-level view of LLC-PT containing four fields:

(1) VMType (𝑇 ): Table lookup is based on the VM type. VMs

of the same type are managed the same way.

(2) Number of Ways (𝑊 ): LLC ways assigned to a VM type.

This field either holds a positive integer or is marked

unconstrained with an asterisk (∗). The latter means that

VMs of this type dynamically use unallocated cache ways.

(3) Policy Group (𝐺): A non-negative integer that allows

tying two or more VM types to the same policy. In a valid

LLC-PT, two rows having the same 𝐺 value should only

differ in their 𝑇 fields.

(4) Sharing Set (𝑆): A list of all policy groups with which

VMs of a type can share LLC space. If a VM type’s sharing

set excludes its own policy group, e.g., for 𝑇3 in Figure 5,

VMs of that type cannot have an identical CLOS.

A server uses LLC-PT to map its guest VMs to their cor-

responding policy groups and sharing sets. We clarify the

semantics with the example LLC-PT shown in Figure 5. As-

sume that the server has ten LLC ways, 𝑉𝑀1 and 𝑉𝑀2 are

VM Type # Ways Policy 
Group

Sharing 
Set

LowCost1 * G1 {G1}

LowCost2 * G1 {G1}
… … … …

Std1 4 G-S1 { }

Std2 3 G-S2 { }
… … … …

CS1 5 G-CS1 { }

… … … …

0 VM1
1 VM2
2 VM3
3 VM4
4 LowCost VMs

LLC Ways

CL
O

S

LLC-PT

1 2 3
1

2

3

Figure 6: By default, CacheSlicer delivers 3 service categories.
Guaranteed full isolation for CS VMs (❶); best-effort isola-
tion for standard VMs (❷); and low-cost VMs sharing the
remaining ways (❸).

of types 𝑇1 and 𝑇2 respectively, and both 𝑉𝑀3 and 𝑉𝑀4 are

of type 𝑇3. The four VMs are allocated to the same server in

their index order. First,𝑉𝑀1 is scheduled to an empty server

and due to being unrestricted (∗) can access the entire LLC of

its host. Then𝑉𝑀2 arrives, and since𝑉𝑀1 and𝑉𝑀2 have the

same policy group (𝐺1=𝐺2=0), and sharing within the policy

group is allowed (𝐺1 = 0 ∈ 𝑆2), they both share the entire ten

ways. Later, 𝑉𝑀3 arrives and is allocated to two ways (fully

isolated). Subsequently, 𝑉𝑀1 and 𝑉𝑀2 can access only the

remaining eight ways since their sharing set does not allow

sharing with 𝑉𝑀3 (𝐺3 = 1 ∉ 𝑆1). Finally, 𝑉𝑀4 arrives and is

allocated to two ways (fully isolated) as it cannot share with

𝑉𝑀3 (𝐺3 = 1 ∉ 𝑆3) and 𝑉𝑀1 and 𝑉𝑀2 share only six ways.

Figure 6 shows an example LLC-PT implementing CS,

standard, and low-cost categories together with a sample

corresponding server-level LLC way allocation.

4.3 Making the VM Scheduler LLC-Aware
We modify Azure’s VM scheduler to track and enforce LLC

allocation policies. We extend the per-server information to

include the total number of ways, allocated CS ways, allo-

cated standard ways, and the number of allocated low-cost

VMs. Using this information, we add two new scheduling

rules (Algorithm 1):

(1) Full isolation for CS VMs: This rule ensures that candidate
servers for scheduling a CS VM have enough isolated

ways. The scheduler rejects the allocation if no such

server is available (hard rule). A packing rule follows this

rule to pack VMs on servers tightly.

(2) Best effort packing and isolation for non-CS VMs: This rule
aims to increase packing for standard and low-cost VMs.

Among candidate servers that have enough ways to host

the new non-CS VM, those with minimum ways left after

assignment are kept. The rule also attempts to reduce the

sharing between standard VMs, i.e. if there is no server

with enough ways to fully isolate a standard VM, it can

be overlapped with other standard VMs. A new low-cost

VM can be assigned to any server that already hosts a

low-cost VM or that has enough LLC ways to create a

shared portion for low-cost VMs. This is a soft rule, and

the scheduler discards it if the rule returns no server.
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Algorithm 1 VM scheduling rules added for CacheSlicer.

1: class Server
2: ... ⊲ LC: Low-Cost, ST: Standard, CS: Cache-Sensitive

3: MinLCWays← (1 if HostedLCVMs>0 else 0)
4: AllocWay← UsedCSWays + UsedSTWays + MinLCWays

5: AvailWays← TotalWays - AllocWay

6: function GuaranteedLLCForCS(SchedulingRequest, Candidates)

7: if SchedulingRequest.LLCType != ‘CS’ then
8: return Candidates

9: FilteredCandidates← {}, ReqWays← SchedulingRequest.LLCWays

10: for c ∈ Candidates do
11: if ReqWays < c.AvailWays then
12: FilteredCandidates.Add(c)

13: return FilteredCandidates

14: function BestEffortIsolatedPacking(SchedulingRequest, Candidates)

15: if SchedulingRequest.LLCType == ‘CS’ then
16: return Candidates

17: FilteredCandidates← {}, ReqWays← SchedulingRequest.LLCWays

18: if SchedulingRequest.LLCType == ‘LC’ then
19: for c ∈ Candidates do
20: if (ReqWays < c.AvailWays) or (HostedLCVMs>0) then
21: FilteredCandidates.Add(c)

22: else if SchedulingRequest.LLCType == ‘ST’ then
23: MinScore←∞
24: for c ∈ Candidates do
25: Score← ReqWays - c.AvailWays + c.MinLCWays

26: if Score < MinScore then
27: MinScore←Score, FilteredCandidates← {c}

28: else if Score==MinScore then
29: FilteredCandidates.Add(c)

30: if isempty(FilteredCandidates) then
31: return Candidates ⊲ Making it a soft rule

32: return FilteredCandidates

The candidate servers filtered by these rules are passed to

the remaining rules of the VM scheduler to determine the

final candidate. If there were more than one final candidate,

one of them is randomly selected.

4.4 Optimizing LLC Allocation Policy
The optimization targets LLC allocations to standard VMs,

because CS VMs are allocated fully-isolated shares (hard

constraint), and Low-cost VMs dynamically share remaining

LLC space subject to a minimum LLC allocation requirement.

In contrast, determining a good allocation for ST VMs is

challenging. Standard VMs are allowed to have partial LLC

sharing with each other. They could be allocated very small

shares (low WPC) with low sharing (𝑅𝐶𝐹 → 0). On the flip

side, they could be assigned very large shares (high WPC)

with high sharing (𝑅𝐶𝐹 → 1) as well as excess pressure on

low-cost VMs. To strike a balance between these compet-

ing factors, we optimize the LLC allocation policy using an

offline algorithm that exploits history of cluster-wide VM ar-

rivals/departures and distribution of VM sizes and categories.

As the mix of VMs changes over time, the optimizer should

be re-run on fresh distributions to ensure the most optimal

allocations. Figure 7 shows an overview of the optimizer.

Algorithm 2 describes how the allocation optimizer iter-

atively improves LLC allocations, and Table 1 defines the

Algorithm 2 Allocation optimization algorithm.

1: ⊲ 𝑁 : parallelism, 𝐼𝑚𝑎𝑥 : maximum optimization iterations

2: ⊲ 𝜆: annealing factor (temperature),𝐶𝑇𝑎𝑟𝑔𝑒𝑡 : target cost

3: function AllocationOptimizer(𝑁 , 𝐼𝑚𝑎𝑥 , 𝜆,𝐶𝑇𝑎𝑟𝑔𝑒𝑡 )

4: 𝐶𝑀𝑖𝑛 ←∞ ⊲ global minimum cost

5: 𝑃0 ← {𝑝0

0
} ⊲ starting with standard fair share allocation

6: for 𝑖 ∈ [0, 𝐼𝑚𝑎𝑥 ] do
7: 𝐿𝑖 ← RunSimulatorInParallel(p ∈ Pi)
8: for 𝑙 ∈ 𝐿𝑖 do
9: 𝐶𝑖 .𝑎𝑝𝑝𝑒𝑛𝑑 (CalculateCost(l))
10: [𝐶𝑚𝑖𝑛, 𝑗 ] ← min(𝐶𝑖 ) ⊲ min cost with its index

11: if 𝐶𝑚𝑖𝑛 < 𝐶𝑀𝑖𝑛 then
12: [𝑝★,𝐶𝑀𝑖𝑛 ] ← [𝑝 𝑗

𝑖
,𝐶𝑚𝑖𝑛 ], 𝑛𝑖 ← 𝑝★

13: else if 𝑟𝑎𝑛𝑑𝑜𝑚 ( [0, 1]) < 𝜆𝑖 then
14: 𝑛𝑖 ← 𝑝

𝑗

𝑖

15: else
16: 𝑛𝑖 ← 𝑝★

17: if 𝐶𝑀𝑖𝑛 ≤ 𝐶𝑇𝑎𝑟𝑔𝑒𝑡 then
18: break
19: 𝑃𝑖+1 ← AllocationRecommender(ni,N )
20: return [𝑝★,𝐶𝑀𝑖𝑛 ]
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Allocations for 
Standard VMs
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Simulator 
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Allocation 
RecommenderVM

Scheduler
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Figure 7: Allocation optimizer overview.

algorithm’s variables. The optimization starts with a linear
fair share assignment for standard VMs, where they are as-

signed ways proportionally to their number of cores:

𝑊𝑖 = 𝑅𝑜𝑢𝑛𝑑 (ways
server
× cores𝑖

cores𝑠𝑒𝑟𝑣𝑒𝑟

), ∀𝑇𝑖 ∈ Standards (5)

The incremental allocation recommender (line 19 and also

Figure 7) incrementally increases/decreases the numbers of

ways𝑊𝑖 to form new policy tables. It also enforces the fol-

lowing constraints increasing/decreasing ways: (1) Each VM

must receive a positive number of LLC ways; (2) The allo-

cated ways to a VM type cannot exceed ways available on

each server; and (3) Within the same VM family, larger VM

types cannot have fewer ways. For instance, in a hypothetic

VM family of 𝐴, assigning three ways to the single-core 𝐴0

type while allocating two ways to the two-core 𝐴1 is invalid.

The optimizer employs the Azure VM scheduler simulator

to evaluate candidate tables and uses the results to calcu-

late utility metrics, such as WPC, IWPC, and RCF for all

VMs. Note that using the VM scheduler simulator is neces-

sary to consider all other resources allocated to VMs. It then

combines metrics in a cost function to assess the allocation

fitness, as we discuss below. It uses the simulated annealing

technique [36] to avoid local minima – at each iteration, if

the global minimum cost was improved by an allocation, it
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Symbol Definition

𝑃𝑖 set of policy tables simulated in optimization round 𝑖

𝐿𝑖 simulation logs for 𝑃𝑖

𝑛𝑖 proposed base allocation for round i+1 of optimization

𝑁 degree of parallelism for allocation optimizer

𝑝★ optimized policy table

Table 1: List of symbols.

becomes the new optimum allocation; if not, with a decreas-

ing probability, the best allocation of that round (as opposed

to best global allocation) becomes the base for the next itera-

tion. To accelerate the convergence, the optimizer explores

multiple (𝑁 ) candidate policy tables in parallel. In this paper,

we use 𝑁 = 8 but other values also work well.

The optimizer’s flexibility stems from incorporating sev-

eral objectives. For example:

𝐶 =

standard size↑︷            ︸︸            ︷
1

Avg. ST WPC

+

standard sharing↓︷            ︸︸            ︷
(Avg. ST RCF) +

low-cost pressure↓︷                     ︸︸                     ︷
( LC with WPC < 1

LC Count

)
(6)

This cost function favors an allocation that gives more ways

to standard VMs in such a way that reduces the LLC competi-

tion among standard types and limits the impact on low-cost

sizes. In this work, we use a slightly more advanced cost

function:

𝐶 =

standard size↑︷            ︸︸            ︷
1

Avg. ST WPC

+

standard sharing↓︷            ︸︸            ︷
(Avg. ST RCF) +

low-cost pressure↓︷                     ︸︸                     ︷
( LC with WPC < 1

LC Count

)

+ 2 × ( ST with RCF > 0.2

ST Count

) + 10 × ( ST with RCF > 0.8

ST Count

)︸                                                                   ︷︷                                                                   ︸
excess standard sharing↓↓

(7)

It has two additional shaping terms to control the maximum

RCF of standard VMs; the weights 2 and 10 reflect the im-

portance we place on standard RCFs being lower than 20%

and 80%, respectively. Figure 4 shows that RCF values above

80% are currently very common. We want to restrain the

optimizer from delivering standard VMs the RCF they are

already experiencing. A cloud provider can use other cost

functions based on its revenue and user satisfaction models.

4.5 Partial LLC Sharing at the Server Level
Over-subscription of LLC ways is expected with arbitrary-

sized CS and upsized standard VMs. As stated earlier, this

means that LLC allocations of standard VMs could partially

overlap. The LLC-aware scheduler mitigates unnecessary

sharing and the optimizer assesses and limits sharing. But if

sharing occurs, there needs to be a server-level placement

policy to manage potential overlaps.

Finding the best server-level overlapped allocation is a

complex problem involving optimizations and heuristics [25].

CacheSlicer uses a simple heuristic algorithm which we call

In-order Packing Sorted Packing

Available Ways for Standard VMs = 10

Standard VMs 
shown by their LLC 
size in arrival order

Figure 8: Standard VM allocations might need to be over-
lapped. Here, 4 standard VMs requiring 12 ways are fit into
10 ways using two simple algorithms.

sorted packing. The idea is to minimize the chance of overlap-

ping between small LLC allocations and we show its effec-

tiveness in Section 5.5.3. It works by sorting standard VMs in

ascending order of their number of ways and placing them

back to back inside the standard-only partition. The size

of this partition is determined by the number of allocated

ways to CS VMs and the minimum LLC ways required to

serve low-cost VMs. The placement direction toggles if there

are not enough ways remaining. Also, each standard VM’s

maximum way count is limited to the standard partition size.

Figure 8 shows an example of this algorithm as well as the

case where VMs are not sorted, and instead packed in their

arrival order (in-order packing). The standard partition has

ten ways here. Note that defragmentation of LLC ways after

a VM termination is as straightforward as few MSR updates.

4.6 Supporting Multiple CPU Sockets
When a VM spans over multiple sockets, it can experience

significant performance degradation [8, 83]. This is why

modern cluster schedulers make sure that VMs not requiring

more cores than a single CPU are assigned and pinned to just

one socket [5, 41, 79]. For a large VM that has to span over

sockets, the remaining cores are allocated to another socket.

In such a case, we treat the LLC allocation to those remaining

cores the same as a small VM assigned to a socket.

5 EVALUATION
CacheSlicer manages the LLC at the cluster level to enable

delivering differentiated LLC QoS categories to VMs. We

perform realistic large simulations to extensively evaluate

design trade-offs at that scale and stress the system with

various deployment scenarios. Towards this goal: (1) we sim-

ulate production-scale clusters (720 servers); (2) we use real

VM distributions from five CAT-capable production clusters

from three geographical regions; (3) we use the hardware

configurations of those clusters, specifically, each server we

study has 40 cores and 40 LLC ways; and (4) we conduct the

simulations using Azure’s VM cluster scheduler simulator.

This simulator is faithful to the real scheduler and is used by

Azure to evaluate any changes to the scheduler. It has also

been used in previously published studies [7, 16]. A recent

study [27] discusses the simulator’s fidelity.
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LLC Requirements Cores 1 2 4 8 16 32

Fair-Share (𝑊𝑃𝐶 = 1)

LLCWays
1 2 4 8 16 32

Small-Fast 2 4 8 16 32 40

Large-Slow 4 8 12 16 20 24

Table 2: Isolated LLC ways for CS VMs.
For the standard VMs, we tag VMs with four cores or

more as standard, since larger VMs are more expensive and

tend to demand higher QoS for example to host high-end

applications that can benefit from larger LLC allocation. We

analyze the impact of changing the set of standard VMs in

Section 5.5.1. For the CS VM category, we tag two of Azure’s

VM families as CS, each including six VM sizes. These twelve

CS VM types constitute 3.56% of the total VM count and 4.16%

of the total allocated cores in the five clusters. For the LLC

requirements, we study the three settings listed in Table 2.

The number of isolated LLC ways is linearly proportional to

the number of cores in the Fair-Share setting, but starts and
grows differently for the Large-Slow and Small-Fast settings.
Averaging across all CS VMs, a CS VM has 3.75 cores but has

3.75, 8.35, and 7.3 LLC ways for Fair-Share, Large-Slow, and

Small-Fast, respectively. CS VMs under the two latter settings

receive larger isolated LLC allocations and therefore reduce

the number of LLC ways available for standard VMs. We

study the impact of the LLC requirements and the percentage

of CS VMs in Section 5.5.2. By default, we assume sorted

packing for the server-level partial LLC sharing and compare

it against in-order packing and brute force in Section 5.5.3.

Finally, our study does not include potential VM lifetime

variations as a result of LLC allocations. Since VM behavior

is opaque to the provider, a real deployment is needed to

know if the VM lifetimes and mix will be impacted by LLC-

aware allocations.

5.1 Understanding Allocation Optimization
We evaluate the internals of the policy optimizer assuming

no CS VMs for clarity since their LLC requirements are fixed

constraints and we study their impact in subsequent sections.

Figure 9 shows the evolution of the main cost function com-

ponents (Equation 7) during the optimization. Each mark

represents the outcome of simulating two weeks of deploy-

ment with a different candidate policy. The optimization path

is depicted with the dashed line starting from the lower-left

corner of the plot with the fair share LLC assignment for stan-

dard VMs where the number of ways is proportional to core

counts (described earlier in Section 4.4). As the optimizer

incrementally explores candidate LLC allocation policies,

those improving the cost function the most become the basis

for further explorations. This translates into improving the

WPC of standard VMs while maintaining a low sharing (RCF)

for them and also low pressure on low-cost VMs.

As seen in Figure 9, most of the optimization benefits come

from early iterations, and the optimization path eventually

converges. Decremental allocation explorations can also be

seen in the figure. For instance, the fall right after the tenth
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Figure 9: Evolution of cost function components during ST
VM LLC optimization. Each dot corresponds to an explored
policy. The optimization path is depicted with a line.

iteration shows how a backward step improved the solution

by slightly lowering the WPC but considerably reducing

the RCF. Performing such backward steps is necessary to

compensate for prior suboptimal policy changes. An em-

pirical 10% probability to take such backward steps helped

us strike a balance between policy exploration quality and

convergence speed.

By default, the allocation optimizer treats each standard

VM type separately and modifies its way allocation inde-

pendently. Another approach is to assign the same number

of ways to standard VMs of the same size. This joint opti-

mization of same-size standard VMs prevents over-fitting to

a specific VM type distribution and prevents unintentional

incentives for users to migrate to different VM types of the

same size. In addition, joint optimization reduces the search

space, leading to faster convergence. On the other hand, op-

timizing standard VM types independently allows the cloud

provider to take full advantage of the type popularity infor-

mation and possibly serve the popular VM types better.

5.2 Differentiated LLC Allocation
We show how CacheSlicer delivers different LLC allocations

to CS, standard, and low-cost VMs. To do so, we perform the

policy optimization on a 720-server cluster with 3.6% of VMs

belonging to the Small-Fast CS category. Figure 10 shows

the policy table for all VM types after the optimization. We

use this policy and simulate the cluster for two weeks. The

warm-up process to reach the desired level of VM packing

and core allocation (80% of cores allocated to VMs) takes less

than a day; thus, the cluster runs at steady state for most of

the two-week period mimicking production clusters.

Figure 11 shows the distribution of IWPC and EWPC for

all VMs across the cluster, with and without CacheSlicer.

Without CacheSlicer, all LLC ways of each server are shared

among its VMs. Since each server has 40 cores and 40 LLC

ways, a VM has EWPC of at least one when running on a fully
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VM Type # Ways Policy Group Sharing Set
LC_1C * LCG1 {G1}
LC_2C * LCG1 {G1}

… … … …
S_4C 6 SG1 { }
S_8C 10 SG2 { }

S_16C 16 SG3 { }
S_32C 33 SG4 { }
S_40C 40 SG5 { }

VM Type # Ways Policy Group Sharing Set
CS_1C 2 CSG1 { }
CS_2C 4 CSG2 { }
CS_4C 8 CSG3 { }
CS_8C 16 CSG4 { }

CS_16C 32 CSG5 { }
CS_32C 40 CSG6 { }

Figure 10: The optimized LLC-PT used in Section 5.2.

packed server, and greater than one when the server is not

fully packed.When sharing the entire LLC, a VM experiences

an IWPC of zero even when it has a single co-tenant.

In contrast, CacheSlicer provides three LLC QoS classes.

All CS VMs enjoy guaranteed full isolation of their required

LLC space (𝑊𝑃𝐶 = 𝐸𝑊𝑃𝐶 = 𝐼𝑊 𝑃𝐶). Standard VMs consti-

tute 20.2% of VMs and receive 61.1% of allocated cores since

VMs with four or more cores are assumed standard VMs.

Moreover, CacheSlicer upsizes standard VMs (𝑊𝑃𝐶 > 1)

using the optimized LLC allocation policy, and they receive

best-effort isolation as reported in Figure 11. Low-cost VMs

still experience low isolation since they share the same LLC

space, and their EWPC decreases due to potential CS or stan-

dard co-tenant VMs.

5.3 LLC-Aware VM Cluster Scheduler
CacheSlicer’s LLC-aware VM scheduler, described in Sec-

tion 4.3, delivers full isolation to CS VMs without any alloca-

tion failures. However, the primary role of the LLC-aware

scheduler is in the process of optimizing way allocations.

Figure 12 compares the EWPC and IWPC of standard VMs

using LLC-agnostic and LLC-aware schedulers. Here, the

LLC-agnostic scheduler denotes the current scheduler, and

we use the same configurations and VM arrival sequence

to test it. We simulate the scenario from Section 5.2 with

Small-Fast as well as the Large-Slow CS way allocations.

The LLC-aware scheduler improves EWPC and IWPC 2.7%

and 2.5% for the Small-Fast setting, and 14.1% and 12.6% for

the Large-Slow setting, respectively. These benefits are due

to our soft rule (Section 5.2), which reduces unnecessary LLC

contention, thereby providing standard VMs with larger LLC

space while maintaining good isolation among the upsized

standard VMs and low impact on low-cost VMs.

5.4 Behavior Differences Across Clusters
CacheSlicer’s optimizer uses a VM type distribution during

simulation of candidate policy tables. As stated earlier, we

base the optimizations on the combined VM type distribution

of five production clusters from three geographical regions.

We refer to the LLC-PT resulting from this optimization

approach as “globally optimized”. Here, we answer two ques-

tions: (1) how do the results differ across clusters when we

schedule their VM arrivals with the globally optimized LLC-

PT? (2) how much extra gain would each cluster attain when

using a “regionally optimized” table, i.e. an LLC-PT that was

optimized based on its region’s VM type distribution? We do

not consider any finer granularity than a region in producing

an LLC-PT; as a customer’s VMs can be mapped to any of the

clusters in a region, having different policy tables for them

can cause allocation inconsistencies beyond user’s control,

defeating the purpose of CacheSlicer.

Figure 13 shows the average EWPC and IWPC for standard

VMs with globally optimized (left/blue bars for each cluster)

or regionally optimized (right/green bars) LLC-PTs. Each

cluster’s region is listed inside parentheses. These results

exclude CS VMs for simplicity. It is interesting to see that the

average EWPC and IWPC are almost exactly the same for

these clusters. The reason is that RCFs are close to 0 for them.

To answer the first question we pose above, we compare the

blue bars to each other and the green bars to each other. We

can see differences in both comparisons, but especially across

the green bars, because regional optimization is more closely

related to the VM type distributions that clusters actually

experience. To answer the second question, we compare

each blue bar to its green counterpart. The results show that

regional optimization always leads to at least as much LLC

space and isolation as global optimization for standard VMs.

Deciding between global and regional optimization de-

pends on the provider’s desire to maintain inter-region al-

location consistency. To prevent over-fitting, we conserva-

tively based our analyses on global tables. But, as shown

above, regional optimization leads to better results.

5.5 Sensitivity Studies
As we propose new VM categories, their usage pattern is

unknown. In this section, we conduct sensitivity studies

to evaluate CacheSlicer in various scenarios to assess the

impact of the standard VM classification, the CS VM way

allocations, and the server-level LLC sharing algorithm.

5.5.1 Sensitivity to Standard VM Classification. Earlier in
Section 5, we selected non-CS VM types having four or more

cores as standard VMs. For the combined distribution of the

five clusters, this choice translated to 21.1% of the VMs and

63.9% of the allocated cores being standards. Each standard

VM had an average of 8.04 cores.

To assess the impact of the choice of standard VMs, we now

study a different mix of VM types with a similar percentage

of standard VMs (21.6%). However, this new mix represents

22.5% of the allocated cores, where each standard VM has an

average of only 2.76 cores. We refer to these two definitions

for standard VMs as large and small, respectively.
The policy optimization increases the WPC of small stan-

dards on average to 2.18 (EWPC: 2.14, IWPC: 2.11), whereas

for large standards, the optimized allocations had an aver-

age WPC of just 1.43 (EWPC: 1.40, IWPC: 1.38) as shown

in Figure 9. This is expected as smaller VMs experience a

greater WPC increase when given the same number of ways.
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Figure 11: The distribution of VMs’ expected and isolated LLC space with and without CacheSlicer. The allocated LLC space is
fully isolated for CS VMs, highly isolated for standard VMs, and shared for low-cost VMs.
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Figure 12: LLC-aware scheduler improves EWPC and IWPC
of ST VMs by 2.7% and 2.5% under the Small-Fast setting, and
by 14.1% and 12.6% under the Large-Slow setting, respectively.
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Figure 13: Using cluster-specific (regional) VM distributions
instead of a global distribution improves LLC allocations.

Nevertheless, the standard sharing and low-cost pressure

are the determining factors in the amount of standard upsiz-

ing. To see this, we breakdown the cost function (Equation

7) into two dimensions in Figure 14. The X-axis shows the

cost function component that decreases by upsizing standard

LLC partitions, whereas the Y-axis shows the sum of other

components, which increases with upsizing. Independent of

the choice of standards, the Pareto-optimal allocation picked

by the optimizer resides where the drawbacks of standard

upsizing equal its benefits.

As a result of this versatility, CacheSlicer delivers similar

LLC QoS to standards VMs for small and large settings. The

𝐸𝑊𝑃𝐶
𝑊𝑃𝐶

ratio is 98.1% and 97.9% for small and large standard

settings; and the
𝐼𝑊 𝑃𝐶
𝑊𝑃𝐶

ratio is 96.5% and 96.3%, respectively.

In other words, the cost function ensures average delivery
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Figure 14: Decomposing the optimizer’s cost function. In-
dependent of the choice of standards, the Pareto-optimal
allocation resides where the drawbacks of upsizing equal its
benefits.

CS Setting Fair-Share Small-Fast Large-Slow

Avg. WPC for Cache-Sensitive VMs 1.0000 1.9920 3.4523

Cost function Unoptimized 1.0000 1.0165 1.0171

value Optimized 0.8232 0.8506 0.8577

Avg. WPC for Unoptimized 1.0000 0.9996 1.0000

Standard VMs Optimized 1.3340 1.3332 1.3993

Avg. RCF for Unoptimized 0.0000 0.0033 0.0050

Standard VMs Optimized 0.0175 0.0238 0.0263

Avg. Isolation (%) for Unoptimized 100.00 99.408 99.138

Standard VMs Optimized 96.867 95.762 94.907

Avg. WPC for Unoptimized 15.197 13.757 13.245

Low-Cost VMs Optimized 11.663 10.104 9.9217

Avg. RCF for Unoptimized 0.9139 0.9134 0.9134

Low-Cost VMs Optimized 0.9136 0.9153 0.9151

Avg. Isolation (%) for Unoptimized 0.1651 0.1379 0.1693

Low-Cost VMs Optimized 0.1220 0.0911 0.0917

Table 3: Impact of larger isolated LLC allocations for CS VMs
on ST and LC VMs.

of ∼98% of advertised LLC space, and more than 96% LLC

isolation for standard VMs.

5.5.2 LLC demands of CS VMs and Percentage of CS VMs.
To analyze how the mix and percentage of CS VMs affect

the allocation optimization, we run the optimizer for Table 2

settings and the default 3.56% of CS VMs using the combined

distribution of five production clusters. Table 3 summarizes

the results of the optimization for these settings. As expected,

larger CS VMs (CS sizes highlighted in blue) reduce isolation

for standard VMs and lead to smaller WPC for low-cost VMs.

Figure 15(left) shows the impact of the percentage of CS

VMs on the standard allocation optimization. Increasing CS

percentage from 3.6% to 10.3% noticeably impacts the stan-

dard EWPC for both Small-Fast and Large-Slow settings,
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Breakdown of the optimization cost function components.
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Figure 16: Comparing algorithms for server-level LLC shar-
ing for standard VMs. Sorted sharing achieves comparable
results to (unrealistic) brute force search.

while the Fair-Share CS way setting allows graceful upsizing

of standards. Figure 15(right) shows the Pareto-optimal op-

timization curves for the Large-Slow case with varying the

percentage of CS VMs. As the figure shows, upsizing stan-

dards to the same amount (same X value) has more overhead

(higher Y value) when there are more CS VMs.

5.5.3 Server-Level Partial LLC Sharing Policies. So far, we

have assumed the sorted packing algorithm for server-level

LLC sharing for standard VMs. Figure 16 compares the aver-

age standard RCF for in-order packing, sorted packing, and

an oracle via brute force search. The six cases in the figure

correspond to different proportions and settings of CS VMs.

The figure shows that using the simple sorted packing algo-

rithm can improve the average standard RCF 12.5%-32.6%,

generating comparable results to brute force. We also find

that sorted packing is only ∼12% slower than in-order pack-

ing (unrealistic brute force is ∼4800x slower).
Overlapping the same number of ways translates into

smaller shares for larger VMs. This is why sorted packing

outperforms in-order packing. We illustrate this effect in

Figure 8, where only larger VMs experience partial sharing.

5.6 Application-Level Performance
While CacheSlicer’s cluster-level LLC management is evalu-

ated in Section 5, we study how it can affect the end-to-end

performance of cloud workloads. CacheSlicer is not about

improving performance; instead, it targets delivering differ-

entiated LLC QoS guarantees to public cloud users, and we

DC (8 cores) GA (4 cores) IMA (4 cores)

DC (8 ways)
GA (8 ways)

IMA (4 ways)

DC & GA & IMA (full sharing of 20 ways)

Core Mapping for all tests (18 cores total)

LLC Way Mapping #1 (M1)

LLC Way Mapping #2 (M2)

LLC Way Mapping #3 (M3)
DC (8 ways)

GA (10 ways)
IMA (10 ways)

CacheSlicer QoS: 
DC→ CS
GA → Standard
IMA → Standard

Current state of 
public cloud 
offerings.

Figure 17: Comparing the effect of LLC allocations on appli-
cation performance of three cloud workloads.

show that choosing different VM categories can improve

performance, performance predictability, or cost.

We study co-location effects of three VMs running appli-

cations from the CloudSuite v3.0 benchmarks [20, 49]: Data

Caching (DC), Graph Analytics (GA), and In-Memory Ana-

lytics (IMA). We use a production-class server (Intel Xeon

E5-2686 v4 CPU [18 cores, 20-way 45MB LLC], 512GB main

memory). All VMs run together: DC runs indefinitely and is

set to deliver 225K requests per second (RPS) with 12 worker

threads; GA (with 25GB of driver and 70GB of executor mem-

ory) and IMA VMs run iteratively. VMs use Ubuntu 16.04

LTS, and VM cores are pinned to server cores to reduce in-

terference [19, 53, 68]. DC has 8 cores and 128GB of memory.

GA and IMA have 4 cores and 112GB of memory, each.

Figure 17 shows the core allocation and three LLC map-

pings. Mapping #1 (M1) denotes the current state of cloud

offerings where the entire LLC is shared. Mappings #2 and

#3 (M2 and M3) correspond to CacheSlicer when the user

selects CS category for the DC, and standard category for

GA and IMA VMs. M3 offers larger LLC portions to standard

VMs compared to M2. We summarize the results below.

DC’s target QoS is P95 latency of 10ms [1], which is met

when the user selects CS category guaranteeing LLC isola-

tion for DC VM. As shown in Figure 18, the QoS violation

of 16.4% in M1 (shared) is reduced to 4.9% and 0.8%, in M2

and M3, respectively. If the user’s desired P95 latency for the

same service rate were 20ms, the user would not need the

isolated LLC share. This is why we advocate for exposing

LLC QoS users to suit various demands and valuations.

Although GA and IMA have smaller LLC shares in M2

compared to M1, they can accommodate a co-located CS VM

with relatively low impact on performance: GA and IMA

experience only 2.3% and 4.3% slow-down, showing that the

co-location of CS VMs is feasible.

Finally, moving fromM2 to M3, GA’s average performance

remains almost the same, and IMA gains 2.7% speed-up. More

importantly, as GA and IMA have overlapping LLC shares,

GA and IMA experience 2.56x and 1.36x higher performance

variations, respectively. These changes follow CacheSlicer’s

LLC QoS metrics: (1) lower sharing (RCF) to achieve less per-

formance variation, and (2) higher shares (WPC) to achieve
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Figure 18: Delivering the same request rate (left), DC meets
tail latency target in Mapping 2 & 3 (right).

higher performance. Note that CacheSlicer’s LLC-aware VM

scheduler takes overlapping into account and reduces its

possibility for standard VMs.

5.7 Comparison to Node-Level Partitioning
CacheSlicer is substantially different from node-level LLC

management policies, making it hard to conduct a direct

comparison. In CacheSlicer, the VM scheduler helps prevent

excessive LLC contention at the node level with the appropri-

ate VM categories. When the VM scheduler is LLC-agnostic,

performance can degrade significantly even with the best

node-level policy when too many tenants are mapped to a

single node. Given such limitations, we situate CacheSlicer in

comparison to node-level policies by experimentally com-

paring the best-case and worst-case co-location scenarios.

We use the same server as in Section 5.6 for this study.

Since the types of cloud servers are known, a user can profile

their application on the same server, locally or on bare-metal,

to identify the application’s LLC requirement. We do that

for four different applications: (1) a Data Analytics work-

load from the CloudSuite v3.0 benchmark [20, 49], using

six threads (3 cores); (2) an In-Memory Analytics workload

from the CloudSuite v3.0 benchmark [20, 49], using eight

threads (4 cores); (3) a dual-threaded (1 core) Multichase

workload [3]; and (4) a single-threaded SciMark2.0 [56]. The

results appear in the left sub-figure of Figure 19. For these

applications, we choose various target performance and LLC

allocation values (marked as stars in Figure 19). The question

we seek to answer is: how would the performance vary com-

pared to this target performance under different policies? We

deliberately consider cases where co-tenants are replicas of

the same workload. This is because if at least two dissimilar

co-tenants run, one does better and the other does worse

compared to their respective similar-co-tenant scenario.

Table 4 lists the best/worst-case scenarios for 3 policy

groups. The first is single-tier node-level policies, which cor-

respond to the majority of related work where LLC space

is apportioned across workloads dynamically [18, 52, 58, 62,

72, 74, 76]. Although these policies have various profiling,

classification, and partitioning mechanisms, they all behave
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Figure 19: (Left) The normalized single-tenant performance
of four workloads as a function of LLC size. The workloads’
target performance is marked with stars. (Right) The perfor-
mance variation range using different policies.

Workload

Single-Tier Node-level Policies CacheSlicer; Low Cost (LC) CacheSlicer; Cache Sensitive (CS)

best worst best worst best worst

Data tenant 1/1; 1/6 tenants; tenant 1/1; 1/5 LC tenants tenant 1/1; assigned 1/5 tenants;

Analytics full LLC sharing entire LLC full LLC sharing 1 way 4 isolated ways 4 isolated ways

In-Memory tenant 1/1; 1/4 tenants; tenant 1/1; 1/3 LC tenants tenant 1/1; assigned 1/2 tenants;

Analytics full LLC sharing entire LLC full LLC sharing 1 way 8 isolated ways 8 isolated ways

Multichase

tenant 1/1; 1/18 tenants; tenant 1/1; 1/17 LC tenants tenant 1/1; assigned 1/2 tenants;

full LLC sharing entire LLC full LLC sharing 1 way 10 isolated ways 10 isolated ways

SciMark2.0

tenant 1/1; 1/36 tenants; tenant 1/1; 1/35 LC tenants; tenant 1/1; assigned 1/3 tenants;

full LLC sharing entire LLC full LLC sharing 1 way 6 isolated ways 6 isolated ways

Table 4: Description of different co-locations scenarios deliv-
ering best- and worst-case performance.

similarly in extreme cases corresponding to best- and worst-

case performance. In the best-case, a workload with no co-

tenant is assigned the entire LLC as it ensures the best per-

formance (lowest slowdown). In the worst-case, replicas of

the same workload could either share the entire LLC or fall

into smaller partitions. The former case delivers better per-

formance due to higher associativity and will be chosen by

node-level policies. Note that since all competing workloads

are the same in this worst-case scenario, memory bandwidth

partitioning [51] provides no added value. Similarly, methods

identifying latency-critical workloads [55] cannot help as all

replicas fall into the same tier (latency-critical or batch).

The second policy is Low Cost (LC) VMs with CacheSlicer.

Their best-case performance behavior is similar to the previ-

ous policy group, as an LC VM utilizes the entire LLC when

possible. On the other hand, since CacheSlicer has three tiers,

the worst-case scenario happens when a Cache Sensitive (CS)

VM with a massive LLC allocation is co-located with many

LC replicas that have to share just one LLCway. The numbers

of LC co-tenants we consider are listed in Table 4. Finally,

the third policy is a CS VM with CacheSlicer. It produces the

same LLC allocation size under best and worst-case scenar-

ios. Since CacheSlicer considers LLC a hard resource for CS

workloads, it tends to produce lower co-tenant counts.

The performance ranges for these cases are shown in the

right of Figure 19. The top of each bar corresponds to the

best performance and the bottom corresponds to the worst,

normalized against the target performance for each appli-

cation. Node-level policies and LC VMs can deliver better

performance compared to the target, as the workload can

consume the entire LLC if it has no co-tenant. However, both

policy types can suffer a huge slowdown if the scheduler

assigns too many co-tenants to their node. The degree of
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this slowdown is a function of application and number of co-

tenants. Note that LC VMs do worse than node-level policies,

as they can get choked by CS VMs. In contrast, the figure

shows that the CS VMs deliver performance consistency

as expected. The slight slowdown is due to other shared

resources, such as memory bandwidth. The main conclu-

sion is that consistent performance needs both intentional

allocation of cache ways and LLC-awareness by the VM clus-

ter scheduler; state-of-the-art node-level policies have not

targeted these characteristics.

6 FREQUENTLY ASKED QUESTIONS
How does CacheSlicer guarantee performance for la-
tency sensitive workloads with just considering LLC?
CacheSlicer does not provide performance guarantees for

latency sensitive workloads. Instead it targets delivering LLC

QoS guarantees to cache sensitive workloads. We discuss

the difference between these two in Section 4.1. This was an

informed decision as unlike on-premise or private environ-

ments, public cloud providers have no means to correctly

interpret the performance of opaque VMs and no informa-

tion on the performance valuation. Recognizing this context

is vital for understanding design choices in this work.

How about the performance effects of decreased as-
sociativity? Way partitioning can hurt cache capacity su-

per linearly due to decreased associativity [35, 71]. CacheS-

licer handles this by providing transparency and consistency.

We expose the cache allocation parameters to users – par-

ticularly the number of LLC ways. Moreover, we guarantee

providing it to them consistently no matter which server

their VM lands on. These two factors enable users to de-

cide if the reduced performance is acceptable to them. Also

note that for standard VMs we ensure a minimum WPC of

1, which means linearly higher associativity with increased

VM size. This guarantees associativity diversity.

How about the added complexity for the users? For

ordinary users, the standard category will be chosen by de-

fault. On the other hand, this knob will provide more control

for users who want more control. This is similar to the cur-

rent state of cloud configurations where users can go to the

“advanced settings panel” to fine-tune extra options.

7 RELATEDWORK
CacheSlicer is the first scheme to offer cluster-level LLC
allocations for public clouds. Table 5 compares it to the

related work on way partitioning/clustering. For LLC par-

titioning techniques beyond way partitioning, we refer the

reader to related survey studies [24, 45]. Note that several

early studies on cache contention mitigation in cloud relied

on scheduling solutions without LLC partitioning [5, 12, 67].

Most systems using way partitioning rely on performance

profiling. Such reliance limits their use for public clouds VMs

Related Work Goal Scope QoS Level(s)

Profiling Cluster

Free Level

Heracles [42] LS co-location task 2 (LS/not) ✗ ✗

CATalyst [39] side channel defense VM 2 (secure/not) ✗ ✗

Dirigent [82] LS co-location task 2 (LS/not) ✗ ✗

Ginseng [22] IaaS auction-based VM - ✓ ✗

SWAP [72] finer partitioning task - ✗ ✗

Selfa [62] better system fairness task - ✗ ✗

KPart [18] better avg. slowdown task - ✗ ✗

Sprabery [65] side channel defense cont/VM 2 (secure/not) ✓ ✗

DCAPS [74] dynamic overlapping task - ✗ ✗

dCAT [76] dynamic allocation task - ✗ ✗

SDCP [28] side channel defense cont 2 (secure/not) ✗ ✗

Pons [55] lower turnaround time task 2 (llc-critical/not) ✗ ✗

CoPart [51] joint LLC & Mem. BW task - ✗ ✗

LFOC [23] OS support for fairness task 3 ✗ ✗

CLITE [52] multiple LS & BG tasks task 2 (llc-critical/BG) ✗ ✗

Rhythm [81] breaking down LCs task 2 (LC/BE) ✗ ✗

SATORI [58] fairness + throughput task - ✗ ✗

CacheSlicer cloud multi-QoS VM flexible (Def. 3) ✓ ✓

Table 5: The taxonomy of prominent LLC management sys-
tems using way partitioning sorted by publication date.

due to 1) discrepancy of external performance metrics and

application performance [22], 2) lack of knowledge on user

valuation of performance, 3) adversarial exploitations, and 4)

non-trivial profiling overhead [81]. Ginseng [22] showed that

game theory principles can mitigate the need for profiling.

CacheSlicer eliminates reliance on profiling by delivering

LLC QoS guarantees and letting the users decide.

Some systems use way partitioning to improve execution

of all applications [18, 54, 58, 62, 72, 74]. These systems are

complementary to CacheSlicer as it targets public clouds,

provides QoS at VM granularity, and enforces LLC policies

at the cluster level with an LLC-aware scheduler. A few sys-

tems provide isolation for CS workloads [42, 82]. Similarly,

CacheSlicer delivers full isolation to CS workloads, however,

at the VM level. Finally, some studies have used way par-

titioning to mitigate LLC side-channel attacks [17, 26, 35,

39, 40, 65, 77]. We did not study the security implications of

CacheSlicer.

8 CONCLUSION
In this paper, we quantified LLC competition among VMs

in Azure and introduced CacheSlicer, the first system pro-

viding cluster-level support for LLC management for public

clouds. CacheSlicer enables multiple levels of LLC QoS, pro-

viding guaranteed LLC isolation for cache-sensitive VMs,

best-effort isolation for standard VMs, and no isolation for

low-cost VMs. CacheSlicer uses an offline policy optimizer

as well as an LLC-aware VM cluster scheduler. Our evalu-

ation showed that cluster support and policy optimization

improve LLC allocation, and CacheSlicer successfully meets

the LLC requirements of the differentiated VM categories.
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