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ABSTRACT
Renewable energy is becoming an important power source
for data centers, especiallywith the zero-carbonwaste pledges
made by big cloud providers. However, one of the main chal-
lenges of renewable energy sources is the high variability of
power produced. Traditional approaches such as batteries
or transmitting to the grid fall short on scale, overhead, or
"green-ness". We propose Virtual Battery: instead of adapting
the availability of power to match the computation demand
we shift computational demand to meet the availability of
power. Virtual batteries shift demand by requiring applica-
tions to either be flexible and delay-tolerant or proactively
migrating to where power is (going to be) available. We show
that using multiple virtual battery sites in combination can
meet the needs of modern applications. Moreover, we show
how an intelligent network and power aware co-scheduler
can not only provide availability despite variability but also
help mitigate migration related network overhead by over
30% in total and 4.2× at peak.
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1 INTRODUCTION
Cloud computing has become a substantial source of carbon
emission, even surpassing the aviation industry [49]. As a
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Figure 1: The Virtual Battery (VB) based cloud architecture
vs the current deployments.

result, all major cloud providers have pledged to become “car-
bon neutral or negative” in the near-term future [30, 45, 60].
Renewable energy sources are an attractive choice for re-
ducing carbon especially since technological advancements
have reduced their production costs to values lower than
traditional energy sources [36]. However, one challenge in
making effective use of renewables is that their energy pro-
duction varies significantly over time. For example, solar
produces no power at night and daytime power output varies
with clouds and across seasons. Similarly, wind production
changes frequently based on the direction and speed of wind.
Existing systems either move energy across space (via

transmission lines) or time (using batteries), e.g., using en-
ergy from batteries or traditional power generation sources
during short-falls, or transmitting to/from the grid during
periods of excess/low power generation. However, these
solutions have significant shortcomings: 1) traditional non-
renewable energy sources have high carbon footprints; 2)
transmission lines incur significant overheads (≈ half of the
cost is due to transmission and distribution [27]) and takes
decades for installation; and 3) penetration of grid-scale Li-
ion and other chemical batteries are minuscule in scale, e.g.,
in the US battery capacity is ≈ 0.4% of the overall solar and
wind capacity [12, 26]. We need an alternate, more efficient
approach to bridge the gap between the properties of renew-
able energy sources and requirements of cloud computing.
In this work, we propose a paradigm shift: Instead of us-

ing techniques that adapt the availability of power to match
the computation demand, we shift computational demand
to meet the availability of power. We call this Virtual Bat-
tery (VB) since it relies on shifting computation much like
a battery shifts energy across time, and avoids transmis-
sion/distribution costs.

https://doi.org/10.1145/3484266.3487394
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As shown in Figure 1, VB design enables a different ap-
proach to datacenter deployment. Currently, power is sent
from various energy sources through distribution lines to
large datacenters, as needed to meet current demand. Power
is lost in transmission or battery storage, and non-renewable
energy sources are used to meet demand. In the proposed
architecture, each renewable energy source is coupled with
a datacenter, sized to match local energy production. Com-
putation at each site opportunistically scales up and down to
make use of locally generated power. This comes with sev-
eral economical incentives as discussed in §2.1. In practice,
we expect a combination of both existing large centralized
datacenters complemented by smaller VB edge deployments.
The key challenge associated with the VB approach is

that when local power generation dips, servers must be shut
down. As a result, apps can lose their resources drastically
and frequently. Cloud providers can deal with this resource
variation in two ways. First, they can require apps to be
“degradable”, i.e., apps can quickly adjust to fewer or more
resources (high elasticity) and hibernate if no resources are
available. This is similar to running on preemptable resources
such as Spot instances, and Harvest VMs [5–8, 44, 53]. Unfor-
tunately, from the cloud provider’s perspective, preemptable
apps are not the highest value options, e.g., spot instances
are 60-90% cheaper than stable VMs [1]. Also, many apps
cannot use degradable resources and require high availabil-
ity. Thus, we need to maximize the number of resources that
assure availability levels similar to the cloud, and only use
the spare, variable capacity towards degradable apps.

Second, we observe that we can reduce resource variability
by relying on more than one virtual battery site (multi-VB).
Despite the variability in a single renewable site, across dif-
ferent (nearby) locations, times of the day, and sources (solar,
wind, etc), renewable sources often exhibit uncorrelated and
complementary patterns of energy production and can re-
duce overall variability by 3.7× (§2.3).
There are some trade-offs associated with the multi-VB

approach. Running applications across multiple VB sites
necessitates the use of replication, hot/cold stand-by, and
migration, all of which introduce additional network over-
heads in an often bursty pattern. Based on our results on a 3
month solar and wind traces in Europe, migration spikes can
be as high as tens of terabytes, which which can consume
40% of shared WAN capacity (§3). In addition, this can add
latency overheads if the multi-VB sites are far apart. This
factor limits the number of sites in a multi-VB group as net-
working overhead increases with the number of sites. We
model these trade-offs in a linear optimization formulation
and show how a proof-of-concept scheduler can provide
significant networking overhead reduction.

Contributions andRoadmap.Our main contributions are:
• Introducing the concept of Virtual Battery (VB) cloud edge
data centers that absorb renewable energy variability using
a computation shifting paradigm (§1).

• Boosting availability of computation scheduled on VBs by
leveraging multiple sites (multi-VB) (§2.3).

• Characterizing the network overhead ofmulti-VB apps and
developing a power & network aware scheduler placing
apps across multiple VB sites (§3, §3.1).

2 VIRTUAL BATTERY
In this section, we analyze the feasibility of a Virtual Battery
(VB) by answering three main questions: (1) Do VBs make
sense from an economic standpoint? (2) How variable are
renewable sources? (3) Can we absorb this variability while
maintaining availability for VMs?

2.1 Economic Motivation
VBs place data-centers right alongside the energy farms cre-
ating a distributed cluster of edge data-centers (Figure 1).
This design brings-up a main question:Why does VB make
economic sense?

We see four main reasons. First, VBs will be powered (al-
most) entirely by renewable energy, rather than an opaque
source when using the grid, an important goal for cloud
providers [30, 45, 60]. Second, the total datacenter cost can
be reduced by ≈10% (= 20% * 50%). 20% of data center oper-
ating cost is due to power [31], and 50% of power expense is
due to transmission [31]. Co-locating data centers obviates
this transmission expense. Third, the growing penetration of
renewables has increasingly caused grid operators to force
renewable farms to reduce their output to maintain supply-
demand balance [48]. This is done by either i. capping the
renewable generation (as high as 6% of the overall renewable
generation and increasing each year [17, 23]) or ii. dropping
the marginal wholesale price of power to very low levels
including negative prices [4], a phenomenon exacerbating
with increased renewable penetration [39]. VBs can not only
use this energy, but also generate high value from it. Fi-
nally, bringing edge data-centers to any remote location has
become increasingly simpler and more common, e.g., with
modular data centers that are connected anywhere [43].

2.2 Variability of Renewables
Renewables are volatile energy sources–their production
depends on several external and uncontrollable factors. We
quantify the variability of twomain energy sources, solar and
wind, by analyzing two datasets: the EMHIRES dataset [28,
35] with traces from >500 sites in Europe, and the ELIA
dataset [25], a fine-granularity dataset (15 min) from 25 sites
in Belgium which also includes per-site energy forecasts.

We see large amount of variability across space (different
locations), time (times of the day, seasons, etc.), and different
resources (solar, wind, etc). Figure 2a shows a 4 day sample
of solar production (ELIA dataset), normalized to the max
production capacity. As shown, solar energy follows a pe-
riodic diurnal pattern, but days overcast with heavy clouds
can significantly reduce the peak production (3.5% vs 77%
the following day), and days with variable cloud patterns
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Figure 2: Quantifying Variability for solar and wind.

cause spiky energy production. Change of seasons similarly
cause variability, e.g., peak production in winter is ≈75% less
than summer. Different energy sources exhibit different pat-
terns. As shown in Figure 2a, wind energy production for the
same duration exhibits sharp peaks and valleys (depending
on weather conditions), but rarely go down to zero.

Figure 2b, shows the CDF of power generation over a year
for wind and solar. Both sources exhibit large variability,
with median values reaching at most 20% the peak capacity
for wind and over 50% zero values for solar energy due to
night times. The tail is also high, with 99th divided by 75th
percentile ratios of 4× for solar and 2× for wind.

2.3 Availability Despite Variability
We target two class of applications. First, degradable applica-
tions that can adaptively be down-graded (similar to when
using Harvest VM or Spot instances). Many scenarios can
potentially use such degradable VMs such as batch or ML
training jobs. The other category are stable VMs that require
high levels of availability (similar to on-demand VMs in the
cloud). This category provides higher value for the cloud
providers and is the commonly used approach for most ap-
plications. Our goal is to maximize the number of stable
VMs that this infrastructure can support. In this section, we
explore a promising approach to reach this goal.

Despite the large variability in a single renewable energy
production site, we observed that these variability patterns
are often independent and/or complimentary when looking
at different sites or times of the day. This complimentary
trend can be because of: a) using different energy sources
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Figure 3: Reducing variability in energy production by ag-
gregating multiple VB sites.

(e.g., wind vs. solar at night time); b) effect of micro-climates
or weather (e.g., same solar source but in two different loca-
tions, one of which is covered by clouds); or c) time of the
day (e.g., day in one location and dusk in another).
We leverage this insight and question, can we mask the

variability in renewable energy sources by leveraging variabil-
ity patterns across more than one site?
We searched for complimentary groups of sites, all in

close proximity of each other (<50ms ping latency), over 3
day intervals (in EMHIRES). Since our dataset only includes
normalized power, we assume all sites have similar peak
capacity of 400 MW–the median peak-capacity across large
farms in the world [18]1. We use the coefficient of variation,
𝑐𝑜𝑣 (standard deviation divided by mean) as our comparison
metric. Based on our result, even when combining just two
sites, > 52% of possible 2-site combinations improved 𝑐𝑜𝑣

by > 50%. Figure 3a demonstrates such an example as a
stacked area graph, i.e., upper areas are added to all areas
below them. As shown, the solar pattern in Norway (NO)
when complemented with just one additional wind site (UK
wind) reduces 𝑐𝑜𝑣 by 3.7×. Adding power from another wind
1We could not find any public datasets with large number of sites spread
geographically that have raw power values. We also note that the max
power capacity ranges for both solar and wind are very similar [61, 65]
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source in Portugal (PT wind), further improves variability
and reduces 𝑐𝑜𝑣 by an additional 2.3×.
Does aggregation increase the stable capacity?Wequan-
tify the amount of stable energy generated over a time win-
dow as: the minimum power level in the window multiplied
by the size of a window. Since this energy is guaranteed to
be available in that time window, it can reliably be used for
stable VMs, and all remaining energy (called as variable en-
ergy) for degradable VMs (e.g., spot, harvest VMs). As shown
in Figure 3b, when we combine VB sites, larger portion of
energy is stable, e.g., in “NO+UK+PT” 67% of energy is stable
while for “NO+UK” this value is 38% stable.
Would using a small reliable energy source alongside
help? Traditional ways, back-up generators, purchasing
from the grid, and using batteries, all come with their indi-
vidual trade-offs. However, using these techniques in small
scales, just enough to cope with minor variability, can be a
beneficial option economically. For example, we can try to
fill in some of the worst gaps in the “NO+UK+PT” combina-
tion, shown as gray shaded areas in Figure 3a. In this case,
by purchasing an additional 4,000 MWhr energy from the
grid, we can stabilize 8,000 MWhr of variable energy and
achieve a total additional 12,000 MWhr of stable energy.
This multi-VB design introduces new networking chal-

lenges (§3) and power/economical challenges (§5).

3 A NEW NETWORKING CHALLENGE
The multi-VB design flattens the variability in energy, how-
ever, it introduces a new challenge–Applications that could
regularly run in a single data-center with high levels of avail-
ability nowmust run across multiple sites to achieve similar
availability. Such applications must rely on either hot/cold
standbys using continuous replication or migration. This
introduces continuous or bursty network overheads on the
wide area links connecting sites. Such links may be more
constrained given the remote locations of typical renewable
energy farms. While replication and migration is a well-
known overhead in traditional cloud settings, the scale is
vastly different. In the cloud, many applications are not geo-
replicated. For the ones that are, the migration events are
due to failures or load balancing, which are rare and oftenly
handled within the same data-center (e.g., zone replication).
We performed trace-driven simulations to quantify the

networking overhead of multi-VBs as the volume of incom-
ing and outgoing traffic per site due to VM migrations 2.
Setup and Workloads. We instantiate a site with ≈ 700
servers each with 40 cores and 512 GB memory. We use an
Azure production VMarrival trace andAzure’s VM allocation
policy to assign VMs to servers. We scale the ELIA [25]
dataset such that the cluster is fully powered at the max
power capacity of the farm. When power decreases, we first
2As future work, we plan to incorporate migration latency and impact to
application’s execution time similar to [2].
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Figure 4: Network overhead of migration in a multi-VB set-
ting with wind power.

power down unallocated cores, then if needed, we migrate
out VMs from servers (in a round-robin order). We use an
admission control policy that rejects VMs to maintain 70%
utilization (similar to the VM trace). When power increases,
we launch previously rejected VMs and consider these as
VMs migrated into the site. We use the memory allocated to
a VM for estimating migration traffic due to the absence of
disk or memory utilization data.
Observations. As shown in Figure 4a (top graph), > 80% of
the power changes don’t incur migrations. Since the cluster
is running at 70% utilization, minor variations in power are
absorbed by simply powering down un-allocated cores. In the
remainder 20% of the cases, migrations can cause movement
of multiple TBs of data which is significant. For instance,
if the migration is to complete within 5 minutes, then a 10
terabyte spike requires ≈ 200 Gbps network capacity for a
single site. This is roughly 40% of the share of WAN capacity
per site, assuming ≈ 100 sites (each with 1000 servers) share
an aggregate WAN link with 50 terabits/sec capacity [67].

Figure 4b shows the CDF of migration overhead omitting
the zero values. Migration overhead varies significantly with
99th divided by 50th percentile values as high as 18-30× for
in migration and 12.5-16× for out migration. In migration,
compared to out migration, has smaller spikes but spread
further over time, e.g., 7× smaller 99th percentile for wind.
This is because, minor power reductions are absorbed by
under-utilized machines, while minor power gains cause
migrations into the site.
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Figure 5: Energy prediction of solar andwind in near (3 hour,
day ahead) and far-away future (week ahead).

3.1 Solving the network bottleneck
Despite networking challenges, VBs have a unique charac-
teristic: migrations are spiky, but also predictable. The
main source of variability is weather conditions, which can
be predicted quite accurately. Figure 5, shows the power fore-
casts provided in the ELIA dataset [25] (based on weather
forecasts). As shown, the prediction model is able to predict
the near future very accurately, with amean absolute percent-
age error (MAPE) for next 3 hour predictions of 8.5-9% and
for day ahead predictions of 18-25%. Also, for far-away fu-
ture (week-ahead) the predictions capture the general trend
(MAPE of 44% and 75% for solar and wind). Bulk of migra-
tions occur when there are sharp changes in power (§3),
which can be predicted with at least a day of notice. Since
these are points with sharp drops/increases, they are resilient
to small errors in predictions. This predictable characteristic
introduces a complex and yet unique scheduling problem:
How to schedule applications across highly-variable but

predictable capacity locations in a way that i) ensures high
level of availability, ii) introduces low & non-bursty network
overheads, and iii) minimizes energy usage?
There is an inherent trade-off between these goals. To

reach higher availability, applications would want to spread
their compute across as many uncorrelated and complimen-
tary locations as possible, e.g., different VB sites, racks, and
servers. But, this wouldmean higher network overhead by in-
troducing more migrations and replications and less energy
efficiency by powering up more racks, top of rack switches,
and servers even though they might be underutilized.

For each application, with a number of requested VMs, the
scheduler needs to find a group of VB sites that a) are in close
proximity to reduce latency overheads of splitting applica-
tions, b) have complimentary energy patterns to guarantee
availability of resources & reduce migrations, c) have a good
mix of stable and degradable VMs (based on their individual
energy patterns) to cope with local power variations.

To solve this scheduling, we model the cluster of VB sites
as a graph (Figure 6). Each node represents a VB site and
has the energy prediction alongside total and allocated com-
putation capacity. Two nodes are connected via an edge if
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Figure 6: Overview of our scheduling approach

their latency is below a fixed threshold, 50𝑚𝑠 in our case.
We use this model and break the scheduling problem into
4 steps: 1) subgraph identification, 2) subgraph selection, 3)
site selection, 4) VM placement. We optimize the placement
of incoming applications. As the environment changes, e.g.,
weather predictions update or applications complete and
resources free up, we need to rerun the optimization.

1) Subgraph identification. we identify subgraphs of the
VB site graph which have low latency and complimentary
variability. We formulate this as a k-clique identification
and prioritization problem. First, we find all cliques (fully
connected sub-graphs) of a given size 𝑘 (𝑘=2 to 5). These are
subgraphs with a small latency between any two VB pairs,
thus, an application split within such a subgraph would not
experience high latency overheads. Then, for each 𝑘 , we
sort all subgraphs based on the total coefficient of variability.
Identifying dense subgraphs has been a well-studied problem
in literature with tractable approximate solutions [11].

(2, 3) Subgraph and Site selection. In these two steps we
identify the exact site(s) the application should be placed on.
Subgraph identification can quickly generate large number
of subgraphs. Thus, first we select a smaller set of subgraphs
candidates and for each candidate subgraph find the optimal
site placement schedule. For both the steps, candidates/sites
are selected to optimize for two things: (1) choosing options
that are predicted to maintain good power levels to prevent
migrations, (2) balancing load between subgraphs/sites. We
formulate subgraph and site selection as a Mixed-Integer
Programs (MIP) with the following two objectives:

O1: Total Min
∑︁

𝑖∈𝑎𝑝𝑝𝑠
𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 (𝑖),

O2: Peak Min max
𝑖∈𝑎𝑝𝑝𝑠

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 (𝑖),

The first order goal is to minimize the total migration
overhead (in bytes) while looking ahead in the future. The
second order goal reduces the peak migration overhead (in
bytes). Optimizing for O1 and O2 implicitly maintains a
balance of degradable applications in each locations allowing
handling of abrupt power variations.
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Policy Total 99%ile Peak Std
Greedy 306,966 7,093 16,022 1,507
MIP-24h 236,217 3,711 80,942 4,081
MIP 209,961 9,379 62,753 2,697

MIP-peak 212,247 1,684 1,941 562

Table 1: Comparison of migration overhead (in GBs) be-
tween different scheduling policies.
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Figure 7: CDF of migration overhead across four different
scheduling policies.

We evaluate our scheduler over a 7 day period with four
different policies: (i) MIP : that optimizes only the total mi-
gration overhead (only O1) but for the entire period, (ii)MIP-
peak: variant of MIP that optimizes both total overhead (O1)
and peak overhead (O2), (iii) MIP-24h: a variant of MIP (only
O1) that iteratively optimizes total migration for the next
day, and (iv) Greedy: a baseline greedy policy that always
assigns VMs to the site with the most available power;
As shown in Table 1, MIP improves the total overhead

by > 30% compared to greedy. Other MIP variations have
similar migration overhead (1-12.5% worse), but significantly
better peak overhead. Compared to greedy, MIP-peak shows
> 4.2× improvement at 99th percentile while also being less
bursty with a 2.7× lower standard deviation. As shown in
Figure 7, MIP-peak achieves this by performingmore number
of migrations (74% zero values vs. 81% in greedy and 94% in
MIP), but each at a lower volume.
Sources of benefits. We observe three key insights that

allowMIP and its variants to reduce total and peak migration
overheads. First, all MIP variants place VMs on sites which
are predicted to have stable power in the future. This reduces
the need for migrations. Second, MIP variants also maintain
a good mix of degradable VMs in line with predicted power
availability. Thus, when power reduces, degradable VMs
take most of the hit without needing to migrate stable VMs.
Lastly, MIP-peak migrates VMs preemptively, spreading out
migrations over time and reducing burstiness.

4) VM placement. We place VMs onto servers in the as-
signed VB site to minimize total power usage by consolidat-
ing as much as possible. Any state-of-the-art approaches as
described in related work can be used for this step.

4 RELATEDWORK

Migration, replication and check-pointing. A number
of prior works have investigated use of migration [51, 54, 56],
replication [19, 40] and check-pointing [46, 47] to manage
faults and outages. A few other prior works [16, 22, 33, 50, 54,

55, 58], have looked at using migration/replication to ensure
availability using spot markets. While several of them can
be used by our work, the scale of variations in VBs are much
higher (e.g., they can go all the way down to zero) such that
these techniques don’t directly translate to our context.

Power aware scheduling. We employ features like fre-
quency scaling, powering down cores/caches/memory units
to control power distributed to servers [21, 37]. For the VM
placement, we rely on a number of prior works [10, 13, 20, 32,
38, 57, 62–64, 66, 68]. These minimize energy consumption
by considering resource utilization, power consumption, and
dynamic voltage & frequency scaling to perform packing,
scheduling, and over-subscription of VMs and workloads
within a data center. Energy efficiency can be further im-
proved by tuning workloads [52] and opportunistically turn-
ing off unused servers/networking infrastructure [24, 34].

Energy based elasticity/migration. Some works [9, 41]
have looked at adaptively adjusting computation based on
the cost of energy (from the grid). Others [14, 42] have looked
at reducing their peak demand to help stabilize the energy
grid. Some approaches [29] migrate workloads based on en-
ergy availability. While these have inspired of our work, they
do not address the many challenges of variability for com-
pute or they do not target stable VMs with high availability.

5 DISCUSSION AND CONCLUSION

Other challenges of multi-VB. Realizing the multi-VB de-
sign comes with a few additional challenges. First, the addi-
tional network overhead could require powering on network
infrastructure that would otherwise be idle/off. However, we
observe that migration occurs only 2-4% of the time assum-
ing 200GbpsWAN link per VB site (§3). Hence, the migration
energy added by VB is negligible compared to upto 50% en-
ergy loss in power transmission [59]. Second, shutting down
compute is the lost economic opportunity, where fully set-up
hardware is not being utilized. This can be circumvented by
using deprecated and refurbished hardware or purchasing
power from the grid. Finally, VB requires managing more
number of (edge) data centers compared to a centralized de-
sign, thus, requiring additional one-time infrastructure (e.g.,
WAN connections, buildings, etc.) and maintenance. The
community is already building edge data centers [3, 15]. VB
adds to these efforts by providing high availability on-top.

Conclusion. In this work, we investigate methods to build
data centers with renewable energy. We propose Virtual Bat-
tery as an approach that adapts computation to accommodate
power variations. In our approach, we envision data centers
co-located with power generation to curb transmission costs.
We observe that leveraging an ensemble of multiple sites
significantly reduces variability at the cost of considerable
network overhead. We finally propose a network and power-
aware scheduler that reduces network overheads.
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