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Abstract

Understanding susceptibility to Rowhammer bit flips in DRAM
(i.e., main memory) is vital to ensure reliability and security on today’s
systems, particularly on multitenant cloud servers. However, existing
tools for analyzing susceptibility either suffer from a lack of precision
or are not broadly-compatible with cloud platforms.

In this work, we introduce mFIT, a low-cost tool for characteriz-
ing Rowhammer susceptibility factors. mFIT operates as a “bump-in-
the-wire” between the host’s memory controller and a DDR4 DRAM
module, offering the ability to analyze both the host platform’s and
DRAM’s influences on Rowhammer susceptibility. We show that mFIT
offers “plug-and-play” support for analyzing the latest three gener-
ations of DDR4 server-grade DRAM modules from all three major
DRAM manufacturers, using two different Intel server platforms. In
addition to providing the first public evidence of worsening Rowham-
mer susceptibility in these modules, we show that mFIT can experi-
mentally determine various factors’ roles in Rowhammer susceptibil-
ity. Using this knowledge, we demonstrate per-module “Rowhammer-
optimal” data patterns that average 60% more bit flips than prior work,
offering researchers insights on how to construct stronger Rowhammer
attacks and defenses.

We open-sourced mFIT’s design1 to help other researchers use our
techniques to further the community’s understanding of Rowhammer
and DRAM.

1 Introduction

Rowhammer attacks [25, 18, 15, 30, 29, 21, 22, 26, 31, 34, 36, 38, 39, 41,
42, 45, 46, 47, 16] demonstrate that certain DRAM (i.e., main memory) ac-
cess patterns can cause bit flips in DRAM, corrupting data and potentially
causing machine crashes or even subversion. Accordingly, understanding
Rowhammer susceptibility is vital to ensure reliability and security on to-
day’s systems, particularly on multitenant cloud servers (i.e., where one ten-
ant’s DRAM access patterns can affect the reliability and security of other
tenants). Unfortunately, cloud providers lack a thorough understanding of
the various factors affecting Rowhammer susceptibility on modern DDR4
DIMMs (i.e., DRAM modules). This lack of understanding is exacerbated
by limited available tooling to precisely characterize these factors.

Existing tools suffer from one of two limitations. First, many are not
broadly-compatible with commodity servers and/or server-grade DIMMs.

1https://github.com/microsoft/mfit
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Industrial memory testers are built for standalone DRAM module testing,
use their own custom-made memory controllers and busses, and are quite
expensive with prices starting at hundreds of thousands of dollars [9, 8]. As
an alternative, researchers have used FPGA-based memory controllers [23,
18, 29] that offer precise control of traffic issued to client-grade DIMMs (and
thus, precise analysis capabilities), but they also remove the host platform’s
memory controller from the analysis and require significant programmer ef-
fort to support arbitrary DIMMs (e.g., server-grade). To the best of our
knowledge, no custom memory controller offers “plug-and-play” support for
an arbitrary DDR4 DIMM, nor the ability to characterize a memory sub-
system’s Rowhammer susceptibility in the presence of both the DIMM and
the memory controller.

Second, while the remaining set of primarily software-only tools [18, 42,
43, 15, 14] enable analyses that include the host platform’s memory con-
troller, they lack the ability to precisely characterize Rowhammer suscepti-
bility. These tools lack sufficient control of DRAM traffic, whether via lack
of programmability or inability to influence specific DRAM commands. For
instance, prior work [14, 30, 29] shows that a key component in character-
izing Rowhammer susceptibility is preventing the memory controller from
sending refresh (REF) commands to the DIMM, since suppressing REFs
allows relevant aspects of Rowhammer susceptibility to be reliably reverse
engineered. However, outside of custom memory controllers and industrial
memory testers, existing tools cannot control when a REF command is is-
sued, meaning they lack the ability to precisely characterize DRAM.

To achieve both the precision of a custom hardware approach and broad
host compatibility across DDR4 DIMMs and platforms, we instead propose
mFIT – a memory fault injection tool. mFIT’s key innovation is operating
as a “bump-in-the-wire” design between the host platform’s memory con-
troller and an arbitrary DDR4 DIMM, and can be built for just US$ 61. At
a high level, mFIT suppresses REF commands for a programmable period of
time by masking a signal that otherwise indicates the memory controller has
issued a REF command, thereby “tricking” the attached DIMM into think-
ing no REFs have been issued. In doing so, mFIT allows researchers to more
easily observe the properties of internal DRAM structures, while simultane-
ously benefiting from a commodity host platform for workload/experiment
generation and analysis.

Using this REF suppression technique, we demonstrate mFIT’s simple-
but-effective ability to evaluate susceptibility to Rowhammer. We highlight
mFIT’s “plug-and-play” operation via a broad analysis across the latest
three generations of server-grade DIMMs from all three major DRAM man-
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ufacturers, using two different generations of Intel servers/host memory con-
trollers. Notably, we offer the first public evidence of increasing Rowhammer
susceptibility for DDR4 server-grade DIMMs (previously observed in client-
grade DIMMs [29]).

We then use mFIT to advance the state-of-the-art in Rowhammer char-
acterization, producing the first extensive experimental analysis of vari-
ous Rowhammer susceptibility factors for these DIMMs—including internal
DRAM row addressing/scrambling [17], subarray design [35], data depen-
dency [30], and host data scrambling [13, 15]. We show that, using the
internal system properties recovered by mFIT, one can construct malicious
data patterns that average 60% more bit flips than state-of-the-art data pat-
terns used in existing Rowhammer literature [29], offering future researchers
valuable information when designing Rowhammer attacks and defenses.

To summarize, we make the following contributions:
� We design mFIT, a low-cost tool for Rowhammer susceptibility analy-

sis, capable of characterizing both DDR4 DIMMs and a host memory
controller’s role in Rowhammer.

� We demonstrate mFIT’s broad applicability and ease-of-use via an analy-
sis of Rowhammer susceptibility in the latest three generations of server-
grade DIMMs from all three major DRAM manufacturers, using two
different generation of Intel servers/memory controllers.

� We provide the first public evidence of worsening Rowhammer suscep-
tibility in DDR4 server-grade DIMMs, validating trends observed for
client-grade DIMMs [29].

� We advance the state-of-the-art in Rowhammer characterization, pro-
ducing the first extensive experimental analysis of various Rowhammer
susceptibility factors for these DIMMs.

� Using insights obtained with mFIT, we demonstrate per-DIMM “Rowhammer-
optimal” data patterns that average 60% more bit flips than state-of-the-
art data patterns [29].

2 Background

This section provides background on memory subsystems, DRAM, and Rowham-
mer as necessary to understand the design and analyses of mFIT.

2.1 Memory Subsystems

A typical main memory subsystem contains one or more memory controllers
that manage load and store requests to physical addresses (e.g., from pro-
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Figure 1: To access data in DRAM, the CPU’s integrated memory controller
needs to first activate (ACT) the row containing the data, before reading
(RD) or writing (WR) at cache-line offsets within the row buffer.

cessor cores). After translating the requests into DDR4 commands (i.e., a
communication standard between memory controllers and DRAM [1]), each
memory controller is responsible for issuing the appropriate commands to
one or more attached DRAM modules (e.g., client- or server-grade DIMMs:
dual in-line memory modules). Unlike client-grade DIMMs, server-grade
DIMMs support error correction codes via a wider data bus and additional
circuitry; nonetheless, we note that both classes process largely the same set
of commands.

2.2 DRAM Organization

From the memory controller’s perspective (i.e., the logical DDR4 space),
each DIMM consists of a set of banks, and each bank is a row-column array
of cells. In reality, within each logical bank are a set of row-column subarrays
of cells. Within a subarray, rows of cells are accessed via the same word line,
while columns of cells are accessed via the same bit line. We note that a
typical row contains thousands of DRAM cells, and each DRAM cell in the
row stores 1 bit of information as charged/discharged states.

Memory controllers read/write cells by first issuing an activate (ACT)
command to a particular row within a bank, as shown in Fig. 1. This
connects the row’s word line to the bank’s row buffer, where subsequent
read (RD) and write (WR) commands are performed on cells from the row
at cache-line granularity offsets. When the memory controller wishes to
access another row in the same bank, it must first precharge (PRE) the
bank, closing the open row and preparing the row buffer for new data from
a different row. Accordingly, only one row per bank can be open at a time.
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Because DRAM cells discharge over time, the memory controller period-
ically issues refresh (REF) commands, such that the charges in each row’s
cells are replenished and information is retained. According to the DDR4
standard, each row should be refreshed within 64ms of its last refresh; the
memory controller issues a REF command every 7.8µs on average, such that
the DIMM can refresh different rows throughout the 64ms refresh window.

2.3 Rowhammer

Rowhammer attacks [25, 18, 15, 30, 29, 21, 22, 26, 31, 34, 36, 38, 39, 41,
42, 45, 46, 47, 16] show that frequent ACTs of the same row(s)—produced
by certain memory access patterns—can corrupt data in nearby rows. This
data corruption is both a reliability and security threat, as Rowhammer
bit flips can result in incorrect results, machine crashes, and even system
subversion.

At a high level, alternating RDs or WRs to a set of aggressor rows within
a single bank necessitate alternating ACTs of these aggressors due to row
buffer contention. However, because of electrical interference among nearby
rows, these frequent ACTs may sufficiently disturb (i.e., alter) the charges
in nearby victim rows so as to produce logical bit flips.

More precisely, each row can safely withstand a per-DIMM maximum
activation count (MAC) of ACTs within a refresh window. However, if one
or more aggressors surpass their MACs before a (potential) victim row is
refreshed, the victim’s data may be disturbed. We note that victim rows
are those found up to b rows away from an aggressor, where b defines an
aggressor’s blast radius (which varies across DIMMs).

Notably, more than one aggressor row may be used in a Rowhammer
attack, where an attack with k aggressor rows is referred to as an k-sided
attack. In such scenarios, the hammer count (HC) refers to the number of
times each aggressor is activated.

Modern DIMMs internally mitigate a subset of Rowhammer attacks via
Target Row Refresh (TRR) [18]. TRR effectively refreshes potential victim
rows ahead of schedule, using the time allocated to regularly-scheduled REF
commands to perform these additional, targeted refreshes. However, TRR
fails to mitigate Rowhammer attacks with sufficient numbers of aggressor
rows (e.g., > 20). As such, the underlying DRAM technology remains sus-
ceptible to Rowhammer [12, 16].

To prevent TRR from obfuscating susceptibility to Rowhammer during
DIMM characterization, state-of-the-art tools [23, 14] suppress/do not issue
REF commands during experimentation. REF suppression ensures that

5



TRR is not engaged, such that the underlying properties of the DRAM
technology (e.g., data retention time) can be more easily obtained.

2.4 DRAM Internals

While the logical view of DRAM is sufficient to understand Rowhammer at a
high level, certain aspects of mFIT’s analyses require a deeper understanding
of various DRAM internals. For simplicity, we provide relevant details here,
and return to them later in the paper.

In reality, each logical bank of DRAM is actually split among many
chips within the DIMM. Each chip stores a portion of the data used in an
operation. For example, an “x4” (e.g., the format of the server-grade DIMMs
analyzed in this study) DIMM means that each chip processes 4 data bits,
referred to as a “nibble.” The DIMM is free to “swizzle” [6] (effectively,
intertwine/remap) logically-adjacent bit lines among chips.

While data transfers between the system and DIMM appear to operate
at a cache-line sized granularity, they are actually performed in “bursts”
according to the data bus width. For instance, the DIMM responds to a
RD/WR command with 8-sequential 64-bit transfers, totaling the 512 bits
of data in a 64-byte cache line.

3 Characterizing Rowhammer: Challenges and Goals

Given the reliability and security ramifications of Rowhammer bit flips, the
research community has a vested interest in understanding Rowhammer sus-
ceptibility from both an offensive and defensive perspective. However, char-
acterizing Rowhammer is difficult. In this section, we describe the challenges
for such characterization, providing motivating goals for mFIT’s design.

3.1 Full System Compatibility

Many existing tools operate as custom or platform-specific memory con-
trollers [23, 10, 9]; while this offers fine-grained control over the testing
environment (e.g., the ability to control the DDR4 commands sent to the
DIMM), it can inhibit compatibility across platforms. In particular, the host
memory controller’s effects on the system are often removed (replaced by
those of the custom memory controller). Furthermore, supporting arbitrary
DIMMs (e.g., both client- and server-grade) requires significant engineering
effort. To the best of our knowledge, no custom memory controller offers
“plug-and-play” support for an arbitrary DDR4 DIMM, nor the ability to
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characterize the host platform’s role in Rowhammer susceptibility (i.e., in
addition to the DIMM’s role). As such, an ideal tool would achieve broad
compatibility across memory controllers and DIMMs.

3.2 Indirection

Rowhammer characterization is complicated by the many layers of indirec-
tion/“blackbox” hardware in between a system-level user and a DRAM-
internal bit flip. For instance, a system-level user interacts with DRAM via
loads/stores to virtual addresses that go through several layers of translation—
and may be broken into multiple DDR4 commands (§2.2)—before resolving
to DRAM internal addresses. Notably, commodity memory controllers do
not offer fine-grained control over physical-to-DDR address translation logic,
and DRAM modules do not directly expose internal addressing information.
Thus, an ideal characterization platform must be able to account for these
layers of indirection to characterize Rowhammer.

3.3 Precision

Many prior tools and approaches [42, 15, 14] lack the ability to extract fine-
grained information about Rowhammer due to their lack of control over the
DDR commands sent to DRAM. For example, prior work [29] demonstrates
that the ability to suppress REF commands is key element in characterizing
Rowhammer, as REF commands are otherwise used to obfuscate internal
DRAM properties contributing to Rowhammer susceptibility [18]. Further-
more, because the refresh window—the maximum length of time between
refreshes of a single row—is a key component in Rowhammer susceptibil-
ity (§2.3), fine-grained and programmatic control over the duration of REF
suppression is paramount. Ultimately, an ideal Rowhammer characteriza-
tion tool should grant sufficiently-precise control over REF suppression so
as to effectively characterize Rowhammer.

3.4 Interference

Because DRAM loses data upon reboot, it is important to keep the test sys-
tem alive during and after experimentation to collect reliable data from the
DIMM-under-test. Furthermore, an ideal tool should not alter the relevant
aspects of system operation necessary to characterize Rowhammer behav-
ior. For example, the tool should not interfere with the ACT commands at
the root of a Rowhammer attack (§2.3). Effectively, the tool should be as
transparent as possible in terms of normal system operation.
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3.5 Cost

Finally, to be widely-adoptable among the research community, a Rowham-
mer characterization tool must be affordable. While the thousands of dollars
in costs for a custom memory controller or industrial memory tester may
be acceptable to some, lower costs increase the approachability of Rowham-
mer characterization, and therefore the potential quantity of analyses. As
described in the next section, mFIT is built using materials costing a total
of just US$ 61.

4 Design of mFIT

This section describes the design and implementation of mFIT. We design
mFIT as a low-cost hardware and software solution to enable experimen-
tal analysis of Rowhammer effects. Our primary goal is compatibility – we
want to ensure that mFIT works with the host systems, memory controllers,
and DIMM modules that users of mFIT deploy in their production environ-
ments. To ensure this wide compatibility, we design mFIT as a bump-in-
the-wire device between the memory controller and a DRAM DIMM – an
interposer that plugs into a standard DDR4 DIMM slot on the host moth-
erboard. The primary mechanism that mFIT offers to enable a wide variety
of Rowhammer experimentation is refresh suppression. mFIT offers fine-
grained programmatic control over when REF commands are suppressed,
and prior work [29] demonstrates that this ability is key to characterizing
Rowhammer.

Fig. 2 shows mFIT installed in a server, with one DIMM attached to the
mFIT interposer. Fig. 3 shows a block diagram of the main components of
mFIT. Beyond the interposer, mFIT provides a control platform consisting
of a logic controller board connected to the interposer and a software client
(not shown in the photo). The software client runs on a separate PC and
connects via USB to the mFIT controller board and connects via a remote
console to the experimental platform (i.e., the server with the interposer
installed) to initiate running workloads that will be measured during mFIT
experiments.

The rest of this section describes how mFIT implements refresh sup-
pression with a low-cost design, some of the system-level effects of mFIT’s
operation, how mFIT offers fine-grained control and synchronization, and
finally a summary of the platform software we use to run workloads on the
experimental platform.
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Figure 2: Deployment of mFIT in a server. Only one DIMM is attached so
that the interposer is visible.

4.1 Refresh Suppression

To suppress REF commands, mFIT uses a physical interposer on the DDR
bus placed between the CPU and one DIMM slot. The interposer can be
configured at runtime to either allow or suppress refresh commands. Fig. 2
shows mFIT deployed on a server.

Fig. 3 shows a block diagram of the mFIT architecture, consisting of a
control platform (on the left) and an experimental platform (on the right).
In this figure, mFIT’s components are shown with red boxes. To use mFIT,
a software client running on the control platform loads a workload on the ex-
perimental platform. The workload includes trigger points to indicate when
REF suppression begins and ends. These triggers are captured by the inter-
poser and relayed to the logic controller board (with the HWTRIG CTL signal).
In turn, the controller board toggles the REF suppression by configuring two
signals (A14 CTL and ALERTn CTL) on the interposer.

The two signals used to suppress REF commands are inspired by a tech-
nique introduced in our earlier work [14]. A straightforward way to trans-
parently suppress the REF command is to “fault” the A14 signal on the
DDR memory bus by driving it from high to low. The DDR4 encoding of
the REF command sets the A14 signal to high. When the interposer lowers
the A14 signal, this causes the DIMM to detect a parity error. The DIMM
will then discard all corrupted commands and raise an error to the memory
controller through the ALERTn signal. However, mFIT also suppresses the
ALERTn signal to stop the parity error from reaching the memory controller.
This error suppression is done via the ALERTn CTL control signal shown in
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Figure 3: mFIT consists of a control platform and an interposer (mFIT’s
components are shown in red). The interposer is attached to an experimental
platform. mFIT manipulates three control signals (ending in ’ CTL’) to
transparently suppress REF commands.

Fig. 3.
The combination of these two signals enables mFIT to accomplish its goal

of suppressing REF commands in a transparent manner. The REF command
is faulty and ends up unprocessed by the DIMM. Also, the experimental
platform never receives the parity error alert and continues to execute its
workload unperturbed.

During the period of time when refresh suppression is enabled, mFIT
forces the A14 signal of the DDR4 command and address (CA) bus to low,
regardless of which commands are sent on the bus. While this achieves REF
suppression, it also comes with two limitations. First, the ACT command
is limited to only activate rows whose address has bit 14 encoded as zero.
Second, RD commands are converted to WR commands because RD and
WR commands are encoded with identical signals except for A14. A RD
command is encoded with a high A14 signal, whereas a WR has A14 set
to low. Note that PRE commands are encoded with low A14 and remain
unaltered. As we will see in §6, these limitations still allow mFIT to perform
a broad range of experiments.

The mFIT hardware components are simple, leading to a low-cost design.
The logic controller board is an off-the-shelf design with an ARM Cortex-M4
micro-controller. This board uses GPIO pins to control the signals to and
from the interposer board. The total cost of our logic controller board plus
components is US$ 37. The total cost of our DIMM interposer board plus
components is US$ 24. This leads to a total cost of US$ 61.
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Figure 4: Two typical scenarios supported by mFIT for synchronization
between the workload and REF suppression. • is when the trigger event
fires. is the time interval when mFIT suppresses REFs, and is the
time interval when the workload runs.

4.2 Fine-grained Control and Synchronization

To meet our goal of precision for mFIT, we provide fine-grained and pro-
grammatic control over when REF suppression occurs. To accomplish this,
we face two major challenges. The first is how to design a lightweight trig-
gering mechanism to enable and disable REF suppression. The second chal-
lenge is how to synchronize the workload running on the target system with
the REF suppression implemented by the interposer on the DDR bus.

Accordingly, we first summarize how a user controls mFIT to start and
stop experiments. Next, we describe the design and implementation of our
trigger mechanism. Finally, we describe a methodology that enables us to
characterize the trigger lag and effectively synchronize REF suppression with
the running workload.

Controlling mFIT. mFIT uses two mechanisms for fine-grained control
over REF suppression. The first mechanism is a trigger: a sequence of code
that runs on the CPU of the experimental platform (i.e., the target platform)
that toggles the state of REF suppression (i.e., enables or disables REF
suppression). The second mechanism, used only to disable REF suppression,
is a software configured fixed duration for REF suppression. mFIT also
supports manual control of REF suppression via the software client.

Fig. 4 shows two typical usage models of mFIT using the above mecha-
nisms. For example, Scenario 1 shows when the user embeds a trigger before
the start of the workload to achieve REF suppression for a fixed duration
after the trigger event. Scenario 2 shows when the user embeds triggers at
both the start and end of the workload they want to measure. As depicted
in the figure, there is a short lag between when the trigger code executes
on the CPU and when REF suppression starts or stops on the DDR bus.
Below, we address how to compensate for this trigger lag.

Trigger Design. Traditional DRAM testing equipment uses sophis-
ticated trigger designs based on a combination of DDR commands and
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data [9, 19]. One common example of a trigger is to instruct the CPU
to access memory at a specific DRAM address, which the experimentation
tool (e.g., mFIT) interprets as a trigger event. Unfortunately, such a design
would require the interposer to interpret DDR address signals at bus clock
rates that range from 800 MHz to 1.6 GHz. Due to these high clock rates,
this would require highly-optimized, complex, and expensive hardware on
the interposer or logic controller board to satisfy timing constraints.

To meet our goal of designing a lightweight, inexpensive, and transparent
trigger, we chose to monitor the (slower) System Management Bus (SMBus)
that is adjacent to the DDR CA bus and used by the CPU to read metadata
information from a DIMM. Because the SMBus maximum clock frequency is
only 1 MHz, opting to trigger along this bus enables a comparatively simple
and inexpensive hardware design. In this design HWTRIG CTL is simply
an wire connected to the signal that caries the data on the SMBus (SDA).

mFIT’s trigger consists of programmatically issuing a metadata read
command from the CPU of the experimental platform where the DIMM
and interposer are installed. The metadata read only occurs on the SMBus,
and is not affected by the interposer manipulating signals on the DDR CA
bus. This approach is transparent because it does not interfere with the
memory workload, and its overhead is negligible. In this way, the CPU only
needs to execute a single load instruction to signal the REF suppression to
start or stop.

Characterizing Trigger Lag. As shown in Fig. 4, we define the trigger
lag as the period of time from when the CPU executes the instruction that
enables REF suppression to when REF suppression actually begins on the
DDR bus. Trigger lag has two inherent causes: first, there is a propagation
delay from when the CPU issues the load command that reads the DIMM
metadata to when the logic controller board detects the trigger signal and
then reconfigures the A14 CTL and ALERTn CTL signals sent to the interposer.
Second, there is CPU instruction reordering and also memory operation
reordering at the memory controller.

Our goal is to demonstrate that this lag is short relative to the rate of
REF commands, and that it is consistent across experimental workloads.
Once we determine the maximum trigger lag, we insert a fixed delay match-
ing that lag after we enable REF suppression yet before we start to execute
the experimental workloads – thereby preventing trigger lag from affecting
our experimental data.

Because we have no direct visibility on the DDR bus, we focus on mea-
suring the trigger lag as the period of time from when the CPU executes the
instruction that enables REF suppression to when the first memory accesses

12



issued by the CPU are affected by the suppression of REF commands. We
develop a calibration methodology to measure the trigger lag, and use it to
characterize the lag on our platform.

To characterize the trigger lag, we develop a technique we call memory
casting. With memory casting, the experimental platform runs a workload
that writes a monotonically increasing counter value to DRAM continuously
at a uniform rate. These writes are carefully constructed to use a memory
location whose DRAM row address is encoded with a high A14 signal. This
address choice is important because when mFIT suppresses REFs, it sets
the A14 signal to low. Therefore, as soon as mFIT’s trigger suppresses A14,
the writes will be performed at a different address (where the DRAM row
address is encoded with a low A14 signal). This shift in addressing allows
us to inspect memory to determine which was the last counter value written
before REF suppression started. We also prevent reordering from affecting
our casting workload by inserting the appropriate memory fence instructions
between each iteration of the casting workload.

The above method enables us to precisely measure the trigger lag. Using
this approach, we experimentally determine that the median trigger lag is
1.4µs and remains below 2µs even with other workloads. Even though this
technique does not require a bus analyzer, we use a DDR bus analyzer
to further validate that our memory casting technique works as expected.
After we determine the maximum trigger lag (2µs), we prevent this lag
from affecting our experiments by inserting a fixed delay matching the lag
value after we enable REF suppression and before we start to execute the
experimental workload.

4.3 Software Experiments

We implement our software that runs on the target system as an UEFI [3] ap-
plication to ensure a precise control over the memory accesses. We choose
the UEFI environment for two reasons. First, we want to avoid spurious
memory accesses caused by other processes that are typically present when
running a general purpose operating system. The UEFI environment al-
lows us to implement tasks that run on a single CPU. Second, we want
to precisely target a specific DIMM, bank, row, and column. The memory
mapping in UEFI allows a direct mapping between the virtual and the phys-
ical address space (i.e., a virtual pointer can be used as a physical pointer).
Further, using the open-source Error Detection And Correction (EDAC) [2]
driver as an inspiration, we implement the physical-to-logical mapping that
allows us to decompose CPU’s physical address to a DIMM, row, bank, and
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column address. For example, we use this ability to map a physical address
to a specific DIMM and row address in implementing the memory casting
technique described above.

5 Experiment Platform and Proof-of-Concept

This section describes the experimental setup for mFIT’s analyses of Rowham-
mer susceptibility. We provide an initial proof-of-concept experiment demon-
strating increasing Rowhammer susceptibility, before analyzing specific sus-
ceptibility factors in §6.

5.1 Platform Setup

At a high level, we place mFIT between a host memory controller and a
DIMM-under-test. mFIT suppresses REFs issued to the DIMM-under-test
as specified in various experiments. We reserve a second attached DIMM
for regular system functionality (i.e., the UEFI application described in the
previous section). Running the application on an isolated DIMM avoids
system crashes due to mFIT’s REF suppression and experimentally-induced
Rowhammer bit flips, important for preventing interference (§3.4).

Given the lack of server platform data for Rowhammer, we focus our
experiments on commodity server platforms used by a major cloud provider.
However, we note that mFIT is capable of operating on both server and client
platforms.

DIMMs. We analyze the latest three generations of DDR4 server-grade
DIMMs from three major DRAM vendors, for a total of 9 DIMMs. More
specifically, the three generations of DIMMs are differentiated by their pro-
cess nodes (older to newer: 1x, 1y, and 1z—with this information provided
by industrial partners). The DRAM vendors are referred to anonymously
as VendorA, VendorB, and VendorC.

Previous work [29] uses the manufacturing date code of DRAM modules
to estimate the process node. However, we find that the date code does not
always correlate with the process node.

CPUs/Memory Controllers. We test across two generations of Intel
server blades/integrated memory controllers: Skylake Scalable Processor
(Skylake-SP) and Cascade Lake-SP. We examine each DIMM on one of the
two blades, depending on host compatibility (i.e., some of the newer DIMMs
are only compatible with the newer Cascade Lake blades).

Because mFIT is limited to a maximum operating frequency of 1200MT/s,
we lower the memory bus speed to this frequency in the BIOS. Crucially,
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Figure 5: The Y-axis represents the ”Hammer Count” (in thousands) at
which we observe the first bit flip. We use 2048 rows and a double-sided
attack. We test four different data patterns on each row (Section 6.3 will
describe these patterns in detail). To select a single representative number
per vendor, we take the minimum of the mean values of hammer counts for
each of the four patterns.

this does not significantly impact the testing environment, as (a) REF
commands–which mFIT suppresses–continue to be issued at the same rate,
regardless of bus frequency, and (b) though the number of ACT commands
issued within a refresh window may be slightly decreased, the system can still
issue an orders-of-magnitude-sufficient number of ACT commands within
a refresh window to cause Rowhammer bit flips (§2.3)—thereby retaining
characterization capabilities.

Additionally, to more easily observe bit flips and control the testing
environment, we disable the host’s error correction code (ECC) support
and data scrambling; effectively, these are BIOS options that alter the data
stored in DRAM, and therefore complicate experiments unless disabled. We
note that disabling these options does not change the underlying properties
of the DRAM. Furthermore, prior work has demonstrated that ECC is not
an effective defense against Rowhammer [15]; we characterize the impact of
data scrambling in §6.4.

5.2 Proof-of-Concept: Measuring Rowhammer Susceptibil-
ity via Hammer Count

In line with prior work [29], we establish increasing susceptibility to Rowham-
mer in newer DIMMs by measuring the hammer count (§2.3) at which the
first bit flip is observed, with REFs suppressed by mFIT to mitigate obfusca-
tion effects. Following this prior methodology, we encode data in a logically-
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checkered pattern throughout the DIMM (i.e., from the memory controller’s
perspective, 0-1-0-1 on odd rows, and 1-0-1-0 on even rows), and repeatedly
perform a 2-sided Rowhammer attack (i.e., 2 aggressor rows) across a set of
rows within bank of memory.

As shown in Fig. 5, across all vendors, we observe that lower HCs are
needed to induce bit flips in newer DIMMs. This data—gathered for server-
grade DIMMs—is consistent with the worsening susceptibility observed for
client-grade DIMMs in previous work [29], motivating an in-depth experi-
mental analysis of Rowhammer susceptibility factors.

6 Evaluating Rowhammer Susceptibility Factors

Having confirmed increasing susceptibility to Rowhammer, we use mFIT to
provide the first experimental quantification of various susceptibility factors
in DDR4 server-grade DIMMs. Using the platform setup described in §5.1,
we analyze three key DRAM-internal susceptibility factors identified in prior
work: row address scrambling [17, 15] (§6.1), subarray boundaries [35] (§6.2),
and data dependency among cells [30, 32, 29] (§6.3). We additionally exploit
mFIT’s ability to characterize the host memory controller (i.e., in addition
to DRAM itself), analyzing the role of data scrambling in Rowhammer sus-
ceptibility (§6.4). Finally, we use our analyses to construct an “optimal”
Rowhammer data pattern (§6.5)—capable of flipping up to 2X more bits
than the state-of-the-art pattern [29]—validating our findings and offering
researchers insights on how to construct stronger Rowhammer attacks and
defenses.

6.1 Factor #1: Row Address Scrambling

DRAM vendors often scramble row addresses by remapping the MC’s logi-
cal row addresses to different physical row addresses inside a DRAM device.
Such forms of scrambling improve the geometry of the die, optimize internal
address decoding, or make better re-use of internal circuitry [44]. Char-
acterizing row address scrambling lets us determine row adjacency, a vital
Rowhammer susceptibility factor [30]. Note that server-grade DIMMs are
subject to two additional forms of scrambling: (1) output inversion done
by the Registered Clock Driver (RCD) [11], and (2) bit swizzling done by
the memory controller. Both RCD output inversion and bit swizzling are
well-documented [6, 4], and we can therefore account for them in our exper-
iments.
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DIMM-ID
row address
scrambling?

VendorA-1X 7

VendorB-1X 7

VendorC-1X 3

VendorA-1Y 7

VendorB-1Y 7

VendorC-1Y 3

VendorA-1Z 3

VendorB-1Z 7

VendorC-1Z 3

Table 1: Presence/absence of row address scrambling as recovered with
mFIT.

mFIT’s refresh suppression capability lets us borrow a technique from
industrial DRAM testing equipment [19, 9] to determine physical row ad-
jacency: we activate the row repeatedly (similar to mounting a single-sided
Rowhammer attack) and measure the bit flip density of victim rows. Ad-
jacent victim rows show significantly higher number of bits flips than non-
adjacent victim rows. We note that previous work [40, 37, 42] also used this
technique on general-purpose platforms without suppressing refresh com-
mands; however, their results were limited to testing only previous genera-
tion DDR3 DRAM devices and client-grade DIMMs.

We found a bimodal distribution among the DIMMs: some have no
form of row address scrambling (i.e., the map from logical to physical row
addresses is the identity function) whereas all others share the following
mapping function:

PhysicalRowAddress = LogicalRowAddress⊕ (b3 � 2)⊕ (b3 � 1) (1)

where b3 is the bit at index 3 in the logical row address (b0 is the least
significant bit).

Our results (summarized in Table 1) show that VendorC uses row scram-
bling in all its DIMMs, whereas VendorA uses it in its newest DIMMs only.
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Figure 6: An example of a many-sided attack pattern with 4 aggressor rows
and 5 victim rows.

The use of the same row scrambling function suggests that different vendors
could be using similar optimization techniques for their devices or could
be sharing their DRAM designs amongst themselves. Unfortunately, we
are unaware of any publicly available design documents of row scrambling
functions. In their absence, it is difficult to determine the exact origin of
similarities across vendors. Our mapping function matches the results of
a recent study that tests older DDR3 DIMMs (manufactured in 2007 and
2008) [17]. Like us, they found two different vendors to share this pattern
across their DIMMs.

The impact of row address scrambling on Rowhammer Recent
work has shown that mounting Rowhammer on newer DRAM requires craft-
ing a careful pattern of aggressor rows. One such common pattern is many-
sided formed by a tuple of k aggressor rows [18]. Fig. 6 shows an example
of a many-sided attack pattern.

Unfortunately, row address scrambling can distort a many-sided attack
pattern in logical space by re-mapping both aggressor and victim rows. To
understand the impact of row address scrambling, we examined all possible
many-sided patterns with k aggressor rows. We varied k from 2 to 19 to
re-construct the attack patterns used by recent work [18, 16]. We examined
a full DDR4 bank (218 rows) [1].

We classified each many-sided pattern in logical space in four different
categories depending of its layout in physical space: (1) neither the aggres-
sors nor the victims remain many-sided, (2) only the victim rows remain
many-sided, (3) only the aggressor rows remain many-sided, and (4) both
aggressor and victim rows remain many-sided. Fig. 7 shows our classification
results for each k value.

Based on our results we make the following observations. First, a many-
sided attack in logical space has a 50% or less chance to remain many-sided
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Figure 7: Impact of row address scrambling to many-sided Rowhammer
patterns in logical space. Once mapped in physical space, the pattern can
(1) remain many-sided, (2) only the victim rows remain many-sided, (3) only
the aggressor rows remain many-sided, or (4) neither aggressor nor victim
rows remain many-sided.

in the physical space due to address scrambling. For k=4, 11, 12, and 19,
only 12.5% of many-sided attacks in logical space remain many-sided in
physical space. The best case scenario is for k=2, 7, 8, 15, and 16 when half
of many-sided attacks in logical space remain many-sided in physical space.

Second, address scrambling often affects both the aggressor rows and the
victim rows of a k-sided attack. At least 25% (and as much as 62.5%) of
many-sided attacks have both aggressors and victims mapped differently.

These results indicate that most previous evaluations of many-sided pat-
terns are impacted by address scrambling for all values of k. When address
scrambling affects victim but not aggressor rows, previous papers likely
under-reported the number of bit flips because they did not check for bit
flips on the correct set of victim rows. When address scrambling affects
aggressor but not victim rows, previous papers failed to mount the correct
many-sided attack pattern.

6.2 Factor #2: Subarray Boundaries

Recall from §2.2 that banks of DRAM—where aggressor and victim rows
must co-reside to yield Rowhammer bit flips—are actually broken down
into a set of row-column subarrays of DRAM cells. As suggested in prior
work [35], the electromagnetic isolation of each subarray should mean that
Rowhammer attacks require not only rows co-located in the same bank, but
within the same subarray within that bank. Accordingly, we use mFIT to
experimentally test this theory.
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Figure 8: Subarray configuration revealed by a single-sided Rowhammer
experiment on VendorB-1Y. The X-axis corresponds to the unscrambled row
address of the aggressor row (r). A vertical blue bar ( ) below the axis

represents that victim row r+1 experienced bit flip(s), and a red bar ( )
that victim row r−1 experienced bit flip(s). A black vertical bar means that
one of the victims (either r+1 or r−1) did not experience any bit flips. We
observe that every 0x300 rows, there are no bit flips on r + 1, immediately
followed by no bit flips on r − 1.

At a high level, we test whether there is a pattern for which aggressor-
victim row pairs fail to produce bit flips during a single-sided Rowhammer
attack. For instance, given aggressor row r and adjacent row r + 1, a lack
of bit flips in the potential victim row (r + 1) for r mod 100 = 0 (but
an otherwise successful attack) would provide strong evidence that (a) the
subarray size is 100 rows, (b) r and r+ 1 are on different subarrays, and (c)
subarray boundaries prevent Rowhammer attacks.

However, we must account for two potentially-confounding factors in this
test. First, a DIMM can internally “repair” defective rows by remapping
them to spare rows within a chip, obfuscating the pattern of successful/un-
successful attacks. In practice, we find that the row repair phenomenon is
rare for all DIMMs tested (i.e., we only found evidence of around 0.15% of
rows being repaired), meaning that the pattern can still be inferred with a
sufficiently-large sample size.
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Second, even without defective row repairs, logically-adjacent rows are
not necessarily physically-adjacent in DRAM. Thankfully, as discussed in
§6.1, we find that 5 samples map logically-adjacent rows to physically-
adjacent rows (aside from occasional defective row repairs). For the re-
maining 4 samples, we can account for row address scrambling via our
reverse-engineered scrambling equation, meaning we can produce appropri-
ate logical row addresses for the aggressor and victim to ensure we test
physically-adjacent rows.

Thus, accounting for these factors, we use the following methodology
to test for a relationship between subarray boundaries and Rowhammer
efficacy. According to the DIMM-specific mappings recovered in §6.1, we
sweep through physically-adjacent rows in a bank one at a time. For each
row r, we prime r and its potential victims r − 1 and r + 1 with a DIMM-
specific effective aggressor-victim data pattern—e.g., checkered (§5.2).

We then perform a single-sided Rowhammer attack with r as the ag-
gressor (i.e., we repeatedly activate r), with REFs suppressed by mFIT to
simplify flipping bits. Note that in order to repeatedly-activate (i.e., open)
r, we must force r to close between accesses, which we achieve by alternating
writes between row r and some other dummy row d in the same bank. To
avoid Rowhammer interference between r, d, and potential victim rows, we
choose d to be fixed, near the end of the bank, much farther than any known
blast radius (§2.3).

After completing an attack for a given r, we check for bit flips in r − 1
and r + 1. Note that we always observe bit flips in at least 1 of the victim
rows due to the effectiveness of the aggressor-victim data pattern. If we
observe bit flips in both rows, we cannot conclude that r − 1, r, and r + 1
are on different subarrays.

However, if we only observe bit flips in one of the potential victims (e.g.,
r − 1), we conclude that the other victim row (r + 1) might be on a differ-
ent subarray than r. To confirm this suspicion, we repeat the experiment
with various different aggressor-victim patterns, to eliminate different data
encoding in row r+ 1 as the reason for the unsuccessful attack. If we fail to
observe bit flips in r + 1 for all data patterns, we conclude that there is a
high likelihood that r and r + 1 are on different subarrays.

After completing the experiment for a sufficient number of rows, we check
for a pattern in unsuccessful attacks. If the attack fails at regular intervals
(e.g., every n rows), we infer that the subarrays consist of n rows, and that
Rowhammer attacks fail across subarray boundaries.

After accounting for row address scrambling, we observed a DIMM-
specific, steady pattern of failed Rowhammer attacks for all three vendors

21



DIMM-ID
subarray size
(in #rows)

VendorA-1X 0x02b0

VendorB-1X 0x0300

VendorC-1X 0x0339

VendorA-1Y 0x0338

VendorB-1Y 0x0300

VendorC-1Y 0x0402

VendorA-1Z 0x03fa

VendorB-1Z 0x0400

VendorC-1Z 0x04f9

Table 2: Subarray sizes recovered with mFIT.

across all three generations; we show the pattern observed for an example
DIMM (VendorB-1Y) in Fig. 8. We reiterate that rare exceptions to the pat-
tern are believed to be defective row remaps, and do not affect our ability
to infer the pattern. For simplicity, we present the inferred subarray sizes
in Table 2.

Thus, we offer strong experimental evidence in support of the theory that
Rowhammer attacks require aggressor and victim rows to be co-located on
the same subarray within a bank [35]. Accordingly, an optimally-effective
Rowhammer attack will ensure that all aggressor and victim rows are in
the same subarray, while effective defenses could aim to ensure that rows
from two different trust domains (e.g., processes) are mapped to different
subarrays.

6.3 Factor #3: Data Dependency Among Cells

Prior work [30] has established that the efficacy of a Rowhammer attack is
influenced by the data stored in the rows of interest in two ways. First, vic-
tim cells tend to be disturbed from the positively “charged” to “discharged”
state (i.e., by an injection of [negative] electrons), meaning that whether a
logical 1 or logical 0 is encoded as the charged state affects Rowhammer
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ID Even rows (0,2,4,...) Odd rows (1,3,5,...)

RS0 0x0000000000000000 0xffffffffffffffff

RS1 0xffffffffffffffff 0x0000000000000000

CH0 0x5555555555555555 0xaaaaaaaaaaaaaaaa

CH1 0xaaaaaaaaaaaaaaaa 0x5555555555555555

Table 3: 64 bit baseline data patterns used in previous work [30, 29].

susceptibility. Second, the electrons that discharge (i.e., disturb) these vic-
tim cells tend to leak from nearby aggressor cells, where the aggressor cells
themselves are in the discharged state.

Based on these foundational observations, prior work [31, 15] attempts
to achieve susceptibility to Rowhammer via data patterns that—at first
glance—ensure aggressor cells are discharged and nearby victim cells are
initially charged. These patterns are listed in Table 3. RS indicates ”Row
Stripe”, where RS0 indicates that even rows (starting at row 0) are all
logical 0s, while odd rows are all logical 1s. RS1 is the inverse of this
pattern. CH indicates ”Checkered” as described in §5.2, where CH0 and
CH1 are distinguished by whether the first bit in even rows is a logical 0 or
1, respectively.

To our knowledge, no work has experimentally determined whether a
given “hammerable pattern” remains effective throughout an entire DIMM,
nor experimentally-confirmed the maximally-hammerable pattern. Accord-
ingly, we first calculate the state-of-the-art optimal baseline from among
these four patterns; this baseline is determined by the pattern yielding the
maximum number of bit flips when using a 20-sided Rowhammer attack—
after having accounted for row address scrambling (§6.1) to ensure true
physical adjacency.

We perform a 20-sided Rowhammer attack (as opposed to simpler single-
or double-sided) for two reasons. First, a 20-sided attack has been shown
to be effective on modern systems, even with state-of-the-art mitigations
enabled (§2.3). Second, for reasons yet unknown, we found the data de-
pendence pattern was easier to infer when using 20 aggressor rows versus a
smaller number. Notably, the baseline pattern varies by DIMM (i.e., row
stripe for some, checkered for others), likely due to variations in cell and
bitline encodings among different DIMMs.

From these per-DIMM baselines, we then set out to modify the pattern
according to knowledge of various internal DIMM structures and behaviors
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Figure 9: Relative improvement in the number of bits flipped with our new
pattern for each DIMM.

across which data encodings could potentially change (e.g., a logical 1 might
be stored as the discharged state instead of the charged state). First, using
the previously-inferred subarray boundaries (§6.2) we invert the pattern at
each subarray, to account for potentially-alternating data encoding between
subarrays. Next, because a cache line is returned from a DIMM in successive
“bursts” (§2.4), we invert the pattern for the columns of data returned by
each burst; we note that the mapping between cache line word and burst
number are public. Finally, because each “nibble” within a burst comes
from a different chip on the DIMM (§2.4), we invert the pattern at the
nibble boundary (every 4 bits on the DIMMs-under-test), accounting for
swizzling where applicable.

We tested all possible combinations of these three independent consider-
ations for the maximum number of bit flips. We list our newfound optimum
pattern descriptions in Table 4, plotting their improvements compared to
prior baselines in Fig. 9. We found that, in the majority of cases, the
previously-used patterns could be significantly improved upon (60% on av-
erage and even 167% in the case of VendorC-1X) by accounting for sub-
array, burst, and chip boundaries within the DIMM. Interestingly, for the
HammerCount that we use for each the imbalance between the best pat-
tern and its inverted counterpart is relatively large (for example 23:7 for
VendorA-1Y, 27:1.3 for VendorA-1Z and 44:0.3 for VendorB-1Z) suggesting
that a Rowhammer-highly-immune data pattern is possible.

Ultimately, our findings indicate that greater Rowhammer susceptibility
can be achieved by (1) adjusting the pattern according to available DIMM-
specific metadata, and (2) data that is reverse engineered (e.g., the sub-
array size and row-addressing). Conversely, certain Rowhammer effects can
be entirely negated on select DIMMs when using the inverse pattern, an
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DIMM-ID
Base-
line

Im-
prove-
ment

64-bit victim
(w/DQ sw.)

on Row 0 Col 0

Invert
w/ SA

Pattern description

VendorA-1X CH 45% 0x5555 5a5a 5a5a 5555 3
Invert every new SA,

except between 3rd and 4th

VendorB-1X RS 0% 0x0000 0000 0000 0000 7 -

VendorC-1X RS 167% 0x0000 0000 0000 0000† 7
Inverts in upper-bursts

(cols 8K+4, 8K+5, 8K+6, 8K+7)

VendorA-1Y CH 37% 0x5555 5a5a 5a5a 5555‡ 7 Upper cols. differ

VendorB-1Y RS 0% 0x0000 0000 0000 0000 7 -

VendorC-1Y RS 158% 0x0000 0000 0000 0000† 7
Inverts in upper-bursts

(cols 8K+4, 8K+5, 8K+6, 8K+7)

VendorA-1Z CH 93% 0x3c3c 3c3c 3c3c 3c3c‡ 3

Invert every new SA,
except between 8th and 9th SA.

Upper cols. differ

VendorB-1Z RS 40% 0x0000 0000 0000 0000† 7
Inverts in every-other burst

(cols 2K+1)

VendorC-1Z RS 0% 0xffff ffff ffff ffff 7 -

Average 60%

Table 4: Optimal-hammering patterns (i.e., most bit flips) recovered with
mFIT for a 20-sided attack. The baseline is the original-optimal pattern
from those in Table 3, followed by the relative improvement we were able
to achieve via modifications. We list the updated data pattern per DIMM,
as well as whether we inverted the pattern by subarray (A)—i.e., CH0 on
even subarrays, CH1 on odd subarrays—and a brief pattern description. †:
pattern is inverted on cache line granularity as some bursts must have the
inverted value. ‡: data is reported on the lower columns (columns from 0 to
511 including). The columns from 512 to 1023 have a different susceptibility
pattern.
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interesting consideration for future mitigations that may seek to encode
data according to minimally-hammerable pattern where possible.

6.4 Factor #4: Host Data Scrambling

Given that the data pattern stored in a row affects the susceptibility to a
Rowhammer attack [30], it is important not only to understand how DRAM
itself encodes data (§6.3), but also how the host memory controller encodes
data. Notably, so long as the host memory controller can recover the original
data sent to it from the upper layers of the memory subsystem (e.g., cores),
it is free to encode the data in memory as it sees fit (e.g., in a similar manner
to data encryption/decryption).

In this vein, for electrical reliability reasons, the host memory con-
troller of modern servers “scrambles” (i.e., masks) data before storing it in
DRAM [13]. More specifically, upon a DRAM write, the memory controller
XORs the original data with mask(s) that are likely to produce an even dis-
tribution of physical 1’s and 0’s in each row; when later reading the physical
data back, the memory controller XORs the physical data with the same
mask(s) to recover its original (logical) value (data⊕ mask⊕ mask = data).
Accordingly, it is important for both DRAM analyses and Rowhammer at-
tackers to account for data scrambling, such that the desired data pattern
is encoded into DRAM.

From a DRAM analysis standpoint (e.g., determining cell layout), we
can trivially account for data scrambling on our test platforms by disabling
it in the BIOS. However, because this is not an option for all platforms—and
because accounting for data scrambling remains crucial to producing an op-
timized Rowhammer attack/defense on a production system—we use mFIT
to reverse engineer the data scrambling implementation in the host memory
controller. Notably, we find that the memory controller’s implementation of
data scrambling is independent of the attached DIMM. Therefore, it suffices
to reverse-engineer the mask(s) for any single DIMM.

At a high level, we combine mFIT’s ability to suppress REFs with
knowledge of a specific DIMM’s cells’ orientations to recover the scram-
bling mask(s). We use a DIMM composed of “true” cells—i.e., those that
encode a logical 1 as the charged state, and therefore discharge from 1→ 0
in the absence of REFs—because this allows us to easily determine the XOR
mask(s).

More specifically, we activate mFIT such that all data on the DIMM
will eventually move to the discharged state of 0 (due to lack of REFs). On
the host system, we then read the data back from the DIMM. When the
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Figure 10: Recovering the MC’s data scrambling pattern by REF suppres-
sion after the mask lands in DRAM.

memory controller receives the physical 0 values from the DIMM, it will
apply the XOR mask(s) to unscramble the data. Because 0⊕ mask = mask,
the data ultimately returned to the processor core is in fact the scrambling
mask, and has therefore been recovered.

Repeating this experiment at different locations throughout the DIMM,
we notice two interesting properties. First, there is a single mask applied to
all data for scrambling. Second, the mask does not change across system re-
boots; in fact, we find that the mask is calculated from a 64-bit seed value,
configurable in the system BIOS. We note that these observations for Intel
DDR4 memory controllers (i.e., those used on the Skylake-SP and Cascade
Lake-SP micro-architectures) are consistent with those previously-observed
for DDR3 memory controllers [13, 15].

The ramifications of these findings for Rowhammer susceptibility are
significant. Because the scrambling mask does not change between rows,
once an attacker recovers the scrambling mask, there are able to prime an
arbitrary row with a “maximally-hammerable” data pattern. Effectively,
commodity implementations of data scrambling do not pose significant ob-
stacles for Rowhammer attackers, and therefore should not be considered
effective mitigations.

6.5 Putting It All Together

To summarize, mFIT offers the ability to characterize various Rowhammer
susceptibility factors, include those within the DRAM itself as well as the
host memory controller. By accounting for row address scrambling, sub-
array boundaries, data dependencies among cells, and data scrambling in
the host memory controller, one can produce up to 60% on average (see
Table 4) greater bit flips on a DIMM than state-of-the-art baseline patterns
provide. Conversely, we additionally find that select factors entirely prevent
Rowhammer bit flips, including placing aggressor and potential victim rows
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on separate subarrays, as well as select data patterns for certain DIMMs.
These findings enable researchers to better reason about efficacy of current
and future Rowhammer attacks and defenses.

7 Related Work

Industrial memory testers. There is a small market of industrial memory
testers aimed at hardware vendors and system integrators [9, 8]. These
testers are built for standalone DRAM module testing and often come with
pre-defined testing sequences and benchmarks. However, some testers offer
more flexibility by including a custom-made memory controller that lets
operators develop their own sequence of testing commands. Such testers
are expensive with prices starting at hundreds of thousands of dollars. In
contrast, mFIT is less expensive and can reveal insights into the behavior
of an entire memory system including the DRAM modules, the DIMMs, the
busses, and the memory controller.

FPGA-based memory controllers. Researchers have developed FPGA-
based hardware platforms to give them increased control over the commands
sent to a DRAM module [23, 18, 29]. These platforms are flexible allowing
for fine-grained control over the sequence of DRAM commands and their
timings. This high degree of flexibility comes with a high development cost
due to the complexity of developing of a full-featured memory controller. In
our experience, an additional barrier of FPGA-based platforms is their lack
of supporting server-grade DIMMs. Instead, most FPGA platforms either
have different DIMM formats (such as client-grade SO-DIMMs) or they only
allow for a couple of specific DDR4 DIMM parts. In contrast, mFIT is more
flexible albeit with less control of DRAM commands. Its main goal is refresh
suppression.

DDR bus analyzers. DDR bus analyzers capture traces of DDR com-
mands sent by a memory controller to one or more DIMMs [24, 19, 7, 33, 14].
Previous work used industrial bus analyzers to characterize Rowhammer se-
quences on real hardware [14], mount an attack against secure enclaves [33],
summarize memory accesses to analyze the efficiency of a newly designed
system [28], characterize memory workloads [27], and recover the memory
controller address mappings [37, 14]. An earlier project showed how to
design and implement a platform for tracing DDR commands and saving
them for off-line analysis [24]. Bus analyzers are also expensive with costs
approaching US$ 100K. Bus analyzers’ functionality is orthogonal to that
of mFIT; their traces of DDR commands can complement mFIT’s refresh
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suppression capability and provide additional insights into DRAM charac-
terization.

DDR command fault injectors. DDR command fault injection tech-
niques were previously used [14, 15, 20] to characterize DIMMs running in
a host system. These devices are more rudimentary than mFIT and re-
quire manual human interaction, such as pressing a button [14] or inserting
a shunt [15]. Fault injection on the memory bus data lines was used to
understand system level error correcting codes [15] and to study the error
reporting mechanism overhead [20].

Intel offers a commercial tool that can inject errors in the data lines
of a DIMM [5]. This tool’s main purpose is testing the error correction
functionality of a memory controller by simulating data failures.

8 Conclusion

As DRAM becomes increasingly susceptible to Rowhammer bit flips, un-
derstanding the factors influencing the likelihood of a bit flip is important
for maintaining system reliability and security. mFIT is the first analysis
tool to offer precise and low-cost “plug-and-play” Rowhammer analysis ca-
pabilities for both arbitrary DDR4 DIMMs and associated host platforms
(e.g., memory controllers). Having used mFIT to confirm increasing suscep-
tibility to Rowhammer in DDR4 server-grade DIMMs, we have extensively
analyzed the role of various Rowhammer susceptibility factors discussed in
prior work. With the system properties unearthed by mFIT, we have con-
structed a Rowhammer data pattern averaging 60% greater bit flips than
the existing state-of-the-art patterns. Using the open-source design of mFIT
and our results thus far, we hope to enable future researchers to increase
the efficacy of Rowhammer attacks, defenses, and understanding.
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