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ABSTRACT

Passive Infra-Red (PIR) sensors are an integral part of modern living.
They have diverse applications ranging from automatic lighting and
heating control in smart buildings, towel dispensers in washrooms,
security alarms (for intrusion detection) to even human detection
robots (for search and rescue). Unfortunately, PIR sensors are prone
to failures during deployment due to reasons such as environmental
damage, incorrect installation and component degradation among
others that can lead to incorrect or faulty data. Currently, such
failures are typically detected using either : (a) heavily engineered
data-driven, statistical approaches that can have high false positive
rates due to unseen data patterns or (b) expensive methods that use
additional hardware such as video cameras or a golden reference
sensor. The second approach inhibits scalability.

In this work, we first create a taxonomy for the most common
PIR sensor failures. We then present PIRMedic— a physics-driven
approach, implemented at the edge, to detect the various classes
of failures. We show that we can both detect and diagnose the
failures in a PIR sensor using an intrinsic hardware signal viz., the
analog output from the pyroelectric element in the sensor. Using
this hardware signal in conjunction with frequency analysis and
supervised machine learning methods, we obtain a high accuracy
of 98 − 99% in failure detection and diagnosis. We evaluate our
methods using real-world deployments in three distinct locations,
in different environment and usage conditions.

CCS CONCEPTS

• Computer systems organization → Embedded and cyber-

physical systems; • Hardware→ Fault tolerance.
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1 INTRODUCTION

IoT applications deployed in smart homes, industrial control and
healthcare systems require the correct functioning of a myriad set
of sensors. The data from these sensors is used by IoT analytics
pipelines to derive patterns, insights and make decisions. One of the
most versatile and ubiquitous sensors used in numerous modern
applications is a Passive Infra-Red (PIR) sensor. A PIR sensor is
a discrete, electronic sensor that captures thermal radiation from
human and human-like objects (e.g., animals) to indicate occupancy
in a region. They are used in a wide variety of environments, from
building automation to safety-critical systems such as factories.
Consequently, the correct operation of PIR sensors is critical to the
quality and performance of many IoT deployments.

Given the nature of PIR deployments in the wild : for instance in
remote, manually inaccessible, harsh conditions (e.g., assembly line
of a factory), they are prone to failures and degradation of physical
components. These failures could result in false triggers or a failure
to capture real movements e.g., assembly line failures in a factory
or inaccurate estimation of wildlife counts. Such sensor failures are
often caused by intermittent sensor faults that can happen in any
one of its internal physical components [4, 15].

Currently, failures in PIR sensor deployments are usually ad-
dressed in one of the following two ways : (a) using an additional,
auxiliary sensor such as a CCTV camera combined with image pro-
cessing algorithms (say to validate the occupancy data) or (b) using
high-grade PIR sensors that possesses additional capabilities such
as ultrasonic sensors and intricate optics. This makes the sensor
deployment very expensive. In addition, deployments need to be
refreshed periodically by replacing old sensors with new ones and
the former are disposed off adding to both electronic waste and
cost. A case in point is our university research building where the
occupancy sensor deployed is a high-grade PIR sensor comprising
both ultrasonic and infrared sensors, resulting in a total recurring
cost of close to $100000 every 10 years1.

Crucially, current approaches do not diagnose the cause of failures
or perform any analysis of sensor performance, that can be valuable

1Our 4-floor building (with a total of 244 rooms and 24 aisle areas) has more than 300
occupancy sensors. Each PIR sensor costs $300 [10, 11] with it being refreshed every
10 years, a worst-case recurring cost of $90000 every 10 years, which is expensive.

https://doi.org/10.1145/3486611.3486658
https://doi.org/10.1145/3486611.3486658


BuildSys ’21, November 17–18, 2021, Coimbra, Portugal Ashish Kashinath, Sibin Mohan, Akshay Nambi, and Sumukh Marathe

Figure 1: Sensor Data from a working PIR (top) and a faulty PIR (bottom).

HIGH indicates no object, HIGH->LOW transition indicates object.

for IoT engineers during maintenance, repair and testing. For exam-
ple, in one of our deployments, we observed that failed or degraded
sensors can exhibit unpredictable behavior e.g., they can work tem-
porarily for a period of time and then fail sometimes. Fig. 1 shows a
plot of output data from the sensor vs. time for both a working sen-
sor and a faulty sensor (defective lens) over a period of 4 hours. In
this plot, a transition from HIGH→LOW denotes a person coming
into the field of view and a value of HIGH indicates that there is no
person. We observe that the faulty sensor works intermittently and
at other times, can miss a person (false negative) or incorrectly flag
the presence of a person (false positive). Missing a person can cause
a potentially critical failure in applications such as door opening
systems or emergency shutdowns on factory floors. We show that
accurate detection of such failures is possible by characterizing the
internals of the sensor.

Our solution, PIRMedic detects and diagnoses failures of PIR sensors
by characterizing the physics of sensing viz., the fresnel lens optics
and the pyroelectric effect. To keep the cost of the deployment
low, PIRMedic is implemented on the edge platforms of the deploy-
ment and targets cheap PIR sensors. In this process, we devised a
taxonomy of key failures for aiding diagnosis and repair.

Specifically, we demonstrate that a signal intrinsic to PIR sen-
sors viz., the intermediate analog output from the pyroelectric el-
ement, referred to as 𝐴out (Fig. 2) can be used for fault detection
and diagnosis.We utilize this signal to derive information about the
reliability of the PIR sensor platform as well as perform an analysis
into the different failure modalities. To the best of our knowledge,
this is the first edge-based, low-cost approach to use an intrinsic signal
(𝐴out) for fault detection and diagnosis of PIR sensors. We analyze
the behavior of 𝐴out in detail, under practical deployments, with
realistic occupancy over a wide variety of observed failures.
Summary of Contributions:

(1) From physics to failures: We use the working of a PIR sensor to
understand the process of object detection and infer the key
points where failures lead to incorrect sensor data,

(2) Failure taxonomy: We systematize of key failures that can occur
in a PIR sensor to develop a failure taxonomy.

(3) Non-intrusive, online fault detection and diagnosis: We present
an online technique (does not require any disassembling), imple-
mented at the edge, for failure detection as well as diagnosis by
utilizing the intermediate, analog output from the pyroelectric
element in the PIR sensor (𝐴out).

(4) Insights from Real-world Deployments: We show the efficacy of
the proposed techniques using a deployment of 15 PIR sensors

in practical occupancy scenarios (elevator, lobby of a building
and at starbucks) over a period of 3 months.

2 RELATEDWORK

Current solutions for failure detection and diagnosis in sensors
fall into one of three categories – (a) Data-driven techniques, (b)
Calibration-based techniques and (c) Fingerprint-based techniques.

Data-driven techniques. Prevalent research efforts have largely
focused on data-centric approaches (rule-based or anomaly detec-
tion), where historical data of the sensor is analyzed and a fault
is identified if the data is out of bounds of the expected behav-
ior [25, 26]. Sharma et al. [28], proposed a multiplicative seasonal
ARIMA time series model for fault detection, where the parameter
captures periodic behavior in the sensor data. The downside of
temporal analysis methods is that they are prone to false positives
and are not feasible in long-term deployments. Wu et al. [33] used a
spatial mining-based approach that uses spatial correlation between
neighbouring sensors to detect anomalies. Additionally, techniques
such as Ayadi et al. [2], Murphree [18] and Power et al. [25] require
significant labeled data as it models only the environment and does
not model the sensor physics. Estimation-based methods model
normal sensor behavior leveraging spatiotemporal correlation and
probabilistic models such as Bayesian or Gaussian distributions [12]
and they work well in homogeneous environments.

We argue that for PIR sensors since the data is non-periodic
and dependent on deployment scenarios (e.g., people counting in
starbucks, animal detection in forests, etc.), it is non-trivial to detect
faults by just analyzing sensor data. Further, this requires signifi-
cant manual efforts and tailor-made rules to detect faults, and can
eventually have high false positives due to unseen data patterns.

Calibration-based techniques. These techniques rely on the
presence of an additional (reference) sensor, either to perform pe-
riodic calibration [14, 32] or carrying additional information in a
different domain space. E.g., using a camera to cross-check the data
of a PIR sensor [30]. Numerous algorithms have been developed
for performing calibration such as blind calibration [9, 31], collabo-
rative calibration [27, 34] and transfer calibration [35]. However,
using reference sensors is an expensive strategy that lacks scalabil-
ity for large IoT deployments or those in developing countries.

Fingerprint-based techniques. Chakraborty et al. [4] develop
a sensor signature viz., “Fall Curve” that measures a sensor’s voltage
response when the power is turned off, to detect faults in periodic
on-off based analog sensors. Similarly, Tambe et al. [29] show a
variant of Fall curve, i.e., “Fall time” of the analog signal can de-
tect faults and drifts in phototransistor components of the sensor.
However, both Fall Curve and Fall time signatures does not work
on certain types of sensors including PIR, that operate under low
voltages and are event-triggered. Marathe et al. [15] show that ana-
lyzing the current profiles of a digital sensor can provide insights
into component failures especially in electro-mechanical sensors.
However, this approach is limited to power-hungry digital sensors.

PIR sensors are challenging since in addition to being discrete-
valued, the internal analog signal output from the pyroelectric
sensor has a very low value, often oscillating between 1–1.8V. We
show that the intermediate analog output (𝐴out) from the PIR sen-
sor carries interesting insights on the characteristics of the sensor.
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Figure 2: Internal components of a PIR sensor.

Figure 3: Output signals 𝐴out (Green) and𝐶out (Blue) during sensor opera-

tion.𝐴out, (magnified) shows oscillations when an obstacle is detected.

Narayana et al. [19] leveraged this signal by developing a cus-
tomized sensor array for performing localization and studying ob-
ject metrics. However, Narayana et al. [19] do not explore reliability.
3 PIR SENSORS

In this section, we briefly describe the working of a PIR sensor and
then present the potential failure scenarios in PIR sensors.

3.1 Background

APIR sensor internally comprises of 3 subsystems as shown in Fig.2
– (a) a lens, (b) a pyroelectric, and (c) an electronic subsystem. These
subsystems act in sequence i.e., Lens → Pyroelectric → Electronic
to perform the end-to-end sensing process as we describe next.
Lens Subsystem A plastic fresnel lens [1] is used to capture and
focus thermal radiation into an optical filter that is aimed at a pyro-
electric element. Fresnel lenses have a large capture area (aperture)
and are used to concentrate radiation into a narrow beam.
Pyroelectric Subsystem comprises of an optical filter and a pair
of pyroelectric elements. The optical filter is designed to filter out
thermal radiations from wavelengths outside the human range
(i.e., 5𝜇m to 10 𝜇m), which is then incident on the pyroelectric
elements. The pyroelectric elements convert the thermal radiation
into an electrical voltage signal, a process known as the pyroelectric
effect. The output of the pyroelectric subsystem is an analog signal
that is sent to the electronic subsystem.
Electronic Subsystem consists of a filter (RC filters), amplifier
(JFET or OpAmp) and comparator (OpAmp) circuits. Outputs from
pyroelectric subsystem arfiltered to remove noise, amplified to
increase its magnitude and finally sent to a comparator to convert
analog signals to discrete signals. This discrete signal is HIGH when
there is no motion and goes HIGH→LOW when motion is detected.

3.2 Analysis of Output Signals of a PIR Sensor:

There are 2 output signals from a PIR sensor as shown in Fig. 2 :
(1) Final discrete output of the electronic subsystem (𝐶out).
(2) Intermediate analog output just prior to the discretiza-

tion process (𝐴out).
We interface a PIR sensor to an Arduino microcontroller to an-

alyze 𝐶out and 𝐴out during operation. Fig. 3 is a plot of 𝐴out and
𝐶out for a period of 60 seconds, both in the presence and absence of

(a) Working Sensor (b) Lens Cap Dislocated

(c) Lens Cap Covered (d) Optical Filter Damaged

Figure 4: Some sensors used in our study. Note that the failures are not

always visually perceivable as the sensors are typically inaccessible.

an obstacle. The y-axis represents the voltages seen at the output
and x-axis represents time. As expected, 𝐶out, marked in blue goes
LOWwhen an obstacle comes into the field of view and stays HIGH
otherwise. On the other hand, 𝐴out measures around 1.8 V when
there is no obstacle and produces an oscillation when an obstacle
comes into the field of view (shown magnified). We next study the
various failures in a PIR sensor and its impact on sensing physics.

3.3 Failures in PIR Sensors – A Taxonomy

Broadly, failures could occur either on the lens, the pyroelectric
element or the electronics. We analyze and categorize practical,
common and most frequent failures as gathered in discussions with
IoT engineers and technicians who install and maintain PIR sensor
deployments. We developed a new taxonomy for such failures, as
summarized in Table 1.

3.3.1 Failures in the lens subsystem. The lens is geometrically
constructed to precisely focus the thermal rays onto the pyroelectric
element. As a result, failures affecting the optical integrity of the
lens can result in loss of precision for focusing the thermal rays.
We observe three types of failures here, termed Class I–III failures.
Lens dislocation (Class I): As the lens is stuck on the sensor board
with an adhesive or machined to fit over the pyroelectric element,
it could get dislodged from its place or completely fall off the sensor
board due to factors such as thermal expansion or physical impact.

Table 1: Taxonomy of Failures in a PIR Sensor

Failure Definition & Impact

Lens Subsystem

Lens dislodged
(Class I)

Lens cap suffers partial or complete dislocation e.g.,
physical impact with a foreign object, degradation of
bonding, etc.

Lens deformed
(Class II)

Lens cap suffers physical damage in-place e.g., defor-
mation, puncture, etc.

Lens covered
(Class III)

Lens cap gets physically obstructed by foreign parti-
cles e.g., dust, paper or tape

Pyroelectric Subsystem

Optical filter
damage (Class IV)

Damaged by environmental factors e.g., oil condensa-
tion

Electronic Subsystem

Electronic faults
(Class V)

Hardware failures e.g., short circuits, floating out-
puts etc.
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Lens deformation (Class II): As the lens is made of flexible, 0.4mm
thick high density plastic [20], it is susceptible to deformation by
physical damage. This can alter the curvature or puncture the lens.
Lens hindrance (Class III): Dust particles (e.g., factory floors, build-
ing construction) or common objects such as paper and plastic
tape can absorb the thermal radiation resulting in reduced to no
radiation falling on the pyroelectric element. The deposition of
particulate matter also causes dispersion.

3.3.2 Failures in the pyroelectric subsystem: Optical Filter Dam-
age. The optical filter and pyroelectric elements are prone to degra-
dation with exposure to high temperature and humidity. As the
optical filter is carefully calibrated to trigger in the region of human
motion, it is susceptible to damage due to environmental factors
such as heat sources (e.g., room heaters, air-conditioners) and hu-
midity (e.g., oil condensation) as it affects the perceived temperature
of the object. We name these as Class IV failures.

3.3.3 Failures in the Electronics. On-board electronics consist-
ing of filter, amplifier and comparator circuitry are prone to failures
such as shorted or floating pins that we refer to as Class V failures.
Summary: Failures in PIR sensors can occur in either the lens
subsystem, the pyroelectric subsystem or the on-board electronics,
each of which manifest differently in the underlying physics.

(a) Controlled Setup

(b) Class I Fault

(c) Class II Fault (d) Class III Fault

(e) Class IV Fault (f) Class V Fault

Figure 5: (5b - 5f) 𝐴out waveforms for sensor faults of Classes I–V. Note

that in Class I – III faults, despite the obstacle still being detected, 𝐴out pro-

vides indication of underlying abnormalities in the sensor.

4 CHARACTERIZING FAILURES USING AN

INTRINSIC SIGNAL

Our hypothesis is that the intermediate analog signal (𝐴out) from
the pyroelectric element captures information that is critical to
detect various failures. We now describe how this intrinsic signal
and its underlying physics is useful to characterize failures.

4.1 𝐴out signal to detect failures in PIR sensors

As described in Section 3.2, there are two output signals from a
PIR, viz., 𝐴out and𝐶out. The latter is a discrete signal typically used
for detecting human presence and is derived from 𝐴out. To show
the utility of 𝐴out, we conducted numerous controlled experiments
where we manually injected commonly seen faults (Fig. 4).

We co-located two sensors: (i) a tampered sensor (𝑆tampered) con-
taining the failure and (ii) a working sensor (𝑆working) such that: (a)
the distance between the sensors is closer than the size of the obsta-
cle, (b) the obstacle is moved in a plane such that it comes into the
detection region of both sensors simultaneously and (c) the obstacle
is larger than the distance between the two sensors, allowing it to
be incident on both the sensors simultaneously. Thus, we expect
the same output from both 𝑆tampered and 𝑆working. We change the
𝑆tampered sensor to test different types of failures described in §3.3.

We note the output signals (i.e., 𝐴out and 𝐶out) in every failure
scenario and compare it with a working sensor to understand the
impact of failure on the physics of the sensors. Each experiment
described below lasted for 15 minutes, when the obstacle (our palm
in this case) was moved into the region of detection once every
minute. We plot 𝐴out for both a working sensor and every type of
faulty sensor in Figs. 5b – 5f. The y-axis plots the voltage output
of 𝐴out and the x-axis is time. For a working sensor, we expect a
spike in 𝐴out once every 60 seconds denoting motion of the palm.

Lens dislocation (Class I) faults. The absence/dislocation of
the lens causes imperfect focus of the thermal radiation resulting
in the some residual output at the pyroelectric element even when
there is no obstacle present. The impact of a Class I fault on 𝐴out is
shown in Fig. 5b. We can see that both the tampered and working
sensors are still able to detect the obstacle (as shown by the 15
vertical spikes of 𝐴out). However, when the obstacle is not present,
we observe that the noise of 𝐴out is much higher with a Class I
fault as compared to a working sensor. Thus, it is important to look
beyond just 𝐶out signal to identify such failures.

Lens deformation (Class II) faults. Class II faults can poten-
tially lead to missing the obstacles in the periphery of the field of
view due to deformation or loss of material integrity (e.g., punc-
ture). Fig. 5c shows the 𝐴out for a sensor with a Class II fault. The
amplitude of 𝐴out at the times of obstacle detection is lower when
compared to a working sensor. This is expected since the damage
to the lens leads to reduced thermal radiation incident on the pyro-
electric subsystem. In general, Class II faults creates blind spots in
the lens aperture that reduce the 𝐴out amplitude.

Lens hindrance (Class III) faults are caused due to foreign
particles entering the lens that compromise its optical capability,
thereby affecting the intensity and angle of radiation incident on
the pyroelectric element. We induce such faults by depositing some
dust on the lens. Fig. 5d shows that the amplitude of 𝐴out varies at
each of the detection points. The variation depended on the amount
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(a) Class I fault (b) Class II fault

(c) Class III fault (d) Class IV fault

(e) Class V fault (f) Comparing𝐴out of two work-

ing sensors

Figure 6: FrequencyDomainRepresentations of𝐴out under different faults

in a PIR sensor. Only frequencies upto 10 Hz are shown because the human

motion range most PIR sensors detect are in that range.

of dust with respect to the orientation of the obstacle. Though the
obstacle was still being detected, we note that with increased dust
deposition, the amplitude of 𝐴out can fall below the comparator
threshold required to capture the obstacle resulting in failure.

Failure in pyroelectric components (Class IV).Class IV faults
happen when the optical filter on the pyroelectric element comes in
contact with contaminants such as oil, mist or other smudge, it can
lead to potentially missing obstacles. High temperatures can also
cause expansion of the optical filter that can also result in failures.
We induce Class IV faults by spraying some oil on the optical filter.
We observe in Fig 5e that 𝐴out has significantly attenuated spikes
at each of the points that correspond to obstacle motion, but the
spikes are not high enough to cause 𝐶out to drop to LOW. This
results in the obstacle to be missed completely.

Failure in electronics (Class V) faults. These are usually elec-
tronic faults such as short circuits or open circuits. They can cause
the 𝐴out or 𝐶out values to be ‘stuck’ at certain anomalous value
such as HIGH (3.3 V) or LOW (0 V). As a result, these failures can
cause the obstacle to be completely missed as seen in Fig. 5f. The
𝐴out waveform here is a flat, horizontal line and lacks oscillations.

Insights into underlying physics The core insight here is that
𝐴out can shed light on the physical and electrical operating condi-
tions of a PIR sensor as opposed to the mere boolean occupancy
indicated by𝐶out. Thus, being able to snoop in on 𝐴out can capture
the interaction of IR radiation on the different sensor subsystems.
4.2 Frequency Domain Characterization

Till now we have showed 𝐴out signal can be used to detect various
failure scenarios. We transform time domain 𝐴out signal into the
frequency domain using Fast Fourier transform (FFT) to derive
robust features. FFT offers high resolution in the frequency domain
and deconstructs the frequencies and harmonics present in a signal.

We plot the FFT representations of 𝐴out corresponding to dif-
ferent faults in Figs. 6a– 6e as compared to a working sensor, all

under the presence of an obstacle. The y-axis plots the magnitude
of FFT coefficients and the x-axis plots frequencies in the human
range of motion (0 – 10 Hz). In case of a working sensor, we observe
2 big peaks and additional peripheral frequencies up to 4 Hz. The
frequency spectrum depends on the type of faults.

Class I faults We observe in Fig. 6a that a dislodged lens cap
(either partial or complete) leads to reduced information capture
(lower bandwidth) and as a result, the sensitivity in the periphery of
the sensors reduces. Note that there is just a single prominent peak
in the faulty sensor (at a slightly lower frequency when compared
to the normal sensor) that corresponds to the obstacle being per-
fectly aligned with the center of sensor as it passes. The magnitude
reduces sharply as it moves away from the center of the sensor.

Class II faults Fig. 6b plots the FFT for a sensor with deformed
lens cap. We note that Class II failures lead to significantly sup-
pressed primary peaks (approx. 10 db). In addition, the peripheral
frequencies are attenuated as observed in Class I.

Class III faults due to accumulation of foreign particles in the
lens, lead to reduced sharpness of frequencies.We observe in Fig. 6c
that the degradation starts with damping of the higher frequen-
cies. As the amount of dust increases, we observed the frequencies
getting increasingly damped until the object detection starts failing.

Class IV faults We observe in Fig. 6d that the frequencies
present in the output are heavily suppressed resulting in missed
obstacle detection. This is expected since the optical filter plays a
major role in filtering out the non-human range frequencies from
the thermal radiation and only passing through the frequencies cor-
responding to the human range. The presence of oil condensation
or heat sinks causes absorption of the thermal radiation resulting
in insufficient heat to cause pyroelectric effect.

Class V faults such as open and short circuits are easy to detect
due to the absence of any prominent frequencies. Consequently,
𝐴out is stuck at a value leading to only dc frequencies being present
in the output. This result is observed in Fig. 6e, where the𝐶out and
𝐴out pins are shorted on the board.
Summary: Frequencies present in FFT representations of 𝐴out
provide hints regarding status (i.e., working/failed) of PIR sensors.

5 FAULT DETECTION AND DIAGNOSIS

In §4, we analyzed the impact of failures on the characteristics of the
𝐴out output signal in both time domain and in frequency domain
using FFT. In §5.1, we show that in every type of failure, there exists
information about the failure and quantify the difference in physics
captured by FFT coefficients using a K-S statistic test [16].

5.1 Learnability of the Analysis

We performed a 2-sample Kolmogorov–Smirnov (K-S) statistic
test [16] to validate our hypothesis that the 𝐴out distributions from
both working and failed sensors are different. We performed the
tests at a significance level (𝛼) = 0.05, that results in a K-S statistic
threshold of 0.1 – a standard threshold for checking if sample differ-
ences in two distributions imply difference in population. Table 2
shows the K-S statistic (kstest2 in Matlab [17]) computed for each
class of failure relative to a working sensor in columns FC1 – FC5.
We make the following observations :
Failed sensors have different frequency characteristics com-

pared to a working sensor: Each failure class FC1 — FC5 has a
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Table 2: K-S Statistic Results: FC1-FC5 : failure class I-V.W :working sensor.

Failure FC1 FC2 FC3 FC4 FC5 W

K-S Test 0.41 0.33 0.49 0.65 0.95 0.09

Figure 7: Top 10 features selected using B-H procedure.

K-S statistic value > 0.1 when compared to a working sensor (W),
indicating that the distributions of faulty and working sensors dffer.
The worse the failure, higher the K-S statistic: A sensor with
oil condensation on the lens (C4) (a more pernicious fault leading
to missed obstacles) resulted in a K-S statistic of 0.65 compared to
0.33 for a sensor with lens deformation (C2) (milder fault resulting
in some blind spots). The K-S statistic computes the divergence
between the physics of failed and working sensors.
Working sensors have similar characteristics:We performed a
sanity check between distributions of multiple working sensors and
noticed the consistency among them in the frequency domain. Com-
puting the K-S statistic resulted in a value below the 0.1 threshold
implying similar physics as seen in Fig. 6f.

5.2 Feature Selection and Importance

We use the time domain and frequency domain features of the 𝐴out
signal to classify the sensor to either working or one of the faulty
classes. As the number of features that can be derived is huge (e.g.,
in our case 305), we use the Benjamini-Hochberg (B-H) feature
selection algorithm [3] to estimate and analyze feature importance
in the 𝐴out collected for working and each class of faulty sensors.

This technique is used offline with training data to decide which
features are useful in predicting the label of the sensor (e.g.,working
vs. class X). The output of B-H feature selection process is a feature
importance score (F-score) that indicates how useful or valuable
each feature is in the decision making process. The higher the
F-score, the more important the feature is to the prediction.

B-H feature selection process works by initially training an en-
semble of decision trees on all features, derived from both time
and frequency domain features as mentioned in Christ et al. [7]
and implemented in the open source library tsfresh [5]. It then
measures the prediction accuracy using every feature. This gives a
high accuracy at the expense of overfitting. Thereafter, each feature
vector is independently evaluated with respect to its significance
for prediction using hypothesis testing, assigning it a F-score. It
then iteratively prunes features having low F-scores, trains deci-
sion trees using these reduced features and measures prediction
accuracy. The process stops when a user-set threshold of accuracy
is met or when all the combinations have been tested.

Applying the B-H process to our training data containing both
faulty andworking sensors,we pruned 305 features for our entire data
set to obtain 10 features at a slightly better accuracy. Fig. 7. plots the
F-score for the selected 10 key features in both time and frequency
domains. These include: (a) FFT Variance that indicates how spread

Figure 8: Summary of Shapley Values showing FFT coefficients separate

faulty and working classes.

the frequency distribution is, (b) Autocorrelation that generalizes
periodicity or patterns in the time domain, and (c) Measures of
central tendency such as mean, median and change quantiles that
measure the time domain changes within a corridor. This process
is performed offline and the significance of the pruned feature set
is guaranteed by the B-H algorithm.

5.3 Monitoring Feature Performance using

Shapley Additive Explanations (SHAP)

Once the important features are identified using the B-H feature
selection process, we use the technique of SHAP [13] values to
explain or interpret the output of a prediction. SHAP uses game-
theoretic techniques to explain how the output of a prediction
changes by conditioning on every feature present in the reduced
feature set given by B-H process.

Fig. 8 shows an example of how SHAP values are analyzed for a
particular prediction on a classification between faulty and working
sensors. The features in red contribute to the sensor being predicted
as faulty, whereas the features in blue contribute to the sensor be-
ing predicted as working. In this prediction, the FFT coefficients
push the prediction to that of a faulty sensor while the mean, me-
dian and covariance push the prediction to a working sensor. The
base value is the average SHAP value output by the model for the
entire training dataset, and the value in bold is the SHAP value
for this particular prediction. We leverage an open-source library
implementation of the algorithm from Lundberg et al. [6, 13] that
sorts the features by the sum of SHAP value magnitudes over all
the samples and conditionally rejects the feature contributing the
lowest to the prediction. Thus, we use the feature explanations
from SHAP values to tune the model performance.

5.4 PIRMedic: Fault Detection & Analysis

Algorithm

We now present our algorithm PIRMedic towards fault detection
in PIR sensors. PIRMedic consists of 2 stages: (i) pre-deployment
(training) stage, wherein the reference 𝐴out values for a set of sen-
sors (both working and faulty) are collected in an offline manner
and analysed to extract key features and (ii) deployment stage,
wherein the features from a operational 𝐴out signal is matched
with previously extracted features in order to detect and isolate
faults. We next describe both the stages in detail.

5.4.1 Pre-deployment stage. We first collect 𝐴out from a set of
sensors, both working and faulty. The collected time series data
are labeled to form a training dataset. We perform the Benjamini-
Hochberg feature selection on this dataset to extract key features
such as FFT coefficients of 𝐴out for each class of sensor. This forms
a feature dictionary containing a smaller number of features along
with the failure as a label. We further verify the importance of these
features using SHAP analysis and refine if required. We then build
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Figure 9: Pre-deployment stage. Figure 10: Deployment stage.

Figure 11: Model Accuracy for different window sizes. We choose 1024 as

the default window size.

a classifier model to uniquely identify the failure in the sensor and
load this model into the edge device connected to the PIR sensor.

We now describe the steps involved (Fig. 9): 1 We deploy the
working and faulty sensors for a short duration (say few days) in
a real-world environment to collect realistic 𝐴out signals for low,
medium and high occupancy. Note this is a one-time activity per-
formed for a specific PIR sensor type/manufacturer. We used 15
sensors comprising a mix of working and faulty sensors capturing
failures in each class as our training set. 2 We note the label of
a sensor and split the 𝐴out values into equal-sized time windows
to calculate different time and frequency-domain features. 3 We
apply B-H feature selection process for each type of sensor to iden-
tify unique and key features. 4 We performed SHAP analysis to
understand the performance of each feature towards classification
and refine them accordingly. 5 We use the final set of features
along with class labels to build a classifier model and use random
forest as our classifier model. This model is then loaded onto the
edge devices for fault detection and analysis.

5.4.2 Deployment stage. This stage consists of the following steps
(Fig. 10): 6 First, the operational 𝐴out output signals for the de-
ployed sensors are collected. 7 We split the 𝐴out into equal-sized
windows using the pre-deployment window sizes. 8 We extract
the necessary features from the 𝐴out signal. 9 We use a classifier
to (a) isolate faulty from working sensors and (b) identify the class
of failure in the faulty sensor if applicable.

As mentioned earlier, the pre-deployment stage (to collect fea-
tures and build a classifier model) is a one-time activity. The fault
detection (steps 6 - 9 ) depends on the application requirements,
i.e., every hour, day or week.

6 IMPLEMENTATION

Our solution is designed using commodity off the shelf (COTS)
components. Our open sourced implementation2 includes:

2Available at: https://github.com/synercys/PIRMedic

Figure 12: Workflow of PIRMedic for fault detection and diagnosis.

(a) Edge Hardware consisting of – (i) a PIR sensor [23], (ii)
a bare-metal platform viz., Arduino Mega Microcontroller Unit
(MCU) for sensor data capture, and (iii) a linux-based platform viz.,
Raspberry Pi for performing the fault detection and diagnosis.

The Arduino MCU polls the sensor hardware signals (i.e., 𝐶out
and𝐴out) periodically over a GPIO interface.We poll the PIR sensors
at a frequency ≥ 20 Hz due to the Nyquist criterion as the human
motion information in the PIR sensor is between 0 – 10 Hz. The
Raspberry Pi platform performs the detection and analysis of faults
for the data captured at the Arduino MCU.

(b) Edge ImplementationWe used standard python libraries
such as tsfresh [5, 8] for FFT implementations to implement fea-
ture extraction, numpy for data preprocessing and xgboost [6] for
implementing the machine learning classifiers. The end-to-end
workflow of our solution is illustrated in Fig. 12.

6.1 Parameters of PIRMedic

(i) Size of Window: The collected 𝐴out waveform is split into
equal-size sample windows over which features are calculated. We
observed that using a window too small (e.g., 128) does not allow
us to capture sufficient features for a failure type and can lead to a
large number of false alarms. Also, a large window size (e.g., 8192)
leads to an overlap in the features of multiple failure classes leading
to a loss of accuracy. The variation of model accuracy as a function
of window size is shown in Fig. 11. We chose a window size of
1024 samples as it gave us a good tradeoff between time to capture
a window (50 seconds) and accuracy (> 98%).

(ii)Benjamini-Hochberg (B-H) Feature SelectionWhile there
are more than 300 features that can be derived for time series anal-
ysis of 𝐴out, B-H feature selection process (derived from parame-
terized hypothesis testing) [3, 7] prunes this to a lower number of
features that can sufficiently capture the physics of the system. We
observed that using more than 10 features did not contribute to a
significant increase in accuracy (beyond 98%) and can, in practice,
lead to lower performance due to overfitting as described in §5.2.

(iii) Classifier Model: We used a Random Forest classifier [24]
owing to the capability to classify data based on “entropy” or the
information gain. Random Forest uses an ensemble of trees and
has been shown to give high predictive accuracy and control over-
fitting in practice, both of which are issues with decision trees [24].
Additionally, Random Forests are amenable to interpretation by
techniques such as Shapley TreeExplainer that explains the features
influencing the prediction. Finally, we note that 𝐴out is compatible
with any classification algorithm.

7 EVALUATION

The evaluation is intended to answer the following questions – (a)
can we detect failures i.e., separate faulty sensors from working
sensors? and (b)what canwe learn about the failure? In other words,
can we perform diagnosis that can aid in replacing or repairing the

https://github.com/synercys/PIRMedic
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Figure 13: Deployment Scenarios used for evaluating our failure analysis.

sensor? We answer these questions in practical deployments, each
consisting of the following stages:

(a) Stage I: Failure Detection The goal of this stage is to isolate
defective, faulty sensors from functional, working sensors.
(b) Stage II: Failure Diagnosis In this stage, we diagnose the

failure by mapping it to the taxonomy defined in §3.3. In other
words, we seek to conclude whether it is the lens, pyroelectric or
electronics subsystem that contains the failure.
(c) Stage III: Fine-Grained Fault Analysis In this stage, we

learn details about the failure as precisely as possible. E.g., if we
identify a fault to be due to Class III failure, we seek to narrow it
down to see if it is due to deposition of dust or paper on the lens.

7.1 Real-world Deployments

We performed the following deployments across multiple scenarios –
(a) in the elevator of a building (§7.1.1), (b) in the lobby of a building
(§7.1.2), (c) in a starbucks coffee shop (§7.1.3). The different deploy-
ment scenarios, shown in Fig. 13, capture diverse environmental
conditions and challenges (heat, dust, humidity etc.). We used 15
sensors in total across all our deployments comprising of 5 working
sensors and 2 sensors belonging to each faulty class. A combination
of these was used in each of our deployments. These sensors were
deployed (Fig. 4) over a duration of 3 months and collected data
both during times of low occupancy (weekends, late nights) and
high occupancy (weekdays, working hours). Note that no private
data such as audio or video were captured during the deployments.

7.1.1 Deployment in a University Elevator (US). We deployed work-
ing and faulty sensors along the inside wall of an elevator in our
university research building (middle Fig. 13). The data collection
captured scenarios of both high and low occupancy during and
outside of business hours.In addition to faulty sensors, we placed a
working sensor to keep track of the actual motion in the elevator.
Fig. 14a plots 𝐶out and 𝐴out values captured by normal sensors
showing the actual traffic in the elevator on one of the days.The
vertical stripes on the graph showing the oscillations of 𝐶out (in
blue) are points of occupancy i.e., person entered/exited the eleva-
tor. Likewise, the regions of graph where there is no occupancy is
represented by a flat line, hovering around 3.7 V.

For faulty sensors, we measure the number of time windows
where an obstacle was captured or missed. The performance of
faulty sensors relative to a working sensor is tabulated in Fig. 14a.
When the lens cap is dislodged, it misses obstacles in 343 time win-
dows whereas the (thermal) breakage of the pyroelectric element
results in 247 misses. Overall, we observe that missed obstacles
are more common than false alarms. This ties into common obser-
vations in conference rooms operated with PIR sensor-controlled
lighting, where lights turn off even with occupants present.

As described in §5.4, PIRMedic collects the 𝐴out signals and uses
a machine learning model on their extracted features detect faulty
sensors. Using a random forest classifier, we observe that the confu-
sion matrix (Fig. 14b) shows that predicted label matches the true
label for each failure. We note that – (a) the working sensor has dis-
tinct characteristics compared to the faulty sensors and is isolated
correctly, (b) the faulty sensors with different failures in lens and
pyroelectric subsystem are identified to the failure class correctly as
observed by diagonal of the confusion matrix. Clearly, the features
of 𝐴out, derived by PIRMedic is able to differentiate between lens
being dislodged, lens being covered with tape, oil condensation on
the optical filter and the heat damage on the pyroelectric element.

7.1.2 Deployment in a University Lobby (US). We deployed our
sensors in the first floor lobby space of our university building. The
lobby deployment is noisier with fewer constraints on direction of
motion, compared to the confined space of an elevator.

Fig. 15a shows a 3 hour slice of the deployment. The vertical
stripes on 𝐶out correspond to traffic entering/exiting the lobby in
the field of view. The performance of the sensors deployed, in terms
of false detection and missed obstacles, is shown in the table in
Fig. 15b. The sensors with lens dislodged missed a large amount of
obstacles. This is due to the lack of focus of thermal radiation on the
pyroelectric element resulting in dispersion of radiation due to the
large lobby area. As a result of this failure, only obstacles that line up
in the reduced field of view, are captured. (This issue is not present in
an elevator due to its confined space.) Upon extracting the features
of the 𝐴out signals, and classifying it using the procedure in §5.4,
we observe the confusion matrix as shown in Fig. 15b. The high
fraction along the diagonal shows that a majority of sensor failures
are classified and identified correctly. Note that we observe some
misclassifications of sensor faults (e.g., for C). We argue that this is
due to the deployment area of a lobby being open and the limited
coverage area of the sensor, both of which can lead to imperfect
data at the periphery. Consequently, for traffic at the edges, the
reduced thermal radiations can lead to some misclassifications.

7.1.3 Deployment in a Starbucks (US). Wedeployed our PIR sensors
near the ordering queue of the coffee shop during business hours
to capture the typical foot traffic (left Fig. 13). Our deployment
captured linear, regularized bidirectional movement (entry followed
by exit of the region of interest) (Fig. 16a). Our deployment lasted
for a duration of 4 hours on a busy Friday evening.We observed that
out of 226 time windows (each containing 1024 samples), there were
missed obstacles across: (i) 27 windows in class I, (ii) 35 windows
in class II, (iii) 26 windows in class III and no windows in class IV.
The missed obstacles and false detections (none in this case) are
summarized in Fig. 16b. Using PIRMedic, we observe high fractions
along the diagonal of the confusion matrix; hence the predicted
label of sensor failure matches the true label.
7.2 Stage I – Failure Detection

We aggregated all the sensors (both working and faulty) to separate
faulty sensors (without specifying which class) from working sensors.
We collected FFT coefficients of 𝐴out on a pre-deployment lasting
1 week and performed daily collection of 𝐴out signals from all the
deployed sensors. We used a Random Forest classifier with specifi-
cations shown in Fig 17. Once predicted, we manually verified the
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(a)

(b)

Figure 14: Elevator Deployment (a) Occupancy : The graph is a 6 hour deployment during business hours, (b) Deployment Statistics and confusion matrix of

the classification model. Column titles: WIN→Total Number of Windows, MO→Misses Obstacle, FD→ False Detection.

(a)

(b)

Figure 15: Lobby Deployment (a)Occupancy graph during late evening from 6.45 pm to 9.45 pm at the lobby of our university building, (b)Deployment Statistics

and confusion matrix of the classification model. Column titles: WIN→Total Number of Windows, MO→Misses Obstacle, FD→ False Detection.

(a)

(b)

Figure 16: Starbucks Deployment Occupancy: Evening deployment from 4.45 pm to 8.45 pm. The second half has much lesser little foot traffic. (b) Deployment

Statistics and confusion matrix of the classification model. Column titles: WIN→Total Number of Windows, MO→Misses Obstacle, FD→ False Detection.

true status of the sensor and observed an accuracy of over 99% in
predicting if the sensor is working or faulty. Thus, FFT-based fea-
tures of 𝐴out were able to capture the physics, and hence separate
faulty sensor physics from working sensor physics.

7.3 Stage II – Failure Diagnosis

Diagnosing the cause of failures (i.e., class) requires further investi-
gation of 𝐴out from faulty sensors. Fig. 18a plots the CDF of FFT
coefficients obtained for working sensors and different faulty sen-
sors. The figure shows that although the distribution of working
sensors (bottom-most curve) is distinct from failed sensors, different
classes of failures have distributions that are not easily separable.
Thus, relying on merely the FFT is insufficient. Consequently, we
look at an additional 10 features as described in §5.2 — §5.3 and
shown in Fig. 7. Failure diagnosis leverages the combined feature
space to identify failure classes according to the taxonomy in §3.3.

We validated this across the multiple deployments in the wild —
Elevator (§7.1.1), Lobby (§7.1.2) and Starbucks (§7.1.3).
Note: Our real-world measurements demonstrate that features of
𝐴out extracted during training and B-H feature selection is robust
to variations in shapes and sizes of obstacles.

7.4 Stage III – Fine-Grained Failure Analysis

In fine-grained fault analysis, we point to the precise reason for the
fault where applicable. For example, in Class III faults it is useful

Figure 17: Fault Detection showing that faulty sensors isolated fromwork-

ing sensors by extracting FFT of𝐴out and using a Random Forest Classifier.

to distinguish between different foreign substances contaminating
the lens that can cause poor performance.

To investigate this, we selected the set of faulty sensors identified
as Class III faults in stage II: some covered with paper, some with
plastic tape and some with dust and observe the𝐴out output closely.
Although all the failure scenarios result in the obstacle beingmissed,
frequencies present in𝐴out are different in each case (Fig. 18c), due
to the distinct thermal absorption characteristics of the materials.
Hence, we observe that the FFT coefficients can separate Class III
failures into different fine-grained sub-classes as shown in Fig. 18b.

It is to be noted that fine-grained fault analysis does not work
in all cases. For example, differentiating between a lens puncture
(a hole in the lens) and a lens deformation (defect in lens curva-
ture), both examples of Class II failures, is complex. This is because
both lens puncture and lens deformations lead to blind spots in
the frequency spectrum. Thus, we need to use knowledge of the
subsystem physics before applying the fine-grained analysis.

Summary: (i) The FFT representation of𝐴out is used to perform
binary classification between working and faulty sensors, (ii) Con-
sidering multiple direct and derived time and frequency domain
signal characteristics of 𝐴out can diagnose the cause of failure in
the sensor and (iii) Fine-grained fault analysis is possible in select
failure cases (e.g., Class III) by reanalyzing the FFT waveforms.

8 DISCUSSION

Practicality: 𝐴out is an intrinsic signal that is present in all PIR
sensors. Commercial sensors typically do not provide easy access
to the 𝐴out signal. While there exists some commercial sensors
(e.g., [21, 22]) that expose 𝐴out, we believe that our work can pro-
vide further incentive to other manufacturers. In addition, existing
sensors can be modified to expose 𝐴out— most do as a test point on
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(a)

(b)

(c)

Figure 18: (a) CDF of FFT Coefficients showing different distributions depending on the class of faults.,(b) Fine-grained Fault Analysis,(c) 𝐴out waveforms

showing different behavior for paper, plastic and dust obstructions.

the PCB. This modification would not incur any additional hard-
ware costs, with the exception of a new pin connector.

PIRMedic can precisely determine if a sensor is working or faulty
in single time window comprising of 1024 samples. Since we sample
at 20 Hz, the end-to-end process of data acquisition, processing and
inference can be performed in a little over a minute.
Consistency of behavior: We observed that the inherent charac-
teristics of the 𝐴out signal, both in time and frequency domains,
remain consistent across different manufacturers. This is expected
since all PIR sensors use a pyroelectric element.
Design:We envision PIRMedic to be connected to a Building Mon-
itoring System (BMS) and provide real-time fault detection. We
intend to develop APIs for application developers to build higher-
level diagnostic tools on top of PIRMedic.
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