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Abstract— Learning representations that generalize across
tasks and domains is challenging yet necessary for autonomous
systems. Although task-driven approaches are appealing, de-
signing models specific to each application can be difficult in
the face of limited data, especially when dealing with highly
variable multimodal input spaces arising from different tasks in
different environments. We introduce the first general-purpose
pretraining pipeline, COntrastive Multimodal Pretraining for
AutonomouS Systems (COMPASS), to overcome the limitations
of task-specific models and existing pretraining approaches.
COMPASS constructs a multimodal graph by considering the
essential information for autonomous systems and the proper-
ties of different modalities. Through this graph, multimodal
signals are connected and mapped into two factorized spatio-
temporal latent spaces: a “motion pattern space” and a “current
state space.” By learning from multimodal correspondences
in each latent space, COMPASS creates state representations
that models necessary information such as temporal dynamics,
geometry, and semantics. We pretrain COMPASS on a large-
scale multimodal simulation dataset TartanAir [1] and evaluate
it on drone navigation, vehicle racing, and visual odometry
tasks. The experiments indicate that COMPASS can tackle all
three scenarios and can also generalize to unseen environments
and real-world data. 1.

I. INTRODUCTION

A fundamental facet of human intelligence is the ability
to perceive the environment and encode multimodal sensory
signals into complex neural representations [2], [3], which
are then used to complete a wide variety of tasks. Similarly,
learning representations that capture the underlying state of an
environment from different sensors, while taking into account
an agent’s dynamic capabilities is crucial for autonomous
systems. Such concise, jointly learned representations have
the potential to effectively transfer knowledge across tasks
and enable learning with fewer environmental interactions.
The ability to perceive and act is crucial for any embodied
autonomous agent and is required in many situations involving
different form factors and scenarios. For example, localization
(or being able to answer “Where am I?”) is a fundamental
question that needs to be answered by any autonomous agent
prior to navigation, this is often achieved via visual odometry.
Highly dynamic tasks, such as vehicle racing, necessitate colli-
sion avoidance and require precise understanding for planning
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a trajectory and meeting objectives. In both cases learning
geometric and semantic information from the environment is
crucial. Task-specific approaches produce promising results,
but they involve learning only the part of information tailored
for the intended tasks, which can be limiting in utility by
failing to generalize to new scenarios. We investigate whether
it is possible to build a general-purpose pretrained models
in a task-agnostic fashion, which can be useful in solving
various downstream tasks relevant to the perception-action
loops in autonomous systems.

Although pretrained models have shown strong perfor-
mance in domains such as NLP [4], [5] and computer
vision [6], [7], building such models for autonomous systems
brings unique challenges. First, the environments are usually
perceived through multimodal sensors, so the model needs the
ability to make sense of multimodal data. Existing multimodal
learning approaches primarily focus on mapping multimodal
data into joint latent spaces [8], [9], [10]. These approaches
are suboptimal for autonomous systems as they do not address
aspects such as differing sampling rate, temporal dynamics,
and geo-centric or object-centric spatial factors. These are
crucial factors in our scenario due to variations that arise from
sensor and actuator configurations in autonomous systems.
Secondly, autonomous systems deal with a complex interplay
between perception and action. The target learning space
is highly variable due to a large variety of environmental
factors, application scenarios, and system dynamics. This is
in stark contrast to language models that focus on underlying
linguistic representations, or visual models centered on object
semantics. Finally, unlike NLP and computer vision, there is
a scarcity of multimodal data that can be used to train large
pretrained representations for autonomous systems.

In this work, we introduce COntrastive Multimodal Pre-
training for AutonomouS Systems (COMPASS), a multimodal
pretraining approach for perception-action loops. COMPASS
builds a general-purpose representation that generalizes
to different environments and tasks. Unlike the prevalent
approaches, COMPASS aims to learn a generic represen-
tation by exploiting underlying properties across multiple
modalities, while appropriately considering the dynamics
of the autonomous system. Self-supervised learning using
a large corpus of multimodal data collected from various
environments allows the model to be completely agnostic to
downstream tasks.

Our design choices are informed by seeking answers to
two questions: 1) What information would be essential to
solve common tasks in autonomous systems? 2) How can
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we represent such information by learning from multisensory
multimodal data captured by autonomous agents? First, we
posit that information essential for autonomous systems lies
in a spatio-temporal space that models motion (ego-motion
or environmental), geometry and semantic cues. We also
observe that such information is typically perceived by an
autonomous agent through multimodal sensors. Consequently,
we propose a multimodal graph as a core building block
that models such spatio-temporal relationships and statistical
characteristics of different modalities (Fig. 1). Intuitively, the
graph maps all modalities into a factorized spatio-temporal
latent space comprising of two subspaces: a motion pattern
space and a current state space. The first subspace explicitly
models and handles the temporal and system dynamics of
autonomous systems, while the latter is designed to encode
geometric and semantic information coming from modalities
representing the states at certain local time points, e.g.
a single RGB frame. Training COMPASS is then geared
towards learning to associate multimodal data from a large
training corpus. Such a factorized representation captures
important spatio-temporal structure important for various
downstream tasks while allowing different sensors to use
the same pretrained model. By evaluating the pretrained
COMPASS on three downstream tasks, i.e. Vehicle Racing,
Visual Odometry, and Drone Navigation, with variations
across environments, dynamics, and application scenarios,
we observe that COMPASS generalizes well to different
tasks, unseen environments and real-world challenges even
in the low-data regimes.

II. RELATED WORK

Representation learning has been an area of great interest
in machine learning as well as in robotics. Self-supervised
learning has been shown to be effective in vision particularly
through the use of contrastive objectives [11], [12], [6], [7].
Recently, there is growing interest in learning “object-centric”
representations of visual scenes [13], [14]. Contrastive learn-
ing has also been applied to reinforcement learning to match
data augmentations with raw observations [15].

Learning multimodal representations has been examined
in several domains such as vision-language [16], [17], vision-
audio [18], [19], image registration [20], [21], and video
understanding [9], [22]. Tsai et al. [23] present a framework
learning intra-modal and cross-modal interactions from input,
and Alayrac et al. [24] present a multimodal learning approach
for text, audio and video. Inspired by the success of large-
scale pretraining in the text domain [4], [5], pretrained models
have also been developed for vision-language tasks [25], [26],
[27]. A natural extension of multimodal learning algorithms
has been applied to the multi-task learning setting [28], [29],
[30]. Numerous surveys on multimodal learning are also
largely focused on vision, text and speech [31], [32], [33].
Baltrusaitis et al. [34] point out the opportunity for co-learning
with multimodal data where knowledge from one (resource
rich) modality can be exploited in modeling another (resource
poor) modality.

Fig. 1: We introduce COntrastive Multimodal Pretraining for AutonomouS
Systems (COMPASS). Given spatial and temporal modalitiesMs andMm.
COMPASS learns two factorized latent spaces, i.e., a motion pattern space
Om and a current state space Os, using multimodal correspondence as the
self-supervisory signal.

Autonomous systems require rich, well-grounded represen-
tations and benefit from the existence of multiple sensors of
different modalities. Robotics tasks such as manipulation have
been shown to benefit from object-centric representations [35],
[36], and combining geometry has been shown to be effective
for navigation tasks. Multimodal representation learning has
been applied to robotic manipulation and grasping in the
form of visuo-tactile representations [37], as well as scene
understanding and exploration by combining RGB and depth
[38], and human robot interaction [39]. Cross-modal repre-
sentation learning has been combined with imitation learning
to result in drone navigation policies [40]. Multi-task learning
has been examined for self-driving under different modes
[41] and visual odometry/semantic segmentation [42]. Instead
of leveraging specific designs which are tailored for each of
these tasks, here we propose a general-purpose representation
learning approach in the context of the perception stack
of an embodied autonomous agent. With the single unified
pretraining model, different tasks can hence be easily achieved
with a fast finetuning on a small amount of data.

III. APPROACH

We set out to create a model that can be pretrained
on simulated environments providing data from different
modalities. Our goal is to learn a model that can produce
general-purpose representations and be further adapted to
various autonomous tasks. We posit that autonomous systems
need representations that encode both the current state of
the environment as well as the temporal dynamics. As such,
we propose a multimodal graph that respects the underlying
spatio-temporal relationship between modalities (Section III-
A), and use it as the basis for designing contrastive learning
objectives (Section III-B) to learn two factorized latent spaces
that model them, respectively.

A. Multimodal Graph Construction

Given a set of multimodal data {M}N with N modalities,
existing multimodal learning approaches mainly lie in two
folds: 1) learning a joint common multimodal latent space,
which maps all modalities into a common latent space. It
benefits from the simple design, while suffers from the
issue that different complementary properties across various



Fig. 2: Three types of connections. Mi
s,t: i-th spatial modality at time

step t. Mi
m,δt: i-th temporal modality in a time window δt. zit: extracted

representation from modality i at time t, z′it : the latent code mapped by
spatial projection head Fs. z′it→t+j : the latent code projected by temporal
projection head Fm. cit→t+j : context vector induced by aggregation network
G. ẑ: predicted latent code. Ei: modality encoder for modality i. Different
color signifies different modality. The modules in shaded gray share weights
among all modalities, i.e. Fs, Fm, G and P .

modalities are not fully utilized. Projection to a shared single
latent space results in a loss of information. 2) learning
disjoint cross-modal latent spaces, which learns multimodal
data by capturing the cross-modal relation between each pair
of modalities. Though, it enables the specificity of different
modality, scaling it to a more complex setting, e.g., more than
two modalities, presents several computational challenges.

Spatio-temporal Multimodal latent space. The model we
propose enables us to model the complementary information
across the multimodal signals in a scalable manner via a
novel multimodal graph design. The key insight we build
upon is that the information essential for autonomous systems
lies in a spatio-temporal space that can be partitioned to
model temporal statistics and spatial and/or semantic aspects.
Consequently, we start by first categorizing our multimodal
data streams into two classes: spatial modalities and temporal
modalities. Given a set of N multimodal data streams {M}N
with n spatial modalities {Ms}n and l temporal modalities
{Mm}l, we then jointly learn two latent spaces, a “motion
pattern space” Om and a “current state space” Os.

Let {M1
m,M2

m, ...,Ml
m}δT denote a data sequence from

temporal modalities that are time-synchronized within a
window δT , which share a certain motion pattern arising
from the agent or the environment. As shown in Fig. 2,
we construct temporal connections by mapping them to the
common motion pattern space Om through a projection head
Fm, i.e. Fm({Mi

m}
i∈[1,l]
δT ) → Om. Similarly, we construct

spatial connections by mapping data from spatial modalities
at each discrete time step t, i.e., {M1

s,M2
s, ...,Mn

s }t, to
the common current state space Os through a projection
head Fs, i.e. Fs({Mi

s}
i∈[1,n]
t )→ Os. Furthermore, to better

associate spatial modalities with the temporal ones, we rely
on the intuition that multiple instances of one/more spatial
modalities from a window of time can be associated with
observations from a temporal modality from that same window
of time. Thus, a spatio-temporal connection is added by
aggregating sequential data from spatial modalities using
an aggregation head G and mapping them to the common
motion pattern space Om using the projection head Fm, i.e.
Fm(G({Mi

s,t,Mi
s,t+1, ...,Mi

s,t+δt}i∈[1,n]))→ Om.

B. Training Objective
Contrastive Objective for Temporal Connections. To

encode temporal information in the motion pattern space Om,
we solve a contrastive learning objective that associates pairs
of time-synced data from different modalities. Intuitively, if a
model successfully captures temporal information from one
modality, it should have the predictive capacity to model a few
future time steps for itself as well as the other modalities. We
formulate this intuition into a contrastive learning objective.

Given a set of m time-synced temporal modalities, we
define positive pairs as a sequence of embeddings for the true
observations [zt+1, zt+2, ..., zend]Mi∈[1,m] and a sequence of
embeddings predicted recursively from an anchor modality
[ẑt+1, ẑt+2, ..., ẑend]Ma , where Ma is the anchor modality.
The positive pairs from m modalities include the true future
observations of anchor modality, its own, and the remaining
m− 1 modalities. Thus, the comparison is performed both in
an intra-modal and a cross-modal fashion. As shown in Fig. 3,
the modality-specific encoders E, extract embeddings from
each modality. These are then mapped to the common motion
pattern space Om through the motion pattern projection
head Fm. A prediction head P is added on top to perform
future prediction. The contrastive loss is computed between
the predicted future representations and their corresponding
encoded true representations. Our contrastive objective is
then:

Lm = −
∑
t,i

log
exp(ẑTt,azt,i)

exp(ẑTt,azt,i) +
∑
j 6=t exp(ẑ

T
t,azj,i)

(1)

where t, i, a denote the time, modality, and anchor indices.
Contrastive Objective for Spatial Connections. The

current state space Os is expected to encode geometric and
semantic information by associating the data from spatial
modalities Ms together. We again utilize a contrastive
objective to formulate this idea.

Given n spatial modalities, we define the positive pairs as
the representation from an anchor modality at time step t,
i.e. zt,a, and the representations induced by all the spatial
modalities at the same time step t, i.e. {zt,i}i∈[1,n]. The
negative pairs are sampled from representations induced by
spatial modalities at different time steps. We formulate this
instance level contrastive loss as:

Ls = −
∑
t,i

log
exp(zTt,azt,i)

exp(zTt,azt,i) +
∑
j 6=t exp(z

T
t,azj,i)

(2)

where t, i, a denote time, modality and anchor, respectively.
Note that the anchor representation is sampled from Os, i.e.
Fs(E(Ma)) → za. This is different from Eq. (1) where
the anchor is the estimated representation induced by the
prediction head, i.e. P(Fm(E(Ma)))→ ẑa. Therefore, while
Eq. (1) computes contrastive loss through future prediction,
Eq. (2) computes it at an instance level.

Objective for Spatio-temporal Connections. The spatio-
temporal connections encode motion patterns from con-
secutive observations of spatial modalities. Given a se-
quence [Ma,t,Ma,t+1, ...,Ma,t+δt] from an anchor modal-
ity Ma ∈ {Ms}n, we obtain embeddings using the



Fig. 3: Pretraining pipeline of COMPASS. Mi
s,t denotes the i-th spatial modality at time step t. Mi

m,δt denotes the i-th temporal modality in a time
window δt. zit denotes the extracted representation from modality i at time t, z′it is the latent code mapped by spatial projection head Fs. z′it→t+j is the
latent code projected by temporal projection head Fm. cit→t+j denotes the context vector induced by aggregation network G. ẑ represents the predicted
latent code. Ei is the modality encoder for modality i. Different color signifies different modality. The modules in shaded gray share weights among all
modalities, i.e. Fs, Fm, G and P .

modality encoder, i.e. E([Ma,t,Ma,t+1, ...,Ma,t+δt]) →
[za,t, za,t+1, ..., za,t+δt]. We then use the aggregation network
G to project them to Om and produce an aggregated context
vector ca, i.e. G([za,t, za,t+1, ..., za,t+δt]) → ca. Given this
context vector, we can compute future predictions similar
to the way the motion pattern loss was computed, i.e., by
inputting ca to P for future prediction as P(ca) → ẑa.
To this end, we again utilize Eq. (1) to minimize the
contrastive objective of Lsm. Our learning objective is:
L = Lm + Ls + Lsm.

IV. EXPERIMENTS

The experiments aim to demonstrate the effectiveness of
COMPASS as a general-purpose pretraining approach. We
tackle three downstream scenarios that are representative
of autonomous system tasks: vehicle racing (Section IV-
A), visual odometry (Section IV-B), and drone navigation
(Section IV-C), for all of which we finetune a single pretrained
COMPASS model.

Through our experiments, we explore the following ques-
tions:
1) Can COMPASS adapt to unseen environments and real-
world scenarios? COMPASS is pretrained on simulation
data (TartanAIR [1]) and we demonstrate experiments on a
real-world benchmark (KITTI [43]) to understand sim2real
performance (Section IV-B). Similarly, our experiments with
the vehicle racing task investigate how well we can generalize
to completely unseen environments (Section IV-A).
2) What are the benefits of COMPASS when compared
to other representation learning approaches? We compare
COMPASS with task-specific approaches and representative
pretraining/multimodal learning approaches in Section IV-A).
3) Can COMPASS improve data efficiency? We compare
models finetuned over COMPASS representations to task
specific models trained from scratch as we vary the data set
size, as we analyze the learning performance (section IV-C).

Fig. 4: Samples from TartanAIR and the downstream task datasets. Notice
the difference in the visual scene: a soccer field (drone navigation), a racing
track with varying backgrounds (vehicle-racing), and a real world scene
(VO).

TABLE I
VARIOUS DATASETS USED IN OUR EXPERIMENTS.

Dataset Usage Scale Env.

TartanAIR Pretrain 1M 16
AirSim-Car Vehicle Racing 17k 9
KITTI Visual Odometry 23K 11
Drone-Gate Drone Navigation 3k 1

Pretraining. We use a 3D-ResNet18 [44] architecture for
the encoder for each modality Em, a two-layer CNN for the
future prediction head P , and a bidirectional ConvGRU [45]
for the aggregation head G (shared across modalities) We
use the TartanAIR [1] dataset for pretraining that contains
400K sensor samples from diverse environments including
indoor, outdoor, urban, nature, and sci-fi scenes. The dataset
is generated with a simulated pinhole camera, and provides
multimodal signals. We pretrain COMPASS on 16 environ-
ments of TartanAIR with data from three modalities: RGB,
depth, and optical flow. Sample data from the pretraining
dataset can be seen in Fig. 4 along with the downstream task
datasets. In Table I, we list some details about the extent of
data used for pretraining and task-specific finetuning.



TABLE II
RESULTS ON VEHICLE RACING EXPERIMENTS. THE NUMBERS ARE

MEAN/STD OF L1 ERRORS ON STEERING ANGLE PREDICTION OVER 5
RUNS.

Model Seen environment Unseen environment

SCRATCH 0.085 ± 0.019 0.120 ± 0.009
CPC 0.037 ± 0.012 0.101 ± 0.017
CMC 0.039 ± 0.013 0.102 ± 0.012
JOINT 0.055 ± 0.016 0.388 ± 0.018
DISJOINT 0.039 ± 0.017 0.131 ± 0.016
COMPASS 0.041 ± 0.021 0.071 ± 0.023

A. Vehicle Racing

Task and setting. The goal here is to enable autonomous
vehicles to drive in a competitive Formula racing environment.
We use the AirSim-Car dataset [46] that provides 9 simulated
racetrack environments in the AirSim simulator, each with
2 lanes separated with different colored traffic cones. The
environment contains visual distractors such as ad signs,
tires, grandstands, and fences, which help add realism and
increase task difficulty. The control module is expected to
predict the steering angle such that the car can successfully
maneuver through the tracks and avoid obstacles. We construct
a perception module with the RGB encoder from COMPASS
pretrained on TartanAIR and define a control module as a two-
layer MLP with a prediction head that outputs the steering
wheel angle (normalized to [0, 1]). We finetune the model on
the AirSim-Car dataset with L1 loss measuring the per-frame
angle discrepancy.

Baselines. We compare COMPASS with a model trained
from scratch (Scratch), 2 pretraining approaches (CPC [11]
and CMC [10]), and 2 multimodal learning approaches
(JOINT and DISJOINT). Scratch is directly trained on
the AirSim-Car dataset without pretraining, whereas the
pretraining and multimodal learning approaches are pretrained
on TartanAIR before finetuning on the AirSim-Car dataset.
More details on the baselines:
• Scratch trains a randomly initialized network (the same

architecture as ours) from scratch.
• CPC [11] is a contrastive learning approach that learns

representations by predicting the future representations in
the latent space.

• CMC [10] is a contrastive learning approach that captures
information shared across modalities. Unlike CPC, it learns
from multiple views and the contrastive loss is defined at
an instance level rather than in a predictive manner.

• JOINT learns multimodal data from a single joint latent
space by mapping modalities with a single projection head.

• DISJOINT learns multimodal data from disjoint latent
spaces. Other than using a single projection head, it creates
a cross-modal latent space for each modality pairs, and all
of the latent spaces are disjoint.
Can COMPASS generalize to unseen environments?

We explore the hypothesis pretraining can help with general-
ization to unseen environments. Consequently, we compare
COMPASS with Scratch (no pretraining) and the other
pretraining approaches: CPC, CMC, JOINT, and DISJOINT.
We evaluate these models in two settings: 1) trained and

(a) Train error profile (b) Validation error profile

Fig. 5: Comparison of train and test error profiles for vehicle racing between
COMPASS, a model pretrained only with RGB modality, and a model trained
from scratch for the task.

evaluated on the same environments (“seen”); 2) trained
and evaluated on different environments (“unseen”). Table II
shows that overall, there is a gap between Scratch and
COMPASS.

Can COMPASS benefit from multimodal pretraining
regime? We investigate the effectiveness of pretraining on
multimodal data by analyzing loss curves from different
pretrained models on the same ‘unseen’ environments. Fig. 5
compares the train/validation loss curves of COMPASS, RGB,
and Scratch over five random seeds. Here RGB is the
model pretrained by using the same backbone and training
objectives with COMPASS, but only pretrained with RGB
modality. By comparing COMPASS with RGB, we observe
that pretraining on multimodal data helps COMPASS achieve
the best performance overall. Also, both of these pretraining
models show large gaps when compared to a model trained
from scratch (Scratch). When comparing Fig. 5a to Fig. 5b,
we also see that Scratch suffers more from an overfitting
issue than the other two models.

B. Visual Odometry

Task and setting. Visual odometry (VO) aims to estimate
camera motion from consecutive image frames. It is a
fundamental component in visual SLAM and is a widely used
for localization in robotics. Note that we focus on a simple
visual odometry task, which only takes in two consecutive
images as inputs. This is different from full-fledged SLAM
systems [47], [48], [49], which utilize key-frame optimization
in the back-end - our task can be considered as the pose
tracking module in the SLAM front-end.

We evaluate COMPASS for the VO task using a real-
world dataset KITTI [43] which is one of the most widely
used benchmarks in the VO/SLAM literature. It contains
11 labeled sequences including 23,201 image frames in a
driving scenario. On this dataset, we examine the general-
ization ability of COMPASS that was pretrained purely on
simulation data to the real-world data. We attempt the VO task
using a model designed as a two-stage structure, following
TartanVO [50]. In the first stage, an off-the-shelf pretrained
optical flow estimation network, PWC-Net [51], is utilized to
convert consecutive RGB image pairs into optical flow images
by extracting the dense correspondence information. In the
second stage, a pose network estimates the camera motion



TABLE III
COMPARISON OF TRANSLATION AND ROTATION ERRORS ON KITTI

DATASET. VISO2-M AND ORB-SLAM ARE GEOMETRY-BASED, WHILE
THE OTHERS ARE LEARNING-BASED APPROACHES. METRICS FOR

COMPASS AND SCRATCH AVERAGED OVER FIVE RANDOM SEEDS.

Methods
2 Seq. #09 Seq. #10

trel rrel trel rrel

VISO2-M [52] 4.04 1.43 25.2 3.8
ORB-SLAM† [47] 15.3 0.26 3.71 0.3
DeepVO∗† [53] N/A N/A 8.11 8.83
Wang et al.∗† [54] 8.04 1.51 6.23 0.97
TartanVO‡ [50] 6.00 3.11 6.89 2.73
UnDeepVO∗ [55] N/A N/A 10.63 4.65
GeoNet∗ [56] 26.93 9.54 20.73 9.04
SCRATCH∗ 1.88 0.74 3.05 1.10
COMPASS∗ 1.90 0.78 3.14 1.11

(a) (b)

Fig. 6: Comparison of the KITTI 9 and 10 trajectories predicted by different
approaches. TartanVO [50] is a learning-based VO (only relies on two frames,
same as ours), and ORBSLAM2 [47] is a geometry-based SLAM system
(includes multi-frame optimization).

based on the optical flow. In our case, we utilize the pretrained
optical flow encoder from COMPASS coupled with a 2-layer
MLP prediction head as the second-stage pose network, so
that we can evaluate the effectiveness of COMPASS for the
flow modality. The model is asked to estimate the camera
translation and rotation.

Can COMPASS be adapted to real-world scenarios?
In this experiment, we finetune the model on sequences
00-08 of KITTI and test it on sequence 09 and 10. For
comprehensive investigation, we compare COMPASS with
both SLAM methods and visual odometry methods. The
results are shown in Table III using the relative pose errors
(RPE) on rotation and translation, which is the same metric
used on KITTI benchmark. The first three [47], [48], [49] are
SLAM methods that perform optimization on multiple frames
to optimize the trajectory. Other baselines are VO methods
that do not contain backend optimization. We compared
against both geometry-based VO (VISO2-M [52], ORB-
SLAM2 [47]) and learning-based VO, including supervised
methods (DeepVO [55], Wang et. al [53], TartanVO [50])
and unsupervised methods (UnDeepVO [55], GeoNet [56]).
We note here that the baseline methods apart from TartanVO
use RGB images directly as inputs to their models whereas

2trel: average translational RMSE drift (%) on a length of 100-800 m.
rrel: average rotational RMSE drift (◦/100m) on a length of 100-800 m.
∗: the methods are trained or finetuned on the KITTI dataset. †: the methods
use multiple frames to optimize the trajectory after the VO process. ‡: the
method is trained on large amount of labeled data.

COMPASS and TartanVO use an optical flow network and
perform pose estimation from flow data. TartanVO is a VO-
specific pretrained model, which unlike the other learning
based approaches is not finetuned on KITTI data.

Using the pretrained flow encoder from COMPASS within
our VO pipeline achieves comparable results when comparing
with other VO-specific approaches including SLAM methods.
Fig. 6 shows the predicted trajectories of sequences 09 and
10 compared to ground truth. For clarity, we also select one
representative model from the geometry-based and learning-
based approaches each. We can see that, when pretrained
purely on simulation data, COMPASS adapts well to real-
world scenarios. We also show the results where the pretrained
flow encoder from COMPASS is intialized with random
parameters (depicted as Scratch). As shown in in Table III, we
observe that the performance of COMPASS and Scratch are
fairly close to each other. We hypothesize that the gains we are
seeing on the VO task using the COMPASS architecture might
primarily be due to the network architecture. For instance
the existing pre-trained component in the VO pipeline to
estimate optical flow might be helping much more than the
fine-tuning. Another possible reason is our current reliance on
RGB as the anchor modality. It might be possible to further
the performance by training the network without relying
solely on the RGB modality as an anchor. Finally, using
regular contrastive loss has been shown to have limitations
in capturing dense geometry information [57].

C. Drone Navigation

Task and setting. The goal of this task is to enable
a quadrotor drone to navigate through a series of gates
whose locations are unknown to it a priori. It takes as input
monocular RGB images and predicts the velocity command.
We construct the module by adding a policy network on top
of the RGB encoder from pretrained COMPASS. We use
a dataset from a simulated environment in AirSim Drone
Racing Lab [58] where the environment contains a diverse
set of gates varying in shape, sizes, color, and texture, through
which a drone is flown to obtain the velocity commands.

In Fig. 7, we compare the validation errors of the x, y, z,
and yaw velocity predictions from a finetuned COMPASS
model with those of a model trained from scratch. We can
observe that finetuning COMPASS for this velocity prediction
task results in better performance than training a model from
scratch, and reaches low errors quicker than the scratch model.

Can COMPASS improve data efficiency? Furthermore,
we observe that finetuning pretrained COMPASS models
exhibits more data efficient learning than training models
from scratch. Fig. 8 compares finetuning performance with
different amounts of data to training from scratch, over five
different seeds. As we reduce the amount of training samples,
model finetuned on COMPASS generalizes better than the
model trained from scratch. Also, to match the performance of
a Scratch model trained on 100% data, the model finetuned
on COMPASS only required around 50% of the data.



Fig. 7: Comparison of validation error profiles of velocity predictions between COMPASS and a model trained from scratch.

Fig. 8: Comparison of average velocity errors between COMPASS and
Scratch with varying sizes of the finetuning dataset. We see that COMPASS
consistently reaches a lower error even in the low-data regime.

V. CONCLUSION

We introduced COntrastive Multimodal Pretraining for
AutonomouS Systems (COMPASS), a general purpose pre-
training approach that learns multimodal representations for
various downstream autonomous system tasks. In contrast
to existing task-specific approaches in autonomous systems,
COMPASS is trained entirely agnostic to any downstream
tasks, with the primary goal of extracting information that is
common to multiple tasks. COMPASS also learns modality
specific properties, allowing it to encode the spatio-temporal
nature of data commonly observed in autonomous systems.
We demonstrate that COMPASS generalizes well to different
downstream tasks – vehicle racing, visual odometry and
drone navigation – even in unseen environments, real-world
environments and in the low-data regime. More work is
required for improving the local geometric information
present in the learned representations, and to ensure encoders
corresponding to all modalities can learn sufficiently strong
features. Extending the ideas presented here to even more
data modalities, especially with different sampling rates and
understanding scaling laws [59] for such models is also
important future work.
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