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Abstract
Mobile GPU, as a ubiquitous and powerful accelerator, plays an im-
portant role in accelerating on-device DNN (Deep Neural Network)
inference. The frequent-upgrade and diversity of mobile GPUs re-
quire automatic kernel generation to empower fast DNN deployment.
However, current generated kernels have poor performance.

The goal of this paper is to rapidly generate high-performance
kernels for diverse mobile GPUs. The major challenges are (1)
it is unclear about what is the optimal kernel due to the lack of
hardware knowledge; (2) how to rapidly generate it from a large
space of candidates. For the first challenge, we propose a cross-
platform profiling tool, the first to disclose and quantify mobile GPU
architecture. The result demystifies the hardware bottleneck, and
also directs the solution for the second challenge by exposing the
unique high-performance hardware feature, identifying inefficient
kernels against hardware constraints, and specifying performance
bound for kernels.

Directed by that, we propose a mobile-GPU-specific kernel com-
piler Romou. It supports the unique hardware feature in kernel imple-
mentation, and prunes inefficient ones against hardware resources.
Romou can thus rapidly generate high-performance kernels. Com-
pared to the state-of-the-art generated kernels, it achieves up-to
14.7× speedup on average for convolution. Up-to 99% search space
is pruned. The performance is even up-to 1.2× faster on average
than the state-of-the-art hand-optimized implementation.

*Work is done during internship at Microsoft Research.
†Corresponding author.
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1 Introduction
Mobile applications provide vast deployment scenarios for DNNs.
On-device DNN inference is gaining prevalence compared to the
server counterpart, due to its specific advantages in privacy protec-
tion, network resilience, and quick response.

Mobile GPUs are powerful, ubiquitous, and accessible accelera-
tors. For example, the theoretical performance of Adreno 640 GPU
on Google Pixel4 is 890 GFLOPS, 6× of its CPU performance. Al-
most every phone is equipped with a GPU and all these GPUs can be
interfaced with standardized APIs. Dedicated DNN accelerators, on
the other hand, are only available on a small fraction of devices and
lack unified APIs. Therefore, mobile GPUs play a more and more
critical role in accelerating on-device inference.

However, current DNN deployment on mobile GPUs requires
huge human effort. Since different GPUs or tensor sizes prefer
different kernel implementation, current general practice, such as
TFLite [29] and Mace [35], is to manually optimize kernels for dif-
ferent settings. Unfortunately, this is not scalable considering the
many GPU versions in the market and the frequent upgrade [10].
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Therefore, automatic tensor kernel generation is essential for
DNN deployment on mobile GPUs. Unexpectedly, although the
state-of-the-art kernel generator [7] can achieve >90% peak per-
formance on server GPUs, the performance is very poor on mobile
GPUs, e.g., <10% peak performance on Adreno 640 GPU. Besides,
automatic kernel generation searches for a good kernel implemen-
tation from a huge implementation space for a tensor computation.
Current searching takes hours for one DNN model. This is infeasible
considering the thermal throttling on mobile devices.

The goal of our work is to rapidly generate high-performance
tensor kernels on diverse mobile GPUs. The major challenges are:
(1) it is unclear what is the optimal implementation and performance
bound; and (2) how to rapidly generate implementations approaching
the bound from a large space of possible implementations.

The first challenge has been a long-term mystery for mobile DNN
developers. Even the state-of-the-art hand-written kernels (by Mace)
can only reach about 26% peak performance. None of works before
can answer the questions because: (1) mobile GPUs are all black-
box due to frequent upgrade, vendor customization and intellectual
property protection; (2) profiling tools for mobile GPUs only report
limited performance events, not adequate to expose bottlenecks; (3)
kernel compilers for mobile GPUs are closed source and immaturely
implemented. No low-level instructions (e.g., CUDA PTX) or binary
disassembling tool (e.g., nvdisasm) [37] are provided.

To tackle this challenge, we propose a cross-platform profiling
tool named ArchProbe, which is the first one to expose and quantify
mobile GPU architecture, including register usage, the whole cache
hierarchy, hardware parallelism, etc. The design overcomes specific
profiling difficulties on mobile GPUs, such as uncertain compiler
behavior and no fine-grained timing. It minimally assumes that the
profiled device has a general SIMT (Single Instruction Multiple
Threads) architecture, which allows profiling on a variety of GPUs
conforming to the standard APIs.

The profiling demystifies the hardware bottlenecks that limit
inference performance: the limited number of registers and cache
bandwidth. It also reveals the solution for the second challenge in
three aspects. (1) It exposes the unique high-performance feature,
texture cache, on mobile GPUs, which should be used in kernels for
best performance. The high-performance feature on server GPUs,
i.e., local/shared memory, however, has inferior performance on
mobile GPUs. The fundamental difference of server and mobile
GPUs is because mobile chip vendors prefer to optimize texture
access for more generalized use cases under limited cost and chip
area. (2) It identifies inefficient implementations over/under-utilizing
hardware resources that should be excluded to accelerate kernel
generation. (3) It specifies the hardware performance bound that
generated kernels can approach.

Related works on code generation [1, 7, 48, 49] lack hardware
profiling and overlook the difference between mobile and server
GPUs. They do not support texture cache and include all inefficient
implementations in the search space, leading to poor performance.

Empowered by the profiling, we propose a mobile-GPU-specific
DNN kernel compiler named Romou. It features two techniques that
can rapidly generate high-performance kernels: (1) the texture cache
support across the compiler stack including the user interface, com-
piler IR (Intermediate Representation) transformation, and kernel
generation. To overcome the challenge of costly address calculation,

User interface

Define compute: 
e.g. B = A + n
compute ( input.shape, 
Lambda n,c,h,w,p: 
A[n,c,h,w,p]+n, name="B" ) 

Define search space:
Schedule primitives and 
configurations: {
Split into blocks: 4, 8, 10 …
Loop unroll: 2, 3, 4 … 
Vectorization: 1, 2, 4 …}

Latency 
predictor + 

Configuration 
selector

__kernel void addn ( global 
float* A, global float* B) {

for(i=0; i<block; i++)

B[i]=A[i]+n; }

Device

Explore 
search space 

Code generation 

Latency feedback to improve 
predictor and selector  

Latency 
measurement

Figure 1: Flow of automatic code generation.
Romou also introduces address-calculation elimination as a com-
piling pass; (2) hardware-aware search space pruning that greatly
prunes inefficient implementations against hardware constraints. To
avoid repetitive pruning setting for each kernel, Romou integrates
the pruning in the compiling process that can apply to all kernels,
and abstract the hardware details from users.

For evaluation, two representative Adreno and one Mali GPUs
are picked, since Adreno and Mali take 79% of the mobile GPU
market [6]. Compared to the state-of-the-art DNN compiler i.e.,
the TVM mobile GPU backend [33], Romou achieves substantial
speedup. For example, on Adreno 640, the average speedup is 14.7×
for 1×1 convolution, 8.6× for 3×3 convolution, 8.1× for depth-wise
convolution, and 8.1× for fully connected operator. This speedup
is due to Romou’s utilization of efficient hardware features on mo-
bile GPUs. Depending on the operator hyperparameters and search
space definition, Romou can reduce the search space by >90% and
converge to the global optima in much reduced time.

Compared to the state-of-the-art hand-tuned kernels of Mace, the
average performance improvement is 24% for 1×1, 23% for 3×3,
49% for depth-wise convolution, and 120% for fully connected.
This speedup is because Romou can automatically customize imple-
mentations for each hyperparameter setting. Although theoretically
hand-tuned kernels could achieve similar or better performance than
Romou, it is too costly to tune the kernel by hand for each hyperpa-
rameter setting.

To sum up, the contributions of the paper include:
• Propose a profiling tool ArchProbe1 which is the first to

expose and quantify the architecture of mobile GPUs.
• Identify the high-performance hardware feature and perfor-

mance bottleneck on mobile GPUs.
• Propose kernel compiler Romou for mobile GPUs which

supports the use of high-performance hardware feature and
prunes inefficient implementations.
• Implement Romou and achieve significant speedup compared

to other auto-generated and hand-optimized kernels in much
reduced searching cost.

2 Background and Motivation

2.1 Poor performance of generated kernels
Search space of kernel generation Fig. 1 shows the general flow
of automatic kernel generation. DNN kernel generators normally
separate the definition of tensor compute and possible implementa-
tions [41] in the user interface. They provide tensor domain-specific

1Open sourced code link: https://github.com/microsoft/ArchProbe
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Figure 2: Performance distribution of DNN operators by (a)
TVM and (b) MACE on Adreno 640.

languages that users can specify the compute expression. Implemen-
tations are described by Schedule which is a set of code transforma-
tions from the expression to concrete kernels. These transformations
are specified by schedule primitives, such as block partitioning and
loop unrolling. These primitives and corresponding configurations
define a space of possible kernel implementations.

The space is then explored for the low-latency implementation.
During the exploration process, a latency predictor is trained by
measured data to avoid future measurements. The predictor is peri-
odically updated as more configurations are measured to improve
accuracy. Probabilistic methods such as simulated annealing is used
to select promising configurations, jointly with the latency predictor,
to quickly converge to good configurations.

Poor performance of generated kernels Fig. 2(a) shows the
performance distribution of generated kernels by the state-of-the-
art kernel generator—TVM (use TVM default settings for mobile
GPUs [33]). The kernels are for operators such as convolution
and fully connected in popular DNN models, including MobileNet,
SqueezeNet, ResNet, Inception and BERT. The results illustrate that
although TVM can achieve good performance on server GPUs, the
kernel performance on mobile GPUs is poor, <10% of the theoreti-
cal peak 890 GFLOPS on the Adreno GPU. Most kernels are around
10 GFLOPS. Also, the whole tuning takes several hours to complete
for one model. This tuning needs to be done for every model on
every mobile GPU for the optimal performance.

2.2 Low performance of hand-written kernels
To understand the performance bottleneck of generated kernels, we
first analyze hand-written kernels. Albeit faster than generated ones,
the performance is still much less than the peak performance.

Performance comparison of different frameworks To find the
state-of-the-art hand-written DNN kernels, we evaluate the mobile
GPU backends of widely-used frameworks for on-device inference:
TFLite from Google, Mace from Xiaomi, MNN [23] from Alibaba,
and ncnn [45] from Tencent. Both OpenCL and Vulkan implemen-
tations are included for comparison (OpenGL is ignored due to
inferior performance [30]). The convolution algorithms currently
used for mobile GPUs are direct convolution and Winograd [28].
Other algorithms such as im2col+GEMM and implicit GEMM [9]
are not suitable for the resource-constrained mobile GPUs. Inference
frameworks can be set to use Winograd or not. We show the results
with higher performance.

The comparison results in Fig. 3a tell that (1) Mace runs the fastest
among these popular on-device frameworks; (2) OpenCL backends
run faster than the Vulkan ones. Hence, for Mace with OpenCL, we
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Figure 3: (a) Performance comparison of on-device inference
frameworks (missing InceptionV3 with ncnn due to the lack
of support). Mace with OpenCL runs faster. (b) % of ALU
capacity utilization (blank bar, left axis) and % of time that
GPU to global memory bus is busy (slash bar, right axis) by
Mace. The GPU is Adreno 640. "Mo/Sq/Res/Inc" is short for
MobileNet/SqueezeNet/ResNet/Inception respectively.

further evaluate its kernel performance distribution in Fig. 2(b) for
the same operators in Fig. 2(a) as comparison. The highest kernel
performance in Mace is 232 GFLOPS. Most of the kernels are around
130 to 170 GFLOPS. Albeit higher than generated ones, hand-written
kernels also run much slower than the peak performance (<26% on
Adreno 640).

Limited profiling from available tool We then analyze the per-
formance issue by the available tool for Adreno GPU—Snapdragon
profiler [40]. From the results of limited events supported as shown
in Fig. 3b, we find that both the ALU capacity and the GPU bus to
global memory are underutilized. The % of ALU capacity means the
average % of all ALUs utilized in each cycle. That means, >70%
ALUs are wasted for DNN inference. Papers before [14, 20] simply
attribute this issue to limited memory bandwidth. However, this can-
not be true because if so, the GPU bus to global memory should be
highly busy rather than idle.

In summary, current DNN inference performance on mobile
GPUs is very poor. To understand the bottleneck requires more
in-depth profiling beyond available profilers. This motivates us to
develop more comprehensive profilers.

2.3 Background: programming paradigm
There are various terminologies from different GPU APIs, although
the meanings are similar. To avoid confusion, this section introduces
the concepts and terminology of OpenCL used in this paper, since
OpenCL shows higher inference performance on mobile GPUs. Note
particularly the differences between OpenCL and CUDA.

Execution model GPU programming uses the typical SIMT
(Single Instruction Multiple Threads) execution model. Users only
need to write the kernel for one thread and specify a work group
size. Then, the OpenCL and GPU scheduler are in charge of running
the kernel parallelly on the GPU. OpenCL first decomposes the data
index space into work groups (i.e., blocks in CUDA) according to
the work group size. Take a 1×1 convolution as an example in Fig. 4,



Figure 4: Work group and work item for a 1×1 convolution.

the index space is the output tensor (the space needs to be padded if
not divisible by the work group size). Each work group is assigned
to run on a GPU core called a shader core (or a shader processor or
stream multiprocessor).

A work group is composed of work items. A work item is a
software thread and mapped to a hardware thread to run (i.e., an
ALU in a shader core). A warp is a group of hardware threads that
run the same instruction simultaneously. It is the basic execution unit
in a core. Thus, the work items of a work group will be partitioned
to run in warps.

Memory model To potentially speed up data accesses, there
are four types of memory regions / address spaces in OpenCL pro-
gramming: global memory and constant memory shared by all work
groups, local memory shared by the work items of a work group (i.e.,
shared memory in CUDA), private memory for each thread. How to
support these regions in hardware depends on the GPU manufactur-
ers. For example, on the Adreno GPU, local, constant, and private
memory are implemented on the GPU chip [39]. However, on the
Mali GPU, the regions are all in system DRAM [3].

The data in global memory can be stored in image or buffer
types. The buffer is similar as the CPU buffer which stores data
continuously. The image type in OpenCL, similar as other image
formats supported by other GPU APIs, is designed to speed up
graphics rendering. An image object can be declared as one, two or
three dimensions. Each element of an image object has to be in four
channels i.e., RGBA. To use image type requires data layout aligned
with this format.

Normally GPUs have special hardware support for image, called
texture cache or memory [12]. This storage is designed for rapid
random accesses, and thus separated from normal cache designed
for continuous accesses.

3 Performance Bottleneck Demystification
To explore the bottleneck and design optimal kernels for various
black-box GPUs, we develop a cross-platform micro-benchmark
toolkit called ArchProbe, to disclose and quantify performance-vital
hardware features.

3.1 Hardware feature quantification
Challenges Accurate quantification relies on predictable hardware
behaviour of micro-benchmark kernels and high-resolution timing.
However, it is much harder for mobile GPUs to achieve the two
requirements than server GPUs, mainly due to two challenges.

Firstly, the language compilers are closed source. Mobile GPUs
can only be programmed in high-level languages such as OpenCL,
with no public low-level instructions. What the compiler finally
generates is unknown. Therefore, ArchProbe is designed carefully

to avoid compiler optimizations that could lead to unexpected be-
haviour. Besides, without low-level instructions, the information
that could be easily read from the assembly such as the number of
registers has to be profiled.

Secondly, there is no user-level accurate timing. Rather than the
support of cycle-level and flexible timing on server GPUs, current
mobile GPUs do not expose interface for accurate and fine-grain
timing. The timing function cannot be inserted inside a kernel or
give accurate cycles. ArchProbe has to be designed, such as using
the law of large numbers, to reduce the timing error.

Due to these challenges, none of mobile GPU profiling before [2,
5, 22] can go deeply into the architecture, nor explain the perfor-
mance bottleneck. By comparison, ArchProbe discloses the follow-
ing key architecture features. We will next introduce the rationale to
pick these features and the ArchProbe design idea. (Unless specifi-
cally stated, this section will use Adreno 640 result as an example.)

• The maximum number of registers for each work item
• The size, cacheline size, and bandwidth of memory hierar-

chy including all levels of unified and texture caches, local,
constant and global memory
• The number of threads in a warp
• The number of ALUs in a shader core

The number of registers Register usage is one of the most
performance-critical design for a kernel. Given that registers are the
fastest data storage, increasing register usage can reduce data access
cost and improve performance. However, registers are also used
for context switching of concurrent warps to hide execution stalls.
Therefore, increasing register usage could also reduce concurrent
warps and hurt performance. Besides, overuse of registers in a kernel
will cause register spill to memory and greatly reduce performance.

Therefore, it is essential to detect the maximum available registers
and the sharing mechanism. Our method is to gradually increase the
number of used registers in a kernel and work items. The inflection
points of kernel latency will show these parameters. The code is
shown in Listing 1. It generates kernels for varying register usage.
The code is carefully designed to avoid potential compiler optimiza-
tions (Line 22) as well as unrelated costs, such as extra memory
accesses (Line 20).

The profiled results of Adreno 640 in Fig. 5 show two conclusions.
(1) The detected 32bit-register file size is 384×181. The latency
increases dramatically after the kernel uses 181 registers. (2) The
registers are shared among concurrent work items. When the number
of work items is no more than 384, the latency lines overlap each
other, which means all the work items can run concurrently. As
the number increases, take 768 as an example (orange line), all the
work items can run concurrently only when the register usage is
less than half of 181 registers in the kernel. Otherwise, the latency
is doubled. That means the 768 work items have to run in two
sequential 384-sized groups, constrained by the available registers.
The same conclusion also applies for 512 and 1024 work items.

Memory hierarchy The measured parameters of the memory hi-
erarchy can direct data layout and placement to leverage the locality
and bandwidth.

To profile cache parameters, our technique is to extend the clas-
sical pointer-chase method [37]. By using image and buffer types
(refer to Sec. 2.3), we can measure the texture and unified cache



1 for (nWorkItem = 1; nWorkItem<maxLogicalThread; nWorkItem+=step)
2 for (nReg = 0; nReg < threshold; nReg++)
3 runKernel(reg_count, (nWorkItems,1,1)/*work group size*/,
4 1/*total work groups*/, nReg, clEventTimer);
5

6 /* Generate kernel codes for different nReg */
7 for (int i = 0; i < nReg; ++i){
8 reg_declare += format("float reg_data", i, " = ", i, ";\n");
9 reg_comp += format("reg_data", i, " *= reg_data",

10 i==0? nReg-1: i-1, ";\n");
11 save_to_mem += format("out_buf[", i, " * i] = reg_data",
12 i, ";\n");}
13

14 auto src = format(R"(
15 __kernel void reg_count(__global float* out_buf) {
16 )", reg_declare, R"(
17 int i = 0;
18 for (; i < N; ++i) { /*run N times to reduce timing error*/
19 )", reg_comp, R"( }
20 i = i >> 31; /* make output buffer index a variable */
21 /*save results to memory in case of dead code elimination*/
22 )", save_to_mem, R"( } )");

Listing 1: The code to detect the number of registers.
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Figure 5: The latency response to the increase of registers and
work items on Adreno 640 ("nWI" is the number of work
items). It shows a 384×181 shared 32b-register pool.

accordingly. The pointer-chase algorithm is to traverse an array of
which an element is initialized as the index of the consecutively-
accessed element. As the size of the array and the stride of two
consecutive accesses increase, the cache parameters such as access
latency and cache size, can be detected from the latency inflection
point. Listing 2 shows the algorithm for the image type.

1 /*Array initialization. Buffer type is needed in the CPU side.*/
2 int* idx_buf = mapImageToBuffer(src_image);
3 for (size_t i = 0; i < dataRange; i++)
4 idx_buf[i] = (i + stride) % dataRange;
5 src_img = unmapImage(idx_buf);
6

7 /* Work group size (1, 1, 1), one work group */
8 __kernel void image_cache(__read_only image1d_t src,__global int* dst)
9 { int idx = 0;

10 for (int i = 0; i < N; ++i)
11 idx = read_imagei(src, SAMPLER, idx).x;
12 *dst = idx; }

Listing 2: The code to profile cache hierarchy (image type).

Fig. 6 shows the average accessed latency for a truncated sample
(128 to 384×4 B) of the whole profiled data range. The parameters
on Adreno 640 exposed from the figure are: (1) L1 texture cache
size is 256×4 B. The data access latency increases greatly when the
size of the array is > 256; (2) The cacheline size of L1 texture cache
is 32 B, since the latency lines after stride=8 are overlapped (red
and purple). The flat latency after 264 also illustrates the different
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Figure 6: The average access latency of different data range and
stride for image type on Adreno 640. It shows 1 KB L1 texture
cache and 32 B cacheline size.
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Figure 7: The latency response to the increasing work items
shows 64 or 128 warp size on Adreno 640.

behaviour of texture cache from normal cache (normal cache would
have increasing latency between 264 and 384).

For cache bandwidth, the ArchProbe kernel is designed to make
work items sequentially access the data range of a cache for many
iterations. The bandwidth is then calculated by dividing latency into
the size of total accessed data.

Warp size A warp is the basic execution unit of a core. The
selection of work group size has to consider the warp size to utilize
all the simultaneous threads. To detect it, our idea is to run enough
work groups (e.g., 1024) to potentially saturate all the ALUs, and
then gradually increase the work items in each work group. The
latency response can thus show the warp size. We utilize the cycle-
consuming division operation as the kernel body to avoid latency
hiding by warp switch.

The measured latency in Fig. 7 demonstrates that on Adreno 640
the warp size is 64 or 128. When the work group size is between
1 to 64, the latency keeps the same although the total work items
increase. Between 65 to 128, there is a slight latency increase, but
much smaller than >128. Therefore, depending on the total work
items of a task, the work group size is preferred to be a multiple of
64 or 128 to achieve full GPU utilization.

1 /*Pick group size (64,6,2) as an example, one work group*/
2 __kernel void warp_size (__global int* output) {
3 __local int local_counter;
4 local_counter = 0;
5 barrier(CLK_LOCAL_MEM_FENCE); /*sync all work items*/
6 int i = atomic_inc(&local_counter);
7 output[globalID0 + globalID1*globalSize0 +
8 globalID2*globalSize0*globalSize1] = i;}

Listing 3: Detect logical and physical thread mapping.

The number of ALUs To detect how many threads can run
parallelly, our design is to let every work item atomically increase a
shared counter and then store the counter value in the entry of the
work-item ID in the result array. The array will save the running
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Figure 8: The running order illustrates 384 ALUs on a core of
Adreno 640.
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Figure 9: Measured architecture of (a) Adreno 640 and (b) Mali
G76 MP-5 (MP-5 means five cores).

order of the work items, and show the number of ALUs. The code is
in Listing 3.

The running order of the work items in Fig. 8 shows that they are
assigned to three parallel warps and executed consecutively with an
interval of the warp size. Therefore, there are totally 384 ALUs on a
core of Adreno 640 (warp 0 ends in 388 rather than 383 due to the
start of another two warps).

Overall profiled architecture The overall results are shown in
Fig. 9 for the two dominant mobile GPU series: Adreno and Mali.
There are two outstanding conclusions from the figure. (1) Adreno
and Mali have quite different architecture. For example, Mali has
dedicated registers for each work item, while Adreno has a shared
pool. The warp of Mali is much more fine-grained than Adreno.
The cache and memory bandwidth of Adreno 640 is much superior
to Mali G76. (2) Mobile GPUs have distinct features compared to
server GPUs. A critical one is that for server GPUs, local/shared
memory is a fast on-chip storage with similar bandwidth as L1 cache.
However, on mobile GPUs, L1 texture cache is much faster than
local memory. We find that using local memory for convolution only
achieves half of the performance using texture cache.

These conclusions justify the necessity of ArchProbe profiling for
each GPU. The results can direct the design of kernel generation.

3.2 Performance bottleneck analysis
Leveraging the profiled results and classical roofline model [46],
we can identify the performance bottleneck on mobile GPUs: the
limited number of registers and cache bandwidth. The number of
registers determines the data reuse rate i.e., how frequently data is
loaded from cache, while cache bandwidth decides how fast data
is loaded from cache. The two limitations make ALUs wait for the
data and cannot be fully utilized on mobile GPUs.

Take Adreno 640 as an example to elaborate the limitations. As
shown in Fig. 5, the highest GPU performance is achieved when the
size of the work group is 1024 and the number of used registers is

<60. In this setting, since the registers are enough to support warp
switching, all the 1024 work items can run concurrently in the same
latency as only 1 work item, i.e., 1024× performance. When the
number of used registers is more than 60, due to no enough registers
for warp switching, the latency is doubled and performance is halved.
Similarly, on Mali G76, the performance peaks at 240 work-group
size (albeit only 120 ALUs) with 64 registers for each item.
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Figure 10: An example implementation for 1×1 convolution
with coarsening size 4×4 (orange) in 2D image.
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Figure 11: Roofline models for Adreno 640 and Mali G76.

This register limitation greatly constrains the data reuse (i.e., op-
eration intensity in the roofline model). Take an implementation
for 1×1 convolution in Fig. 10 as an example. To utilize the fast
texture cache, the tensor layout has to be packed into four chan-
nels to align with image format. The packing is normally done on
the convolution channel dimension i.e., Cin and Cout in the fig-
ure. Based on this layout and the register limitation at max GPU
performance, the kernel coarsening can be 4×4 (i.e., a work item
computes a 4×4 basic block). In this case, a loop iteration in the
kernel conducts a (4,4)×(4,4)->(4,4) sub-matrix multiplication. The
number of registers used is 48 (=3×4×4). The operation intensity is
4 (=4×4×4×2/(4×4+4×4)).

The roofline models in Fig. 11 can show the performance bound
at various operation intensity. When the operation intensity is 4
(marked by the red line), the performance is bounded by data access-
ing, and much below the computation bandwidth. Even assuming
all data could be held in L1 cache, the performance bound is only
380 GFLOPS. There might be opportunities to increase kernel coars-
ening size, e.g., to 4×6, to increase operation intensity and raise
the bound. However, this requires careful tuning since except for
the sub-matrix multiplication, other operations in the kernel also
compete for registers.

The analysis above demystifies the performance gap of DNN
inference from the theoretical GPU peak performance. It clearly
directs hardware designers that to improve DNN inference perfor-
mance on mobile GPUs, increasing registers or cache bandwidth is
the key rather than increasing ALUs.

3.3 Implications for optimal kernel generation
The profiling results direct the high-performance kernel generation
in three aspects.

Firstly, the results expose the fast hardware feature i.e., texture
cache that kernel generation should utilize for best performance. Due
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to the lack of hardware analysis, current kernel generators [7, 48, 49]
fail to utilize texture cache, resulting in poor performance.

Secondly, the results identify inefficient implementations against
hardware constraints that can be excluded during kernel generation.
For example, implementations that overuse the available registers
can be excluded directly. By comparison, current kernel generators
search for the efficient implementation in a huge space filled with
inefficient implementations. This potentially leads to three major
issues. (1) Global optima cannot be found. The latency distribution of
a large inefficient space can be hard to learn by the latency predictor
(refer to Fig. 1). The space exploration directed by the predictor may
converge at local optima rather than the global one. (2) Long time
is taken before converging to the optima. With a large search space,
the possibility to find optima by the probabilistic explorer is diluted
(evaluation in Sec. 5.3). (3) On mobile GPUs, long-time searching
can cause performance slowdown due to thermal throttling, which
misleads the searching result.

Thirdly, the results can specify the performance bound of mobile
GPUs that kernels can approach. As Sec. 5.3 will show, the perfor-
mance of Romou’s generated kernels is approaching the bound.

4 Kernel Compiler for Mobile GPUs
Directed by the profiling, we propose high-performance kernel com-
piler Romou for mobile GPUs. It empowers the kernel to use the
unique hardware features and excludes the inefficient implementa-
tions from the searching. Romou can thus rapidly generate optimal
kernels for mobile GPUs.

Support unique features Texture cache is the fastest data storage.
To empower kernels to use it requires support across the compiler
stack, including the schedule user interface, compiler IR transforma-
tion, and kernel generation. Fig. 12 shows the flow of Romou. In the
schedule interface, Romou introduces new primitive: setImage for
texture cache, since image is the data type provided by the program-
ming API to use texture cache.

However, the challenge of using image type is that it requires
additional address conversion from general linear addressing to
the nD-4channel addressing of image. The address calculation is
costly that can even offset the gain by using image. To solve that,
Romou introduces a compiler optimization pass Address-Calculation
Elimination (ACE) to greatly reduce the calculations.

Another hardware feature is the automatic scalar broadcast sup-
ported in recent scalar-based mobile GPUs. Relative to the vector-
based mobile GPUs, automatic scalar broadcast allows kernels to
conduct scalar-vector computation directly without explicit scalar-
vector conversion beforehand. Romou introduces another new primi-
tive autobroadcast to utilize this feature.

Exclude inefficient implementations With the profiled hard-
ware parameter, Romou can exclude implementations that over/under-
use the hardware resources such as caches and registers. A straight-
forward way is to properly set the primitive configurations in the
user interface, such as the split size shown in Fig. 12. However, the
challenge is that the configurations have to be tuned for every kernel,
and it unnecessarily exposes hardware parameters to users.

To this end, Romou introduces a pruning pass during compiling to
exclude inefficient implementations. The advantages of this method
are that (1) the pruning can be abstracted from users and applied
to all kernel generation; (2) more inefficient implementations can
be pruned since compiler IR provides more information than user
interface. For example, the compiler can easily count the total regis-
ter usage of a kernel from the variable allocation nodes in the AST
(Abstract Syntax Tree).

The pruning process is that after a candidate implementation is
selected by the space explorer, Romou first checks if the implemen-
tation violates the pre-defined hardware criteria. If so, the following
processes, including code generation and profiling, are terminated.
Romou then goes back to the space explorer to select the next imple-
mentation. For implementations conforming to the hardware criteria,
Romou conducts the following IR transformations to generate ker-
nels and run on the hardware. This method can greatly reduce the
searching cost (see Sec. 5.3).

4.1 Compiling support for new primitives
End-to-end kernel generation Besides Fig. 12, Listing 4 uses a
simple tensor-scalar compute as an example, to show the end-to-end
process from user compute definition to a generated OpenCL kernel.

With the setImage primitive, each tensor can be set to use image
type or not (Line 4, 12) in the configuration. If image is used, three
more passes will be done in the IR level as shown in Fig. 12. (1)
Address conversion. The compiler has to map the linear address to
multi-dimensional address (e.g., 2D) of an image type. (2) Common
address-calculation elimination (ACE). Address conversion intro-
duces costly calculation such as division. Romou reduces the cost
by eliminating common sub-expressions of address calculation. (3)
Access qualifier inference. An access qualifier, such as read_only
(Line 31), has to be specified for an image-typed argument of a ker-
nel. The qualifier is to direct data placement optimizations. Romou
employs a compiler pass to infer read or write access for each tensor
to decide the qualifier.

After IR passes, the related codes for image type is generated,
including the declarations of image type and access qualifier (Line
31, 32), as well as image operations such as read/write_imagef
(Line 33). Image declaration and allocation run on the CPU (Line24-
29). The kernel runs on the GPU (Line31-36).

If the primitive autobroadcast is set (Line 13), no explicit scalar-
vector conversion will be generated in the kernel. For example in
Line 38, the scalar n and the 4-element vector from A can be added
directly. This applies to the recent scalar-based mobile GPUs with
hardware scalar broadcast, such as the Bifrost and Valhall archi-
tecture of Mali [4]. If autobroadcast is not set, an instruction
vstore4(float4(n,n,n,n),vec_n) will be generated before Line
38 to create a vector of n first. Then, the two vectors can be cal-
culated. This applies to the traditional vector-based mobile GPUs.
Without this knowledge, current compilers generate explicit vector



1 # Operator developer interface
2 def addConstant(cfg, input:Tensor, n:int)->Tensor:
3 B = compute(input.shape, lambda n,c,h,w,p:A[n,c,h,w,p]+n, name="B")

# p is packing, p=4 for image type↪→
4 cfg.define_knob('set_input_image',[True,False])
5 cfg.define_knob('autobroadcast',[True,False])
6 ... # Define other configurations
7 return B
8

9 def scheduleAddConstant(cfg, B:Tensor):
10 input, = B.op.input_tensors
11 s = create_scheule(B.op)
12 if cfg['set_input_image'].val == True: s[B].setImage(input)
13 if cfg['autobroadcast'].val == True: s[B].autobroadcast(B)
14 ... # Define Other primitives
15 return s
16

17 # Generated IR
18 # For each element in B
19 B[@ir._2d_coord(linearIndex,@ir.imageWidth(B),dtype=int32)]
20 = ((imgwfloat32*)A[@ir._2d_coord(linearIndex,
21 @ir.imageWidth(A),dtype=int32)]+n)}}
22

23 # Generated OpenCL kernel
24 cl_image_format fmt={CL_RGBA, CL_HALF_FLOAT};
25 # w*c/p is image width, h is image height
26 cl_image_desc desc={CL_MEM_OBJECT_IMAGE2D, w*c/p, h};
27 cl_mem A=clCreateImage(context, CL_MEM_READ, &fmt, &desc);
28 cl_mem B=clCreateImage(context, CL_MEM_WRITE, &fmt, &desc);
29 __constant sampler_t sampler = TEXTURE_CONFIG;
30

31 __kernel void addConstant(__read_only image2d_t A,
32 __write_only image2d_t B) {
33 write_imagef(B,(int2)(linearIndex%(p*get_image_width(B))/p,
34 linearIndex/(p*get_image_width(B))), read_imagef(A,
35 sampler, (int2)(linearIndex%(p*get_image_width(A))/p,
36 linearIndex/(p*get_image_width(A)))) + n);}

Listing 4: An end-to-end code generation example for a tensor-
scalar (B=A+n) calculation. The IR and kernel snippets are for
one implementation in the search space.

conversion for all mobile GPUs, leading to poor performance. As
we will show in Sec. 5.3, using autobroadcast can result in 4.9×
speedup on Adreno 640.

Address calculation elimination Compared to the simple linear
addressing for buffer type, the challenge brought by image type is
the big cost of address calculation. As introduced in Sec. 2.3, image
type uses the multi-dimension and RGBA four-channel format (1D
image is not used since its addressing range is normally not enough
for a DNN tensor). If setImage is true, the tensor layout has to be
transformed to follow this format. The data address also has to be
calculated accordingly from the linear index (Line 35-38).

Unlike server GPUs, the image address calculation is very costly
on mobile GPUs. It can even offset the performance gain from using
image type. The big cost is due to two reasons: (1) division and
modular is time-consuming; (2) some language compilers such as
the OpenCL compiler for mobile GPUs are unable to optimize kernel
code sufficiently [26].

Therefore, Romou adds a compiler pass to conduct address cal-
culation elimination, as shown in Algorithm 1, to generate kernels
without repeated calculation. While traversing the AST of a kernel,
the load and store nodes in the for loop are processed to rewrite
common address-calculation expressions as new variables (Line 23).
After all the expressions are processed, the declaration nodes of
these new variables are added to the AST (Line 19).

For each address calculation expression, the algorithm simplifies
it, and scans all its sub-expressions in the order of the longest to the

Algorithm 1 Common address calculation elimination
Input: AST (Abstract Syntax Tree) of a kernel

Output: AST with common address calculation eliminated
1: function REWRITECOMMSUBEXPR(node)
2: reversely add subExpr in node.addrExpr to exprList
3: for subExpr ∈ exprList do
4: if exprVarMap[subExpr] then
5: replace(node.addrExpr,exprVarMap[subExpr])
6: return
7: end if
8: end for
9: exprVarMap.insert(node.addrExpr, newVar)

10: replace(node.addrExpr,newVar)
11: end function
12: function TRAVERSEAST(node)
13: if node.type==forNode then
14: enterForNode← enterForNode+1
15: TRAVERSEAST(node)
16: enterForNode← enterForNode-1
17: for subExpr ∈ exprVarMap do
18: ▷ exprVarMap is the <expression,variable> map.
19: add the declaration node for exprVarMap[subExpr]
20: exprVarMap.delete(subExpr)
21: end for
22: else if enterForNode and (node.type==loadNode or storeNode) then
23: REWRITECOMMSUBEXPR(node)
24: end if
25: TRAVERSEAST(node.next)
26: end function

1 for (int i; i < coarsening_size - 1; i++) {
2 write_imagef(B, int2((linearIndex+i*2*p)%
3 (p*get_image_width(B))/p, (linearIndex+i*2*p)/
4 (p*get_image_width(B))), B_local+i*2);
5 write_imagef(B, int2((linearIndex+(i*2+1)*p)%
6 (p*get_image_width(B))/p, (linearIndex+(i*2+1)*p)/
7 (p*get_image_width(B))), B_local+(i*2+1)); };

1 const int comm1=linearIndex/(p*get_image_width(B));
2 const int comm2=linearIndex%(p*get_image_width(B))/p;
3 for (int i; i < coarsening_size - 1; i++) {
4 write_imagef(B, int2(comm2+i*2, comm1),B_local+i*2);
5 write_imagef(B, int2(comm2+i*2+1, comm1),B_local+i*2+1);}

Listing 5: The generated kernel (write B_local to B) before
and after common address calculation elimination.

shortest (Line 2) so that the longest sub-expression can be matched
first. If a sub-expression has appeared before, it is replaced by the
given variable (Line 5). Otherwise, this sub-expression and a new
variable are inserted in the expression-variable map (Line 9).

Listing 5 uses an example to compare the generated kernel before
and after Algorithm 1. After the elimination, the common address
calculation is conducted only once during variable initialization.
This technique can greatly improve performance by 6× on Adreno
GPUs (see Sec. 5.3).

4.2 Hardware-aware search space pruning
Romou leverages the profiled hardware parameters to prune ineffi-
cient kernel implementations in the search space. With the hardware
parameters, a direct thought is to formulate an analytical latency pre-
diction model so that the online training cost for the latency predictor
can be eliminated. We followed this thought at first. However, we



Table 1: Space pruning criteria
HW feature kernel exclusion criteria

L1 cache Access more data in one loop iteration than L1 cache
register Overuse available registers for the work group size
buffer Use buffer type when L1 cache is for texture only

local memory Use local memory when work group size > α· ALUs
warp Work group size < warp size

data access width Use inefficient data access width

find that the analytical model is reasonably accurate for handwritten
kernels, but not for compiler-generated ones. The reason is that the
automatically generated kernels can invoke some unpredictable cost.

To this end, Romou inputs the hardware parameters and the ker-
nel’s hardware utilization to the predefined criteria, to prune the
kernel implementations that over/under-use the hardware. The ker-
nel’s hardware utilization is calculated during compiling by visiting
the nodes of the kernel AST. Table 1 lists the major criteria. We will
next explain each of them.

For L1 cache, since all the work items in a work group run con-
currently on a shader core, it is important to make sure the loaded
data of all the work items in one loop iteration in the fast L1 cache.
By visiting the memory access nodes of the kernel AST, we can get
the size of loaded data of one work item in one loop iteration. By
multiplying it with the work group size read from attribute nodes,
Romou can calculate the total loaded data. If it is larger than L1
cache size, this implementation will be abandoned. Similarly, for
register, the pruning pass traverses all the allocation nodes of the
AST, to check whether the total register usage of the kernel is over
the available ones for the work group size (refer to Fig. 5).

For local memory, since it is slower than cache and the synchro-
nization is costly on mobile GPUs, the use of it is excluded if the
number of work items (i.e., work group size) is enough for the num-
ber of ALUs (α is an experimental threshold. 3 is set in this paper).
Or, Romou will split the reduction axis and use local memory to in-
crease parallelism. Since a warp is the basic execution unit in a core,
Romou excludes the ones use smaller work group size than warp
size. For vector length, the pruning pass checks whether the data
loading of the implementation is in the vector width that achieves
the best cache bandwidth (the width is four for mobile GPUs).

How much the searching cost can be reduced from pruning de-
pends on the operator hyper-parameters, the primitives and configu-
rations set by users, and the smart walk of the search space explorer.
For example, it is easier to find good implementations for factorable
tensor size e.g., 256×256 than prime numbers e.g., 17×17. In the
example analyzed in Sec. 5.3, our method reduces the space to 0.6%
of the default space, and also avoids converging at local optima.

5 Implementation and Evaluation

5.1 Implementation
ArchProbe is implemented as an independent tool. It can be com-
piled and run directly on a mobile phone to output hardware parame-
ters. It is implemented from scratch in C++ and employs template-
based kernel generation method to flexibly generate OpenCL kernels
with different configurations (refer to Listing 1). The interface with
OpenCL is from Khronos OpenCL SDK [24]. The evaluation results
are recorded in a JSON file, as the input for Romou space pruning.

Romou is implemented based on TVM, which is the state-of-the-
art DNN compiler. To use it also facilitates Romou to be consolidated
under one coherent code generation effort in the whole DNN com-
munity. The user interface is the same as TVM. Users can define
the computation and schedules. The generated kernels can then be
compiled and run on a mobile phone. The optimization passes of Ro-
mou is developed on TVM’s Tensor IR (TIR). The code generation
is implemented in TVM’s OpenCL backend.

5.2 Experimental methodology
For experimental hardware, we select three widely-used mobile
GPUs in the market: Adreno 630, Adreno 640, and Mali G76 shown
in Table 2. The profiled hardware parameters for Adreno 640 and
Mali G76 have been shown in Fig. 9. The parameters for Adreno 630
are similar as 640, except that on 630, the number of ALUs is 256
per core; the register file is 256×181 accordingly; the bandwidth
of L1 cache is 145 GB/s, and the bandwidth of the other on-chip
storage (including local memory, unified L2 cache, and constant
memory) is 79 GB/s.

For comparison of current DNN inference backends for mobile
GPUs, the frameworks and versions used are: TFLite r2.1, Mace
v0.13.0-62-g63feaf5, MNN v1.1.0, ncnn 20191113 tag, and TVM
0.8.dev0. TFLite, Mace and MNN are compiled for Android with
android-ndk-r18b, ncnn with android-ndk-r19c, and TVM with
android-ndk-r22. The reported latency is the arithmetic mean of
20 runs (first run is excluded). The latency for code generation is
the searched result. Mace and MNN use FP32 for computation,
and FP16 for storage. TFLite uses FP16 for both computation and
storage. ncnn uses FP16 for packing and computation.

Performance evaluation is conducted for all the convolution oper-
ators of four selected CNN models. These operators dominate the
inference latency. The four models are: SqueezeNetV1.0 [21] and
MobileNetV1 [18] as light-weight models for mobile applications,
ResNet-18 [17] and InceptionV3 [43] as large models. All use de-
fault input size and NN structure. We also evaluate 2 fully-connected
(FC) operators from BERT [11]. The input shapes are [(1,768),(768,
3072)] and [(1,3072),(3072,768)]. We pick two major operators for
Bert because its whole model inference is not supported by Mace or
TVM on mobile GPUs. There are totally 96 unique configurations
among these operators, with different types (convolution, depth-wise
convolution, and FC) and hyper-parameters (i.e., input and filter size,
the number of channels and stride). Out of them, 45 are 1×1 convo-
lution, 25 are 3×3 convolution, 9 are 3×3 depth-wise convolution,
2 are FC, and 15 other (e.g., 7×7 and 3×1) convolution.

The two comparison baselines are the mobile GPU backends of
Mace and TVM, as the state-of-the-art hand-optimized and automatic-
generated kernels respectively. Mace is set to use all the default op-
tions (e.g., NHWC input format and no tuning) except for enabling
Winograd algorithm for 3×3 convolution since it greatly improves
performance than direct convolution. For TVM, we use its default
search space, search method (XGBoost), and search threshold (1000
steps) for mobile GPUs [33].

5.3 Results
This section will show performance improvement by Romou for
various operators, as well as speedup breakdown for compiler opti-
mizations and reduced kernel searching cost.



Table 2: Experimental mobile GPU specs
Mobile GPU Adreno 630 Adreno 640 Mali G76

Phone Google Pixel 3XL Google Pixel 4XL Vivo X30
SoC Snapdragon 845 Snapdragon 855 Exynos 980

the number of cores 2 2 5
the number of total ALUs 512 768 120

Frequency 710 MHz 585 MHz 800 MHz
Computation bandwidth 720 GFLOPS 890 GFLOPS 190 GFLOPS

DRAM bandwidth 26 GB/s 28 GB/s 11 GB/s

(a)

(b)
Figure 13: The average, max, and min (a) performance and (b)
corresponding speedup for all the evaluated operators by Ro-
mou compared to TVM and Mace.

Speedup over generated kernels Fig. 13 shows the GFLOPS
and the corresponding speedup by Romou for all our evaluated oper-
ators grouped into five categories. Height of the bar is the average
speedup, while the black line shows the speedup range of all the
operators in a category (not standard deviation). Compared to TVM
on Adreno (Fig. 13b left), the [average, max, min] speedup by Ro-
mou for each category are [14.7, 39.9, 5.4] for 1×1, [8.6, 17.3, 4.1]
for 3×3, [8.1, 10.7, 5.7] for depth-wise, [7.0, 9.8, 3.1] for other
convolutions, and [8.1, 8.23, 7.87] for fully connected operators
on Adreno 640 and similarly on Adreno 630. Romou can achieve
higher GFLOPS (Fig. 13a) and speedup for 1×1 convolution. This
is due to the higher operation intensity of 1×1 than 3×3 Winograd
and depth-wise convolution, as papers [28, 34, 44] have discussed
before. Winograd algorithm improves performance by reducing the
number of multiplication but at the cost of extra data accesses for
tensor transformation. Depth-wise removes the data reuse of input
channels since each filter only applies on one input channel. Lower
operation intensity restrains the peak GFLOPS and speedup (refer
to the roofline model in Fig. 11).

Compared to TVM on Mali, the speedup is [3.3, 18.1, 1.6] for
1×1, [2.7, 4.1, 1.4] for 3×3, [7.1, 10.0, 4.7] for depth-wise, [2.4, 3.0,
1.4] for other convolution, and [3.6, 4.6, 2.7] for fully connected op-
erator. Overall, the performance and speedup by Romou on Adreno
is higher than Mali mainly due to two reasons. (1) The potential gain
from using texture cache on Adreno is much higher. On Mali, texture

and normal cache has similar bandwidth (30 vs 23.3 GB/s), while on
Adreno, texture cache has twice bandwidth than normal cache (190
vs 96 GB/s). (2) TVM has tuned kernels for Mali GPUs [33] and
there could be special adaptions. However, clearly these adaptions
are not portable to Adreno GPUs.

Speedup over hand-optimized kernels Even compared to the
state-of-the-art hand-optimized kernels in Mace, Romou can mostly
achieve obvious performance improvement shown in Fig. 13b right
axis. On Adreno 640, the average performance improvement is 24%
for 1×1, 23% for 3×3, 49% for depth-wise, 3% for other convolu-
tion, and 2.2× speedup for fully connected operator. Adreno 630
and Mali G76 achieve similar improvement. The improvement is
mainly because Romou can rapidly search more promising configu-
rations to generate optimal kernels. There is little space for further
improvement due to the register and cache bottlenecks on mobile
GPUs discussed in Sec. 3.2.

The outstanding speedups of Romou for FC operators compared
to Mace is because the hand-written kernels of Mace does not split
the reduction axis of the tensor. For the matrix-vector multiplication
of FC, the number of work items is thus not enough to fill the ALUs.
Romou splits the reduction axis and by utilizing local memory, one
work item can aggregate the results. The method can increase the
number of work items and improve the ALU utilization as well as
performance. It again shows that it is hard for hand-written kernels
to optimize each case, while the kernel generation can.

Out of the 96 unique operators, around 8 operators generated by
Romou runs slower than Mace. This is an issue of current code-
generation technique compared to hand-written kernels. These slow
operators normally have a size of a prime number. For example, the
worst case by Romou is 33% slower than Mace for a 7×1 convolu-
tion with output size height=width=17. To utilize GPU parallelism
requires different levels of factorization on the output size, such as
work group partition and thread coarsening. For a prime number,
the misalignment with factorization causes the compiler to generate
an if_else for each data read instruction to check the boundary.
Unlike server GPUs, if_else on mobile GPUs is very costly. In
comparison, hand-written kernels can flexibly avoid some boundary
checking such as utilizing hardware boundary check for image type.
How to avoid boundary check by a compiler will be a future work.

Speedup for DNN models Besides the five categories, in Fig. 14,
we can clearly see the performance improvement for each convo-
lution operator in the execution order for the four picked models.
With several exceptions, Romou can achieve obvious improvement
for all the operators of the models. Operators in ResNet-18 gains
large improvement on Mali because most of them (19 out of 20)
are Conv3×3 and Conv1×1. Conv3×3 with stride 2 contributes the
most speedup. The last several operators of InceptionV3 on Adreno
also achieves higher speedup than others. These operators use a small
input shape with width and height below 16, which is more cache-
friendly. Therefore, as shown in Fig. 15, considering the total time
of the models, Romou achieves 6.6× to 9.1× speedup on Adreno,
and 2.3× to 2.8× speedup on Mali compared to TVM. Compared
to Mace, Romou shows up-to 28% performance improvement on
Adreno 630, 21% on Adreno 640, and 37% on Mali.

We also compared Romou with TFLite mobile GPU backend [14].
TFLite is optimized for DNN inference on mobile GPUs, and de-
signed as template-based code generation. Albeit not as flexible as
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TFLite mobile GPU backend.

Romou, the simple code generation of TFLite can customize the
kernel to some extent for different hyperparameters. Fig. 16 shows
that Romou can achieve up-to 2× speedup.

Speedup breakdown To understand the speedup from each new
primitive, Fig. 17 illustrates the speedup breakdown compared to
TVM for four example convolution settings. On Adreno, setImage
contributes more speedup than autobroadcast, while on Mali, it
is the opposite. The reason is that on Adreno, empowering texture
cache can gain more benefits since it has twice bandwidth than
normal cache. By comparison, texture cache on Mali has similar
performance as normal cache. autobroadcast can greatly improve
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Figure 17: Speedup breakdown for each primitive of Ro-
mou compared to TVM for four example 1×1 convolution.
The size [H,W,Cin,Cout] for each convolution: [64,64,512,256],
[18,18,128,768], [56,56,128,128], and [28,28,256,256].

performance (49% on Adreno and 78% on Mali of the total) by re-
ducing register usage and avoiding the register spill (refer to Fig. 5).

Searching cost comparison Fig. 18 compares the searching cost
and the performance of generated kernels with and without Romou
pruning for two example kernels. The two examples are for the
two issues caused by large search space mentioned in Sec. 4. By
pruning, Romou manages to generate faster kernels in shorter search
time and fewer device runs. In Fig. 18a, though the achieved kernel
performance without pruning can be the same as pruning, it costs
2.8× searching time. The search space size is reduced from 102060
to 1057 by pruning. In Fig. 18b, the kernel performance without
pruning converges at local optima 105 GFLOPS in 3× searching
cost than Romou which achieves 132 GFLOPS. The search space
size is reduced from 1498176 to 9450.

The ALU capacity utilization in the results is similar as Fig. 3b.
This is because the utilization is bottlenecked by the hardware (reg-
ister and cache bandwidth), as identified in Sec. 3.2. Romou can
generate kernels that approach the hardware limitation.

6 Discussion
Reliability of ArchProbe The hardware parameters profiled by
ArchProbe have been cross validated with different resources, in-
cluding: (1) the common parameters reported by other profiling
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Figure 18: Searching cost of kernels (a) conv1x1 with
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tools [2, 5, 22], e.g., the computation and memory bandwidth; (2)
the public parameters reported by vendors, e.g., the warp size of
Mali GPU; (3) the related parameters reported by ArchProbe itself.
For example, the profiled number of ALUs multiplied with GPU
frequency can cross validate the profiled computation bandwidth.

Coverage of ArchProbe The coverage is restrained by the SIMT
assumption and OpenCL implementation. Apple’s mobile GPU is
not supported since it uses Metal API. Other than that, GPUs sup-
porting OpenCL could all be profiled by ArchProbe, e.g., NVIDIA’s,
AMD’s, and PowerVR’s. This paper focuses on the mainstream mo-
bile GPUs i.e., Adreno and Mali GPUs. The results on other GPUs
have not been cross validated yet. This can be the effort from us in
the future or the community as ArchProbe is open sourced.

Portability of Romou Romou is built on a DNN compiler TVM,
which provides a domain-specific language for tensor operations.
Similarly, Romou could be integrated to other DNN compilers by
extending compiler optimization passes. Romou will be hard to be
integrated into general programming language compilers such as
GCC or LLVM with no direct support for tensors.

Applicability to different models Romou generates optimal ker-
nels for common DNN operators, e.g., convolution, matrix multi-
plication, and FC (i.e., matrix-vector multiplication). Current DNN
models are mostly composed of these operators, and thus can be
benefited by Romou. For example, RNN is mainly composed of FC
operators; RL is composed of FC or convolution operators; Trans-
former is composed of matrix multiplication operators.

Applicability to different SoCs Although there are many differ-
ent SoCs used by different phones, they contain common reusable
IPs or embedded processors. For example, the SoCs made by Hi-
silicon and Mediatek use Mali GPUs. The profiled results for these
GPUs should not be impacted by different SoC manufacturers.

7 Related work

Instead of low-level computation kernel optimization, some other
works [16, 19, 20, 25, 27, 36, 47] aim to coordinate mobile GPUs

with other resources to improve performance under different scenar-
ios. µLayer [25] implements intra- and inter-operator parallelism
between the CPU and GPU on a mobile SoC. Heimdall [47] solves
the mobile GPU contention issue caued by multiple concurrent
tasks by breaking down the DNN models into smaller units. Deep-
Mon [20] utilizes mobile GPUs for continuous vision applications.
These works are orthogonal to our work. They can leverage our
generated kernels in their systems.

Automatic search and code generation To reduce human effort
of kernel optimization, many works [1, 7, 8, 13, 15, 31, 32, 38, 42,
48, 49] propose automatic search and code generation to find the
best kernel implementation from a massive search space. TVM [7]
provides schedule primitives and template specification APIs to let
users declare a search space, and uses machine learning methods
to search for the best generated code from this space. Its following
work Ansor [48] generates the schedule specifications automatically
to further reduce human workload. CLTune [38] is an auto-tuner
specifically for OpenCL kernels which also automatically search for
the optimal configurations such as workgroup size, tile size and loop
unrolling in a user-defined space. MPFFT [32] is an auto-tuning FFT
library for OpenCL GPUs.

The resulting kernel performance of these works depends on the
search space definition. However, none of these works solve the issue
of proper space definition for a new hardware which can cover the
optimal configurations and exclude the inefficient ones. For example,
based on the best practice of server GPU programming, TVM pro-
vides primitives to define the search space for server GPUs and gain
comparable performance as manual-written kernels. However, since
there is no knowledge for mobile GPUs, the TVM-defined space
lacks the optimal configurations for mobile GPUs, and the searching
is stuck in billions of inefficient configurations [7]. Our work can
extract the critical hardware features and define a largely-pruned
space for mobile GPUs to find optimal kernels within limited steps.

There are much more works for DNN inference on server GPUs.
As we have stated, mobile and server GPUs have quite different hard-
ware design. The technologies work well for server GPUs generally
cannot be applied to mobile GPUs. For example, shared memory and
CPU-GPU data copying are widely used for server GPUs. However,
these should be avoided on mobile GPUs for better performance.
We use the TVM mobile GPU backend as the baseline since it has
been adapted to mobile GPUs already. As Sec. 3 stated, the micro-
benchmarks for server GPUs [37] cannot be directly used on mobile
GPUs. This is because mobile GPUs do not support accurate timing
or low-level instructions required by the server-GPU benchmarks.
We thus do not discuss these works here.

8 Conclusion
Directed by hardware profiling, this paper empowers the rapid gener-
ation of optimal DNN kernels on diverse mobile GPUs. The profiling
also exposes hardware design implications for potentially higher in-
ference performance. The performance bottleneck on current mobile
GPUs is the limited number of registers. To avoid wasting ALUs,
hardware designers could scale up the register file size or L1 cache
bandwidth. Besides, for Adreno GPUs, more fine-grained warp could
help to eliminate idle threads for small input sizes.
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