
Bridging the Generalization Gap in Text-to-SQL Parsing
with Schema Expansion

Chen Zhao∗

New York University
cz1285@nyu.edu

Yu Su
Microsoft Semantic Machines

yusu2@microsoft.com

Adam Pauls
Microsoft Semantic Machines
adam.pauls@microsoft.com

Emmanouil Antonios Platanios
Microsoft Semantic Machines

anthony.platanios@microsoft.com

Abstract

Text-to-SQL parsers map natural language
questions to programs that are executable over
tables to generate answers, and are typically
evaluated on large-scale datasets like SPIDER
(Yu et al., 2018). We argue that existing bench-
marks fail to capture a certain out-of-domain
generalization problem that is of significant
practical importance: matching domain specific
phrases to composite operations over columns.
To study this problem, we propose a synthetic
dataset and a re-purposed train/test split of
the SQUALL dataset (Shi et al., 2020) as new
benchmarks to quantify domain generalization
over column operations. Our results indicate
that existing state-of-the-art parsers struggle in
these benchmarks. We propose to address this
problem by incorporating prior domain knowl-
edge by preprocessing table schemas, and de-
sign a method that consists of two components:
schema expansion and schema pruning. This
method can be easily applied to multiple ex-
isting base parsers, and we show that it sig-
nificantly outperforms baseline parsers on this
domain generalization problem, boosting the
underlying parsers’ overall performance by up
to 13.8% relative accuracy gain (5.1% absolute)
on the new SQUALL data split.

1 Introduction
Text-to-SQL parsing is the task of translating natural
language questions over provided tables to SQL queries
which can be executed to produce answers. In recent
years, with the availability of large-scale datasets (e.g.,
Zhong et al., 2017; Yu et al., 2018), neural semantic
parsers have witnessed significant success on this task.
However, recent work (Suhr et al., 2020; Lee et al.,
2021) has suggested that these state-of-the-art parsers
are far from successful in terms of out-of-domain
generalization in real scenarios, where users may ask
questions related to potentially very large tables with
the goal of improving their productivity (e.g., while
they are viewing or editing a large Excel spreadsheet).

∗ This work was performed during a research internship
at Microsoft Semantic Machines.

Name Income

Armani …

Name Earnings

Armani …

Name Salary Stock

Armani … …

Name Salary Bonus

Armani … …

Name Wages

Armani …

Employee Income

Armani …

Train Dataset Test Dataset

+

Question

What was Armani’s 

income last year?

Column 

Matching

Column 

Operations

Figure 1: Illustration of two aspects of out-of-domain
generalization that are challenging for text-to-SQL
parsers. While existing methods partially address the
“column matching” issue, they still suffer when it comes
to “column operations”. Note that there are more tables
on the right to illustrate the fact that there are a variety
of settings the parser may run into at test time.

In such scenarios, it is common to encounter tables
specific to new domains that were not encountered
while training a parser. Perhaps the most challenging
aspect of domain generalization is that models need
to understand domain-specific phrases that they have
not seen before, and translate them into logical form
segments that involve references to table elements (e.g.,
column names or aggregation operations over columns).
We argue that two kinds of abstract operations, shown in
Figure 1, are particularly challenging for new domains:

1. Column Matching: The task of mapping natural
language phrases to the most relevant columns
(e.g., mapping “Income” to the "Wages" column).
This can be challenging because some mappings
may be implicit or may require domain knowledge.

2. Column Operations: The task of mapping natural
language phrases to composite expressions over
table columns. For example, in Figure 1, we need
to map income to just "Wages" for one table, and to
"Salary" + "Stock" for another table. Similarly,
consider the complex "Term" column in Figure 2,
in which two subfields 1 and 2 represent the term
start (e.g., 1926) and term end (e.g., 1927), respec-
tively. Some questions may ask about the term
duration while others may ask about the term start.



Training 
Data

Expansion 
Templates Pruning Model Training Data Parser Training Data

Negative Column 

Sampling

Train Schema 

Pruning Model

Apply Schema 

Pruning
Train Parser

Apply Schema 

Expansion

Training Pipeline

Inference Example

Name Term

Pier Piccio 1926-1927

Armando Armani 1927-1928

Giuseppe Valle 1930-1933

Input Question: How long was Armando Armani’s term?Input Table:

Output Program:

SELECT “Term Duration” FROM t 
WHERE “Name” = ‘Armando Armani’

Apply Schema 

Expansion

Name Term Term Start Term End Term Duration

Pier Piccio 1926-1927 1926 1927 1 year

… … … … …

Name Term Term Duration

Pier Piccio 1926-1927 1 year

… … …

Parser
Apply Schema 

Pruning

Figure 2: Illustration of the training pipeline for the proposed method and the inference process for an example. The
proposed method is described in detail in §4. Note that the proposed components interact with the parser by modify-
ing the table that is fed to it as input, as well as the target program during training in the case of schema expansion.

Each of these questions requires mapping the cor-
responding phrase to an expression that refers to
this column (e.g., "Term". 2 - "Term". 1 for the
former and "Term". 1 for the latter).

While recent approaches rely on pre-trained language
models (e.g., Yin et al., 2020; Deng et al., 2021) for
addressing the column matching challenge, column op-
erations remain relatively unexplored due to the lack of
evaluation benchmarks.

To this end, we first propose two new benchmarks:
a synthetic dataset and a train/test repartitioning of
the SQUALL dataset (Shi et al., 2020); both capable of
quantifying out-of-domain generalization on column
operations. We then show that existing neural parsers un-
derperform on both benchmarks because they require an
impractically large amount of in-domain training data—
which is not available in our setting—to effectively
“memorize” mappings from natural language phrases to
program fragments. Finally, we propose a new method
for making any existing text-to-SQL parsers aware
of prior information that may be available about the
domains of interest. Specifically, we propose two new
components: schema expansion and schema pruning.

Schema expansion uses heuristics to expand columns
into sets of derived columns based solely on their types
(all schemas are assumed to be typed which tends to be
true for both relational databases and Excel spreadsheets
in practice; Excel uses a built-in type inference mech-
anism). Relying on generic types makes this method
applicable to new domains, as long as they make use
of similar underlying types. This process allows us to
transform complex program fragments (e.g., "Term". 2

- "Term". 1) into simpler ones (e.g., "Term Duration")
that are better aligned with the natural language ques-
tions, thus making the underlying parser’s job easier.
While schema expansion may result in a large num-

ber of unnecessary expanded columns, schema pruning
then examines both the input question and the available
columns (original and expanded) and prunes the set of
columns that the final parser is exposed to.

Our experiments show that schema expansion and
schema pruning can boost the underlying parsers’ per-
formance by up to 13.8% relative accuracy (5.1% ab-
solute) on the new SQUALL data split. Furthermore,
they also boost performance over the original SQUALL
data splits by up to 4.2% relative (1.9% absolute).
One of our main goals in this paper is to put atten-
tion on the difficult problem of domain generalization
by providing a new evaluation benchmark, as well
as an initial direction for solving this problem. Our
evaluation benchmarks along with code for reproduc-
ing our experiments are available at https://aka.ms/
text-to-sql-schema-expansion-generalization.

2 Background

Task. Semantic parsing has been widely studied in the
context of multiple other tasks like instruction follow-
ing (Chen and Mooney, 2011; Artzi and Zettlemoyer,
2013), code generation (Oda et al., 2015; Iyer et al.,
2018), knowledge graph question answering (Berant
et al., 2013; Yih et al., 2015), etc. We focus on using
tables as the context in which semantic parsing is per-
formed, where the goal is to translate pairs of natural lan-
guage questions and tables to executable SQL queries,
also known as text-to-SQL parsing (Androutsopoulos
et al., 1995; Minock et al., 2008). Note that, while we
focus on questions in the English language, there exists
prior work on multilingual semantic parsing as well (Jie
and Lu, 2014; Sherborne et al., 2020) and the contribu-
tions of our work also apply there. Formally, our goal is
to map a pair (q, T ), where q is a natural language ques-
tion and T is a table, to an executable program π that,

https://aka.ms/text-to-sql-schema-expansion-generalization
https://aka.ms/text-to-sql-schema-expansion-generalization


when executed against table T , will produce the answer
α to question q. We focus on the fully-supervised set-
ting where the target executable program π∗ is provided
as supervision for training our parser.

Out-of-Domain Generalization. Generalization in ma-
chine learning is often defined as the ability to do well
on a test set after learning from a training set, where
all examples in both sets are drawn independently from
the same distribution (i.i.d. generalization). However,
as Gu et al. (2021) argue, in real-world applications
such as semantic parsing, the test data may involve
new compositional structures (compositional general-
ization), or new domains (domain generalization) that
are not encountered during training. Existing work in
compositional generalization for semantic parsing has
focused on using synthetic datasets (e.g., Keysers et al.,
2020; Lake and Baroni, 2018), or repartitioning existing
text-to-SQL datasets into new train and test splits (e.g.,
Finegan-Dollak et al., 2018). Both approaches have gen-
erally shown that compositional generalization remains
an important challenge (e.g., Shaw et al., 2021). We fo-
cus on the arguably even more challenging domain gen-
eralization problem, also known as domain adaptation,
where entire domains may never be encountered during
training or may only be encountered a small number of
times (Motiian et al., 2017). Even though this problem
has been studied extensively in the context of classifi-
cation (Daumé III and Marcu, 2006), machine transla-
tion (Daumé III and Jagarlamudi, 2011), and question
answering (Talmor and Berant, 2019), it remains un-
derexplored for semantic parsing. To be applicable in
real scenarios, semantic parsers must be able to gener-
alize to new domains since collecting domain-specific
labeled data is often prohibitively expensive. Recent
approaches have focused on data synthesis (Yin et al.,
2021), meta-learning (Wang et al., 2021), relation-aware
schema encoding (Wang et al., 2020), and encoder pre-
training (Yin et al., 2020; Herzig et al., 2020; Yu et al.,
2020; Deng et al., 2021). In this paper, we hone in
on one aspect of domain generalization that we shall
broadly refer to as column operations and which was
introduced in §1 and illustrated in Figure 1.

Evaluation Benchmarks. Text-to-SQL parsing be-
came popular after the introduction of large-scale
datasets and evaluation benchmarks. Zhong et al. (2017)
first introduced WIKISQL, which contains Wikipedia
tables paired with questions and annotated with SQL
queries, albeit the queries are generated from a limited
set of templates. SPIDER was introduced by Yu et al.
(2018) the following year. It contains more complex
questions and SQL queries and focuses on generalizing
to previously unseen database schemas, but the dataset
has the artifact from its annotation design that the refer-
ences columns are often mentioned verbatim in the nat-
ural language questions. Deng et al. (2021) attempt to
address this limitation by repartitioning SPIDER to pro-
duce a more realistic benchmark, and Lee et al. (2021)
propose a challenging test set from Kaggle for evaluat-

ing parsers trained on SPIDER dataset. However, as Suhr
et al. (2020) point out, SPIDER also uses a simplified
setting which excludes examples that involve multiple
columns (e.g., adding two columns together), as well as
ones that require background knowledge. These bench-
marks are thus limited in their usefulness for evaluating
parsers in real-world settings where they may encounter
complex questions that require mapping specific phrases
to expressions over table columns, rather than to a sin-
gle column. Furthermore, while both WIKISQL and
SPIDER assume “simple” tables with only String- or
Number-valued columns, in practice we may encounter
tables where the columns themselves may have struc-
tured types (e.g., TimeSpan). For example, consider the
table shown on the top left of Figure 2. In this case,
the "Term" column is of type TimeSpan and consists of
two Numbers that represent the beginning and the end
of the timespan. In this case, users may ask questions
that require constructing expressions to access nested
elements from the "Term" column (e.g., “How long was
Pier’s term?”). Recently, Shi et al. (2020) introduced
SQUALL, a dataset that annotates WIKITABLEQUES-
TIONS (Pasupat and Liang, 2015) with SQL queries and
refined column types like Date, Score, (T1, T2), and
List[T]. However, SQUALL distributes tables evenly
between the train and test splits, thus not allowing us
to evaluate the kind of out-of-domain generalization
we are interested in. Therefore as we will show in the
following section, we aim to address this limitation by
repartitioning SQUALL into new train and test splits.
Neural Text-to-SQL Parsers. Neural encoder-decoder
models have recently gained popularity for text-to-
SQL parsing (e.g., Xu et al., 2017). We focus on two
models that represent the current state-of-the-art for
SQUALL and SPIDER, respectively: SEQ2SEQ of Shi
et al. (2020) 1 and SMBOP of Rubin and Berant (2021).
Both models concatenate the question with a textual
representation of the table schema, separated by a spe-
cial [SEP] token, and feed the combined sequence to a
pre-trained instance of the BERT (Devlin et al., 2019)
language model. The activations of the last layer rep-
resent the encoded representations of the question and
the table schema. SEQ2SEQ then uses a autoregressive
decoder, which represents programs as token sequences
and at each decoding step it: (1) predicts the next token
type (i.e., whether the next token is a SQL keyword, a
column name, or a literal value), and (2) predicts the
token conditioned on its type. SMBOP, on the other
hand, uses bottom-up decoding, which represents pro-
grams as abstract syntax trees and constructs these trees
in a bottom-up fashion (i.e., it starts by predicting the
leaf nodes and then recursively composes generated
sub-trees into new trees and ranks them, in a way that re-
sembles beam search), until it reaches the tree root. We
refer the reader to the aforementioned papers for details.

1Shi et al. (2020) mentioned that the SEQ2SEQ model
in their experiment is competitive with a state-of-the-art sys-
tem (Suhr et al., 2020) on the SPIDER leaderboard.



3 Proposed Evaluation Benchmarks
Our goal is to design an evaluation benchmark that has
the following out-of-domain generalization properties:
(i) the training data involves a different set of domains
from the test data, (ii) the questions and tables that
appear in the train and test data are non-overlapping,
not only in terms of the domains they belong to, but also
in terms of the program fragments that they contain,
and (iii) to simulate the more challenging setting that is
often encountered in real applications, the test data is bi-
ased to contain more examples that involve both nested
column access operations, like getting the start of a
"Term" in Figure 2, as well as composite column expres-
sions, like getting the duration of a "Term". To this end,
we propose a new synthetic dataset and a repartitioning
of the SQUALL dataset into new train/test splits.

3.1 Synthetic Dataset
We consider three fictional domains inspired by com-
mon uses of tables: finance, sports, and science. We
explain our synthetic dataset generation process through
a running example as follows:

1. For each domain, we declare a set of formu-
las that relate different quantities (e.g., "Income"
= "Salary" + "Stock"). The primitives used in
these formulas define the set of available columns.

2. For each column we declare a set of noun phrases
that can be used to refer to it (e.g., “wages” for
"Income" and “base salary” for “salary”). We
also define a SQL query template that shall be
used for all programs: SELECT <column> FROM t

WHERE "Year" = <year>, and a question template
What was <column> in <year>? Note that the
"Year" column is special and is included in all
examples of this synthetic dataset.

3. We sample a formula and a variable from that
formula (e.g., "Income" from formula "Income" =

"Salary" + "Stock" ). We then generate a ques-
tion asking for this variable, randomly replacing
the variable with a noun phrase in the correspond-
ing set, and randomly generate a year value (e.g.,
use “wages” to replace “income” and generate a
question “What was [wages] in [2011]?”).

4. To generate the target program π∗, we randomly
drop a variable from the sampled formula in step 3.
If the asked value corresponds to this variable, we
transform its reference in the SQL query so that
it is expressed as a function of the columns that
are kept (e.g., "Salary" + "Stock"), otherwise we
use the column name (e.g., "Income").

5. To generate a table schema we first add a "Year"

column and two of the columns that were not
sampled from the formula (e.g., "Salary" and
"Stock"). We then sample k other columns and
add them to schema (k = 15 in our experiments)
as distractor columns. Note that we do not gener-
ate full tables for this synthetic dataset since we do
not evaluate on table cell selections.

We construct benchmark datasets by first generating
1,000 examples per domain and then iterating over the
domains and keeping the data generated for the current
domain as our test data, while using the data of the
remaining two domains for training. This results in
three datasets, each with 2,000 train examples and 1,000
test examples. More details on the declarations for our
domains can be found in Appendix A.1.

3.2 SQUALL Repartitioning
Aside from the synthetic dataset we also propose to
repartition SQUALL into new train and test data splits,
with a focus on the aforementioned out-of-domain gen-
eralization properties. The original splits for SQUALL
were produced by uniformly sampling 20% of the tables
to produce the test set and using the remaining 80% as
the train set. This process was repeated 5 times and the
evaluation metric results were averaged over the results
obtained for each repetition. This resulted in similar
tables being included in both the train and test sets (e.g.,
tables referring to two different basketball matches,
but having identical schemas), and few examples in
the test set required column operations. In order to
avoid this issue, we propose the following algorithm
for automatically constructing data splits focused on
out-of-domain generalization on column operations:

1. Collect the table schemas used across all examples
in the train and dev splits of the dataset (there are
about 1,600 schemas; note that the test set is not
annotated with SQL queries).

2. Construct a graph by treating each schema as a
node, and adding an edge for each pair of schemas
that share more than 33% of their columns.

3. Find all connected components of the graph. Each
defines a cluster of table schemas.

4. Each table has a set of SQL queries associated with
it: one for each example that uses this table. For
each query we check if it is a SELECT of a single
column or if it is a SELECT that involves column
operations such as field accessors or arithmetic op-
erations. We associate each cluster with the num-
ber of queries that involve such column operations.

5. Sort the clusters based on this number, in decreas-
ing order, and then use the first 20% as the test
set and the remaining as the train set. Note that
adding a cluster to the train/test set is equivalent to

Data Category # Examples
Train Test

All 8,956 2,320
w/ Score Accessors 91 86
w/ Score Expressions 47 53
w/ Date Accessors 81 173
w/ Date Expressions 18 95

Table 1: Statistics for our repartitioned version of
SQUALL, including the categories that we use in our
empirical analysis and which are presented in §3.2.



adding all examples that use tables included in this
cluster. This step will result in disproportionally
more column operations being used in our test set
than in our train set, which means that the model
will need to learn to generalize well in this setting
to do well in this dataset.

In the following sections we pay special attention to
four data subcategories that are representative of the
out-of-domain generalization setting for SQUALL:

– Score Expressions: Represents SQL queries that
include expressions over columns of type Score

(e.g., a query selecting the score difference for a
basketball game).

– Score Accessors: Represents SQL queries that in-
clude field accessors for columns of type Score

(e.g., a column with the results of a basketball
game, like “89-72”, and a query that requires ac-
cessing the first element of this score; i.e., “89”).

– Date Expressions: Similar to Score expressions
except using the Date and TimeSpan type (e.g., a
query asking for the duration of a presidency term).

– Date Accessors: Similar to Score Accessors, ex-
cept using the Date and TimeSpan type (e.g., a
query asking for the start of a term).

We shall refer to these categories when reporting ex-
perimental results in §5. We provide statistics for the
resulting dataset in Table 1.

4 Proposed Method
In this section we propose a simple approach for tack-
ling this specific out-of-domain generalization problem
that ought to serve as evidence that it is a real problem
and that it is solvable, as well as a reference point for
evaluating future approaches. Our approach consists of
two new components that can be used in combination
with any existing text-to-SQL parser: schema expansion
and schema pruning. These components interact with
the parser by preprocessing the table that is fed to it as
input. This is illustrated in Figure 2.

As discussed in §1, there are two kinds of challenges
related to out-of-domain generalization in text-to-SQL
parsing, column matching and column operations, with
the latter being more challenging. The goal of schema
expansion is to reduce column operation challenges to
column matching by adding synthetic columns to the
table schema. These synthetic columns correspond to
expressions or accessors over existing columns (e.g., a
column that represents the sum of two columns). Rather
than learning (or memorizing) the ways in which dif-
ferent types of columns can be composed together, we
propose to inject prior knowledge as to what kind of
symbolic operations are possible based solely on the col-
umn types in a schema. This reduces column operations
to column matching by effectively bringing the target
programs closer to their surface form in the natural lan-
guage question. For example, "Income" can now map

to a synthetic column that corresponds to the sum of
"Salary" and "Stock" instead of having the parser pro-
duce the sum expression directly. Since our expansion
is based on column types, we argue that it is reasonable
to assume that all schemas are typed and our expansion
could be applied to any new domain. It is also worth
noting that even though our templates may not cover
all cases,2 when applying our method to new domains,
developers can declare a few templates of their inter-
est and apply schema expansion on these templates to
create parser-friendly schemas. This would be more
cost-effective compared to collecting large in-domain
training data for training the parser.

Naturally, having a component that expands the table
schema means that we may end up with large schemas
that the parser has to deal with, which will often in-
volve a lot of irrelevant columns (partially because the
schema expansion component does not peek at the ques-
tion). This can result in increased latency which is not
desirable in real-world systems. To this end, we intro-
duce a schema pruning component that looks at both
the expanded table schema and the question and decides
which columns to prune before invoking the parser. It
can be argued that this pruning is as hard as parsing
itself, but there is evidence from other areas that it can
indeed be helpful (e.g., vocabulary selection; Chen et al.,
2019; Xu et al., 2021). As we shall show schema prun-
ing can actually provide an additional boost in accuracy,
depending on architecture of the underlying parser.

4.1 Schema Expansion

A domain developer first declares a set of templates that
specify the ways in which different column types can
interact (e.g., it specifies that given a typed TimeSpan

column that contains two subfields, 1 and 2, the expres-
sion TimeSpan. 2 - TimeSpan. 1 can be constructed
that represents a duration), and the names for each such
interaction (e.g., "Duration").3 The schema expansion
component receives as input this set of templates along
with the table schema and returns an expanded schema
that includes additional columns generated by using all
applicable templates. For our SQUALL experiments,
we declared the templates shown in Table 2. Although
these templates are somewhat tailored to this dataset,
our main goal is to show that there is considerable room
for improvement in this challenging generalization sce-
nario, and that even a simple approach with minimal
manual effort can result in significant gains.

4.2 Schema Pruning

We propose a simple schema pruning approach that
is inspired by vocabulary selection methods in ma-
chine translation. Let us denote the input question

2An interesting future project idea would be to automati-
cally expand schemas using pre-trained language models.

3Having a name that accurately reflects the meaning of the
column operation results is desired, as semantic parsers are
sensitive to column names for column matching.



Synthetic Column ExampleColumn : Type : Fields Column Name Expression Original Column Name(s) Synthetic Column Name(s)
Expressions

x:TimeSpan: 1, 2 [x] Duration x. 2 - x. 1 Term Term Duration
x:Date,y:Date [x & y] Duration y - x Term Start; Term End Term Duration
x:Score: 1, 2 [x] Difference x. 2 - x. 1 Result Result Difference
x:Score: 1, 2 [x] Sum x. 2 + x. 1 Result Result Sum

Accessors
x:TimeSpan: 1, 2 [x] Start; [x] End x. 1; x. 2 Term Term Start; Term End
x:Score: 1, 2 Home [x]; Away [x] x. 1; x. 2 Result Home Result; Away Result

x:Score: 1, 2, 3

Win Record;
Loss Record;
Tie Record

x. 1;
x. 2;
x. 3

Result
Win Record;
Loss Record;
Tie Record

x:Score: 1, 2, 3

First Round [x];
Second Round [x];
Total [x]

x. 1;
x. 2;
x. 3

Score
First Round Score;
Second Round Score;
Total Score

Table 2: The templates we used for schema expansion over TimeSpan-, Date-, Score-valued columns, including
column expressions and accessor operations. x and y denote columns in the original schema, 1, 2, and 3 refer to
tuple field accessors, & denotes overlapping column name tokens, and ; is used as a column separator.

by q and the input column names after expansion by
c1, . . . , cM . We concatenate the question and the col-
umn names as [CLS] q [SEP] c1 [SEP] ... [SEP]

cM [SEP] and feed the resulting sequence to a BERT
encoder (Devlin et al., 2019). We then define the embed-
ding of each column, ci, as the final-layer representation
of the last token of that column’s name. Finally, we
define the probability that a column should be kept as
pi = Softmax (MLP(ci)). We train this model based on
whether each column is used in the corresponding SQL
program. At inference time, we need to choose a thresh-
old on the predicted probabilities for deciding whether
to prune a column or not. We assume a transductive
setting and choose this threshold such that the ratio of
pruned columns over the test set equals to the ratio of
pruned columns over the train set plus a constant hyper-
parameter to account for fact that accuracy will likely
be lower for the test set than the train set. Note that
assuming a transductive setting is fine because in a real-
world system we could be tuning this threshold based
on the last t requests made to the model. While this is
not equivalent, assuming a large enough t, we should
be able to adapt this threshold using the same approach.

Negative Column Sampling. As is evident from Fig-
ure 2, we also introduce a negative column sampling
component. This is because we train our pruning model
on the same data that we use to train the underlying
parser (aside from the modified table schemas) and thus
the pruning model can become good at pruning all ir-
relevant columns over this dataset. This will result in
the underlying parser being unable to handle situations
where irrelevant columns are mistakenly left unpruned
by the pruning model. To this end, during training we
introduce some irrelevant columns to improve the ro-
bustness of the underlying parser. We found that making
sure to always include at least 3 columns in the result-
ing schemas was sufficient and equivalent to randomly
sampling 1 or 2 additional columns for each training
example, and so that is what we did in our experiments.

5 Experiments

We performed experiments on the two proposed bench-
marks (as well as the existing version of the SQUALL
benchmark), using the two current state-of-the-art parser
architectures presented in §2 in combination with our
proposed schema expansion and pruning components.

5.1 Experimental Setup

As described in §3, our synthetic benchmark consists of
three domains, finance, sports and science. We repeat
our experiments once for each domain. For each repe-
tition we test on one of the domains, while training on
the other two. For SQUALL, we present results on our
repartitioned split from §3.2. For both datasets, we also
include results for three i.i.d. splits. In each experiment,
we compare four different configurations for the parsers:

1. Base: The underlying parser which can be either
SEQ2SEQ or SMBOP.

2. Base + P: Base while also using schema pruning.
3. Base + E: Base while also using schema expansion.
4. Base + P + E: Base while also using both schema

expansion and schema pruning.

We repeat each experiment three times using different
random seeds and report mean exact match accuracy
(i.e., fraction of examples where the predicted SQL
queries exactly match the gold queries), and standard
error for this mean.

Note that for SQUALL, researchers often also report
execution accuracy, which measures the fraction of ex-
amples for which executing the predicted SQL queries
results in the correct answer to the input question. How-
ever, we found that for 7% of the examples that are rep-
resentative of out-of-domain generalization, executing
the gold SQL queries does not yield the correct answer
(e.g., in cases where the correct answer is a sub-string
of a cell value). Therefore we chose to only report exact
match accuracy in our experiments.



Seq2Seq SmBopDataset Split Base Base + P Base + E Base + E + P Base Base + P Base + E Base + E + P
Synthetic Dataset

I.I.D. 52.5 ± 2.2 86.5 ± 0.7 93.4 ± 0.6 96.2 ± 0.3 85.3 ± 0.5 90.9 ± 0.2 97.3 ± 0.1 97.3 ± 0.1
Finance 17.4 ± 0.6 18.3 ± 0.8 58.7 ± 0.3 65.9 ± 0.7 23.6 ± 0.2 24.4 ± 0.3 69.7 ± 0.3 68.7 ± 0.1
Sports 16.8 ± 0.6 26.7 ± 0.4 69.0 ± 0.4 71.8 ± 0.5 28.8 ± 0.9 28.8 ± 0.2 77.3 ± 0.5 79.5 ± 0.2
Science 12.8 ± 0.1 17.5 ± 0.8 64.8 ± 0.2 69.9 ± 0.6 20.1 ± 2.0 26.3 ± 0.2 69.7 ± 0.6 71.2 ± 0.2

Squall Dataset
I.I.D. 45.1 ± 0.6 46.3 ± 1.0 47.2 ± 0.9 47.5 ± 1.0 46.4 ± 0.8 46.7 ± 0.6 48.1 ± 0.8 48.2 ± 0.5
Repartitioning 35.0 ± 0.3 36.8 ± 0.2 38.0 ± 0.3 39.3 ± 0.2 37.0 ± 0.1 39.8 ± 0.3 42.1 ± 0.3 42.1 ± 0.2
Date Expressions 1.4 ± 0.7 4.5 ± 0.3 28.0 ± 2.3 43.2 ± 1.0 3.2 ± 0.9 10.6 ± 1.9 50.2 ± 2.5 46.3 ± 0.6
Score Expressions 9.4 ± 1.1 5.0 ± 2.7 30.9 ± 3.5 33.9 ± 1.7 26.4 ± 3.1 30.0 ± 3.0 47.2 ± 1.3 51.6 ± 1.3
Date Accessors 19.1 ± 0.7 26.3 ± 0.4 24.9 ± 1.0 26.0 ± 0.5 21.4 ± 0.3 24.8 ± 1.4 23.5 ± 0.8 24.8 ± 0.3
Score Accessors 18.1 ± 2.3 22.6 ± 1.1 21.8 ± 1.0 18.1 ± 0.9 21.8 ± 1.3 31.7 ± 0.8 26.4 ± 1.8 25.3 ± 2.0

Table 3: Mean accuracy and standard error for 3 experiment runs, computed over multiple different splits for each
dataset. The best results in each row are shown in bold red font. Note that, when compared with the Base model, all
gains statistically significant. + P stands for using the schema pruning model and + E for the schema expansion model.

5.2 Results

Synthetic Benchmark Results. Our results for this
benchmark are presented in the top part of Table 3. A
first observation is that performance on the i.i.d. split
for the baseline parsers is significantly better than on
the domain-based splits. Interestingly, our expansion
and pruning components still provide a significant boost
over baseline performance in this setting (up to 43.7%
absolute accuracy / 83.2% relative). However, the base-
line parsers are practically unusable in the domain-based
splits. In this case, our approach provides a very signifi-
cant accuracy gain, rendering them useful (up to 55.0%
absolute / 327.4% relative).

SQUALL Benchmark Results. Our results for this
benchmark are presented in the bottom part of Table 3.
Similar to the synthetic benchmark, we observe that both
parsers perform reasonably well on the i.i.d. split, but
significantly underperform in our repartitioned bench-
mark. This is consistent with earlier observations by
Suhr et al. (2020) and Lee et al. (2021). Furthermore,
we observe that our expansion component helps boost
the accuracy of both parsers significantly (up to 5.1%
absolute / 13.8% relative) and the pruning component
provides some small further improvements on top of
that. However, we notice that the pruning component is
not as helpful for SMBOP as it is for SEQ2SEQ, which
we provide detailed analysis in §5.4. Drilling down a bit
further, we observe that most gains are due to the data
categories we defined in §3.2. Perhaps most importantly,
we get a 47.0% absolute accuracy gain (1,468.8% rel-
ative) for SMBOP on the “Date Expressions” category
alone. This can be largely attributed to our schema
expansion component, where by incorporating prior do-
main knowledge we are effectively reducing the original
column operations problem to a column matching prob-
lem, which is significantly easier. As a result, we get
significant improvements on both “Expression” data cat-
egories. We do not observe the same for “Accessor”
categories, which we address in the following section.

5.3 When is Schema Expansion Helpful?

From Table 3, schema expansion does not seem to help
much for “Accessor” expressions (i.e., Base + P per-
forms as well as or slightly better than Base + E + P
on those categories). In order to further understand the
contribution of schema expansion, we conducted an ab-
lation study where we compare the proposed Base + P
+ E with three more approaches: (1) E Expressions: the
schema expansion component only uses “Expression”
templates, (2) E Accessors: the schema expansion com-
ponent only uses “Accessor” templates, (3) P Oracle:
the schema pruning model is replaced with an oracle
model that always only keeps the columns that are used
in the gold SQL queries (so the parser only has to fig-
ure out how to use them, rather than also figuring out
which ones to use). Note that (3) will be discussed in
the following section. We present the results for this
ablation study in Table 4. We observe that expanding
“Expressions” but not “Accessors” boosts performance
on the “Expressions” categories, and similarly for “Ac-
cessors”. More importantly though we see that using
either one alone performs worse than using both types
of expansion, indicating that they both provide value
and that they work well together.

5.4 When is Schema Pruning Helpful?

It is evident from Table 3 that schema pruning is useful
both on its own (i.e., Base + P), but also on top of schema
expansion (i.e., Base + E + P). For SMBOP, we observe
that Base + P is more or less on par with Base. Though
this may seem inconsistent with the SEQ2SEQ results
at first, it is not actually surprising because SMBOP
keeps the most relevant columns in the beam during
bottom-up decoding, and thus it is implicitly already
using a schema pruning component. Furthermore, we
observe that schema pruning is especially useful on
top of schema expansion for the column operation data
categories (“Expressions” and “Accessors”). This is
because in the corresponding examples we end up with
a significantly larger number of expanded columns that
labeled as negatives when training the pruning model.



Seq2Seq SmBopDataset Split Base + E + P E Accessors E Expressions P Oracle Base + E + P E Accessors E Expressions P Oracle
Repartitioning 39.3 ± 0.2 37.4 ± 0.1 37.6 ± 0.1 52.9 ± 0.3 42.1 ± 0.2 40.6 ± 0.2 40.4 ± 0.2 57.9 ± 0.4
Date Expressions 43.2 ± 1.0 2.8 ± 0.7 39.6 ± 1.3 81.0 ± 2.5 46.3 ± 0.6 16.3 ± 1.3 41.1 ± 1.0 75.4 ± 1.7
Score Expressions 33.9 ± 1.7 14.2 ± 3.6 25.7 ± 1.7 48.8 ± 1.7 51.6 ± 1.3 36.5 ± 4.1 48.4 ± 1.6 74.2 ± 1.7
Date Accessors 26.0 ± 0.5 27.6 ± 0.6 26.6 ± 0.7 33.1 ± 1.5 24.8 ± 0.3 23.5 ± 0.8 22.6 ± 2.1 32.4 ± 1.0
Score Accessors 18.1 ± 0.9 20.6 ± 1.5 9.9 ± 0.8 29.2 ± 1.1 25.3 ± 2.0 30.7 ± 2.8 15.3 ± 3.2 58.1 ± 3.2

Table 4: Mean accuracy and standard error for 3 runs of our ablation studies on SQUALL repartitioning split for
domain generalization, with the best results in each row colored red.

34

35

36

37

38

39

40

0 1 2 3 4 5 6

A
c
c
u
ra

c
y
 (

%
)

Schema Pruning Hyperpameter Value

Schema Pruning Effect on Accuracy

Figure 3: Accuracy (%) while varying the
schema pruning model hyperparameter of
§4. Pruning more than necessary has a sig-
nificant negative impact on accuracy, while
pruning less does not.

Goal Date Opponent Score
Home 

Score

Away 

Score
Result

Home 

Result

Away 

Result

1 10/08/2010 San Marino 2-0 2 0 8-0 8 0

2 10/08/2010 San Marino 4-0 4 0 8-0 8 0

3 12/08/2010 Finland 0-1 0 1 1-2 1 2

Title: Adam Szalai International Goals

Question: How many games did he score in, where his team lost?

Program: SELECT COUNT(DISTINCT “Date”) FROM t WHERE “Home Result” < “Away Result”

score before goal final score

Figure 4: Example that showcases some of the challenges that are
not addressed by our approach, but which are accounted for in the
evaluation benchmarks that we propose. In this case, the "Score" and
"Result" columns have domain-specific semantics that are hard for the
model to learn, and the question also depends on the title of the table,
which current models do not take into account.

Schema pruning then filters most of these irrelevant
columns before training the underlying parser, resulting
in a more robust training procedure. Finally, in Table 4
we observe that P Oracle performs really well, indicating
that investing in a good schema pruning model would be
meaningful for improving generalization performance.

Schema Pruning Decision Threshold. As discussed
in §4, the proposed schema pruning component requires
setting a decision threshold hyperparameter. We already
described the way we do this in §4, but it is also worth
analyzing the impact of this decision on the overall
parser accuracy. This is because, intuitively we expect
that too aggressive pruning will likely cause cascading
errors, while too conservative pruning would not be
very effective and end up being equivalent to not using
any pruning at all. To this end, we conducted a study
for how the parser accuracy varies as a function of the
schema pruning model hyperparameter which was dis-
cussed in §4. We performed this experiment using the
SEQ2SEQ model which is more affected by the pruning
component, over our repartitioned SQUALL benchmark.
The results are shown in Figure 3. It is evident that ag-
gressive pruning has a more significant negative impact
on accuracy then conservative pruning.

5.5 Limitations

The proposed method is of course not without any limi-
tations and in this section we would like to put attention
on some of them. While schema expansion does help
significantly when tackling out-of-domain generaliza-
tion on column operations, there are a lot of cases that
it cannot directly handle as currently designed. For

example, consider the question-table pair shown in Fig-
ure 4. In this case the original table contains a "Score"

column and a "Result" column. The interpretation of
these columns is very domain-specific and in this case,
"Score" refers to the score in a game right before the
player of that row scored a goal, while "Result" refers
to the final score of the game. Our schema expansion
component cannot help with resolving distinctions of
this kind. Arguably, one might say this is a challenge in-
herently related to column matching, but putting details
aside, our approach coupled with the proposed bench-
marks does help show that column operations pose a sig-
nificant challenge for existing text-to-SQL parsers, and
this paper provides a reference point that future work
can build upon. Also, note that while constructing ex-
pansion templates requires some effort and may initially
seem like a limitation of our approach, we have shown
that this effort can be small relative to the amount of
training data that would need to be annotated otherwise.

6 Conclusion

In this paper, we introduced and focused on column
operations, an important challenge related to out-of-
domain generalization for text-to-SQL parsing. We pro-
posed two new evaluation benchmarks—one based on a
new synthetic dataset and one based on a repartitioning
of the SQUALL dataset—and showed that current state-
of-the-art parsers significantly underperform when it
comes to this form of generalization. We then proposed
a simple way to incorporate prior domain knowledge
to the parser via a new component called schema ex-
pansion that allows us to reduce the column operations



challenge to column matching; an arguably easier chal-
lenge. We also introduced a schema pruning component
allowing us to scale schema expansion, and showed
that when paired together, these two components can
boost the performance of existing text-to-SQL parsers
by a significant amount (up to 13.8% relative accuracy
gain / 5.1% absolute in our experiments). Through col-
umn expansion, we created a new table schema that is
more friendly to downstream parsers. Our work uses
heuristics based schema expansion and works well when
limited to columns that have specified types (e.g., scores
or timespans), but our synthetic experiments suggest
much larger potential on this problem. We hope this
work could motivate future research on creating a parser-
friendly table ontology. Future work could explore learn-
ing approaches that use models to automatically expand
any table schema, for example, by showing appropriate
prompts to ask pre-trained language models to tackle
it (Brown et al., 2020; Petroni et al., 2019).

Acknowledgments
We thank the anonymous reviewers for their helpful
comments, Jason Eisner for his detailed feedback and
suggestions on an early draft of the paper, and Jacob
Andreas, Ziyu Yao, Yuchen Zhang, and Sam Thomson
for helpful discussions.

References
Ion Androutsopoulos, Graeme D Ritchie, and Peter

Thanisch. 1995. Natural language interfaces to
databases–an introduction. Natural language engi-
neering.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of Empirical
Methods in Natural Language Processing.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language
models are few-shot learners. In Proceedings of Ad-
vances in Neural Information Processing Systems.

David Chen and Raymond Mooney. 2011. Learning
to interpret natural language navigation instructions
from observations. In Proceedings of the Association
for the Advancement of Artificial Intelligence.

Wenhu Chen, Yu Su, Yilin Shen, Zhiyu Chen, Xifeng
Yan, and William Yang Wang. 2019. How large a
vocabulary does text classification need? a variational
approach to vocabulary selection. In Conference of
the North American Chapter of the Association for
Computational Linguistics.

Hal Daumé III and Jagadeesh Jagarlamudi. 2011. Do-
main adaptation for machine translation by mining
unseen words. In Proceedings of the Association for
Computational Linguistics.

Hal Daumé III and Daniel Marcu. 2006. Domain adap-
tation for statistical classifiers. Journal of artificial
Intelligence research.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-grounded pretraining
for text-to-sql. In Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Conference of the North American Chap-
ter of the Association for Computational Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings of
the Association for Computational Linguistics.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond iid:
three levels of generalization for question answering
on knowledge bases. In Proceedings of the World
Wide Web Conference.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Mueller, Francesco Piccinno, and Julian Eisensch-
los. 2020. Tapas: Weakly supervised table parsing
via pre-training. In Proceedings of the Association
for Computational Linguistics.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of Empiri-
cal Methods in Natural Language Processing.

Zhanming Jie and Wei Lu. 2014. Multilingual semantic
parsing: Parsing multiple languages into semantic
representations. In Proceedings of International Con-
ference on Computational Linguistics.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, et al. 2020. Measuring com-
positional generalization: A comprehensive method
on realistic data. In Proceedings of the International
Conference on Learning Representations.

https://arxiv.org/abs/cmp-lg/9503016
https://arxiv.org/abs/cmp-lg/9503016
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://aclanthology.org/D13-1160/
https://aclanthology.org/D13-1160/
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://dl.acm.org/doi/10.5555/2900423.2900560
https://dl.acm.org/doi/10.5555/2900423.2900560
https://dl.acm.org/doi/10.5555/2900423.2900560
https://doi.org/10.18653/v1/N19-1352
https://doi.org/10.18653/v1/N19-1352
https://doi.org/10.18653/v1/N19-1352
https://aclanthology.org/P11-2071/
https://aclanthology.org/P11-2071/
https://aclanthology.org/P11-2071/
https://www.aaai.org/Papers/JAIR/Vol26/JAIR-2603.pdf
https://www.aaai.org/Papers/JAIR/Vol26/JAIR-2603.pdf
https://aclanthology.org/2021.naacl-main.105/
https://aclanthology.org/2021.naacl-main.105/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://arxiv.org/abs/2011.07743
https://arxiv.org/abs/2011.07743
https://arxiv.org/abs/2011.07743
https://aclanthology.org/2020.acl-main.398/
https://aclanthology.org/2020.acl-main.398/
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
https://aclanthology.org/C14-1122/
https://aclanthology.org/C14-1122/
https://aclanthology.org/C14-1122/
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr


Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Pro-
ceedings of the International Conference of Machine
Learning.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. KaggleDBQA: Realistic evalu-
ation of text-to-SQL parsers. In Proceedings of the
Association for Computational Linguistics.

Michael Minock, Peter Olofsson, and Alexander
Näslund. 2008. Towards building robust natural lan-
guage interfaces to databases. In International Con-
ference on Application of Natural Language to Infor-
mation Systems.

Saeid Motiian, Quinn Jones, Seyed Iranmanesh, and Gi-
anfranco Doretto. 2017. Few-shot adversarial domain
adaptation. In Proceedings of Advances in Neural
Information Processing Systems.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation. In International Conference on
Automated Software Engineering.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the Association for Computational
Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of Empirical Methods in
Natural Language Processing.

Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-
autoregressive bottom-up semantic parsing. In Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? Proceedings of the
Association for Computational Linguistics.

Tom Sherborne, Yumo Xu, and Mirella Lapata. 2020.
Bootstrapping a crosslingual semantic parser. In
Findings of the Association for Computational Lin-
guistics: EMNLP.

Tianze Shi, Chen Zhao, Jordan Boyd-Graber, Hal
Daumé III, and Lillian Lee. 2020. On the poten-
tial of lexico-logical alignments for semantic parsing
to SQL queries. In Findings of the Association for
Computational Linguistics: EMNLP.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of the Association for Computational
Linguistics.

Alon Talmor and Jonathan Berant. 2019. Multiqa: An
empirical investigation of generalization and transfer
in reading comprehension. In Proceedings of the
Association for Computational Linguistics.

Bailin Wang, Mirella Lapata, and Ivan Titov. 2021.
Meta-learning for domain generalization in semantic
parsing. In Conference of the North American Chap-
ter of the Association for Computational Linguistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the Association for
Computational Linguistics.

Jingjing Xu, Hao Zhou, Chun Gan, Zaixiang Zheng, and
Lei Li. 2021. Vocabulary learning via optimal trans-
port for neural machine translation. In Proceedings
of the Association for Computational Linguistics.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sql-
net: Generating structured queries from natural lan-
guage without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the Association for
Computational Linguistics.

Pengcheng Yin, Graham Neubig, Wen tau Yih, and
Sebastian Riedel. 2020. TaBERT: Pretraining for
joint understanding of textual and tabular data. In
Proceedings of the Association for Computational
Linguistics.

Pengcheng Yin, John Wieting, Avirup Sil, and Gra-
ham Neubig. 2021. On the ingredients of an ef-
fective zero-shot semantic parser. arXiv preprint
arXiv:2110.08381.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Yi Chern Tan,
Xinyi Yang, Dragomir Radev, Caiming Xiong, et al.
2020. Grappa: Grammar-augmented pre-training for
table semantic parsing. In Proceedings of the Inter-
national Conference on Learning Representations.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of Empiri-
cal Methods in Natural Language Processing.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

https://arxiv.org/abs/1711.00350
https://arxiv.org/abs/1711.00350
https://arxiv.org/abs/1711.00350
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.158.70&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.158.70&rep=rep1&type=pdf
https://proceedings.neurips.cc/paper/2017/file/21c5bba1dd6aed9ab48c2b34c1a0adde-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/21c5bba1dd6aed9ab48c2b34c1a0adde-Paper.pdf
https://ieeexplore.ieee.org/document/7372045
https://ieeexplore.ieee.org/document/7372045
https://ieeexplore.ieee.org/document/7372045
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://aclanthology.org/D19-1250/
https://aclanthology.org/D19-1250/
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.naacl-main.29
https://aclanthology.org/2021.acl-long.75/
https://aclanthology.org/2021.acl-long.75/
https://aclanthology.org/2021.acl-long.75/
https://aclanthology.org/2020.findings-emnlp.45
https://aclanthology.org/2020.findings-emnlp.167/
https://aclanthology.org/2020.findings-emnlp.167/
https://aclanthology.org/2020.findings-emnlp.167/
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.742
https://aclanthology.org/P19-1485/
https://aclanthology.org/P19-1485/
https://aclanthology.org/P19-1485/
https://aclanthology.org/2021.naacl-main.33/
https://aclanthology.org/2021.naacl-main.33/
https://aclanthology.org/2020.acl-main.677/
https://aclanthology.org/2020.acl-main.677/
https://aclanthology.org/2020.acl-main.677/
https://aclanthology.org/2021.acl-long.571/
https://aclanthology.org/2021.acl-long.571/
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436
https://aclanthology.org/P15-1128/
https://aclanthology.org/P15-1128/
https://aclanthology.org/P15-1128/
https://aclanthology.org/2020.acl-main.745/
https://aclanthology.org/2020.acl-main.745/
https://arxiv.org/abs/2110.08381
https://arxiv.org/abs/2110.08381
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103


A Appendix
A.1 Synthetic Dataset
Table 5 presents all formulas used to construct our syn-
thetic benchmarks. To evaluate out-of-domain gener-
alization, we ensure formulas in each domain do not
overlap with other domains.

Domain Formulas Used for Synthetic Data Generation

Finance

"total income" = "stock" + "salary"
"salary" = "base" + "bonus"
"account" = "checking account" + "saving account"
"total income" = "taxable income " + "exclusions"
"salary" = "weekly salary" * "week"
"salary" = "monthly salary" * "month"
"salary" = "yearly salary" * "year"
"tax" = "salary" * "tax rate"
"interest" = "principle" * "interest rate"

Sports

"total score" = "home score" + "away score"
"total win" = "home win" + "away win"
"total games" = "winning games" + "losing games"
"aggregate score" = "first lag score" + "second lag score"
"total field attempts" = "field goal attempts" + "three pointer attempts"
"field goals made" = "field goal attempts" * "field goal percentage"
"running time" = "distance" / "speed"

Health

"total case" = "exposed case" + "non-exposed case"
"vaccinated number" = "first dose number" + "second dose number"
"total case" = "positive case" * "positive rate"
"total bed count" = "bed occupancy rate" * "occupied bed count"
"actual deaths" = "mortality rate" * "actual cases"
"actual deaths" = "death rate" * "period"
"live birth" = "birth rate" * "period"
"population" = "population density" * "area"

Table 5: Formulas used in three domains for constructing synthetic benchmarks.


