
LinkingPark: An Automatic Semantic Table Interpretation System

Shuang Chena,1, Alperen Karaoglub, Carina Negreanub, Tingting Maa, Jin-Ge Yaoc, Jack Williamsb, Feng Jianga,∗,
Andy Gordonb, Chin-Yew Linc

aSchool of Computer Science, Harbin Institute of Technology, 150001 Harbin, China
bMicrosoft Research Cambridge, Cambridge CB1 2FB, UK

cMicrosoft Research Asia, 100080 Beijing, China

Abstract

In this paper, we present LinkingPark, an automatic semantic annotation system for tabular data to knowledge
graph matching. LinkingPark is designed as a modular framework which can handle Cell-Entity Annotation (CEA),
Column-Type Annotation (CTA), and Columns-Property Annotation (CPA) altogether. It is built upon our previous
SemTab 2020 system, which won the 2nd prize among 28 different teams after four rounds of evaluations. Moreover, the
system is unsupervised, stand-alone, and flexible for multilingual support. Its backend offers an efficient RESTful API for
programmatic access, as well as an Excel Add-in for ease of use. Users can interact with LinkingPark in near real-time,
further demonstrating its efficiency.

Keywords: Semantic Table Interpretation, Entity Linking, Tabular data, Knowledge Graph
2010 MSC: 00-01, 99-00

1. Introduction

Tables are commonly used to organize information. The
ability to automatically extract semantics in tables can em-
power many downstream applications, including but not
limited to (i) knowledge base population [1, 2], i.e., ex-5

tracting knowledge from tables; (ii) intelligent spreadsheet
program assistance, e.g., automatically populating rows or
columns [3], auto-completing data cells [4]; (iii) supporting
semantic table search [5, 6]; (iv) data cleaning [7] and inte-
gration [8]. These applications typically require semantic10

table interpretation (STI) to annotate a string in a table
cell with its corresponding entity in a reference knowledge
graph, to predict the entity type of a column, and to detect
the relationships between a pair of columns (Fig. 1).

This paper presents LinkingPark2, an automatic se-15

mantic table interpretation system that matches tabular
elements to knowledge graphs. LinkingPark is designed
as a modular framework where each component can be
optimized independently to address the requirements of

∗Corresponding author
Email addresses: hitercs@gmail.com (Shuang Chen),

t-alkara@microsoft.com (Alperen Karaoglu),
cnegreanu@microsoft.com (Carina Negreanu),
v-tinma@microsoft.com (Tingting Ma), jinge.yao@microsoft.com
(Jin-Ge Yao), jack.williams@microsoft.com (Jack Williams),
fjiang@hit.edu.cn (Feng Jiang), adg@microsoft.com (Andy
Gordon), cyl@microsoft.com (Chin-Yew Lin)

1This work was conducted during Shuang and Tingting’s intern-
ship at Microsoft Research Asia and Alperen’s AI residency program
at Microsoft Research Cambridge.

2All of the code, data, video, shared services, and system docu-
mentation are available at: https://aka.ms/XLKG

semantic table interpretation. As shown in Fig. 2, Linking-20

Park includes a column analysis module, an entity linking
module, a property linking module, a type inference mod-
ule, and a knowledge graph module. LinkingPark has a
number of desirable properties, including stand-alone archi-
tecture, flexibility for multilingual support, no dependence25

on labeled data, etc.

Microsoft Bill Gates 1976

Google Larry Page 1998

Apple Steve Jobs 1976

Microsoft Bill Gates 1976

Google Larry Page 1998

Apple Steve Jobs 1976

Microsoft Bill Gates 1976

Google Larry Page 1998

Apple Steve Jobs 1976

Cell-Entity Annotation (CEA) Column-Type Annotation (CTA) Columns-Property Annotation (CPA)

Q312 (Apple Inc.) Q6881511 (enterprise) P112 (founded by)

Figure 1: Annotation requirements for semantic table interpretation.
The target knowledge graph in this example is Wikidata.

This article presents a re-designed version of our work [9]
for the SemTab 2020 challenge to improve system stability
and efficiency. In particular, we make the system more
self-contained and stable by removing the dependency on30

the external MediaWiki API3. Moreover, to improve ef-
ficiency, we replace some sophisticated and heavyweight
modules with negligible regression in performance. Details
are described in Sec 6.3. We re-conduct all experiments
on the SemTab 2020 benchmarks [10] and the Tough Ta-35

bles dataset [11], add speed measurements and ablation
studies over key components, offer a RESTful API for pro-
grammatic access, and create an Excel Add-in for easy

3https://www.wikidata.org/w/api.php?action=help&modules=

wbsearchentities

Preprint submitted to Journal of Web Semantics June 21, 2022

https://aka.ms/XLKG
https://www.wikidata.org/w/api.php?action=help&modules=wbsearchentities
https://www.wikidata.org/w/api.php?action=help&modules=wbsearchentities

user interaction. LinkingPark has been released as an
open-source project [12].40

2. Task formulation

In this work, we focus on processing relational tables
with a single subject column as most previous work [2,
4, 6, 13, 14, 15] in the literature.4 Relational tables de-
scribe a set of entities in the subject column along with45

their attributes in the remaining columns (or relational
columns) [16]. A relational table T = {{t11, . . . , t1n}, . . . ,
{tm1, . . . , tmn}} contains a matrix ofm rows and n columns
of cells, where ri = {ti1, . . . , tin} denotes the i-th row and
cj = {t1j , . . . , tmj} denotes the j-th column [17]. The con-50

tent of each cell, denoted as tij , can be either a textual
mention of a named entity described in a reference knowl-
edge graph (called an entity mention) or a literal value
(e.g., numerical values). We do not assume the existence
of any metadata (e.g., column headers or table names) to55

make our approach more generally applicable.
The knowledge graph (KG) is denoted as (E , T ,P,F),

where E = {e1, . . . , e|E|} is the set of all entities in the
KG, T = {τ1, . . . , τ|T |} ⊆ E is the set of types in the KG.
A type ontology consists of the types connected with the60

subclass of relation. P = {p1, . . . , p|P|} is the set of
possible properties to describe key attributes of an entity.
F is the set of facts which consists of a set of RDF triples
⟨s, p, o⟩, where s denotes a subject (an entity e ∈ E), p ∈ P
is a property (also known as predicate or relation) and o65

denotes an object (an entity e, or a data value). The target
knowledge graph used in this paper is Wikidata.5

Following SemTab [17] which contains the most relevant
shared tasks of this study, the three annotation tasks in
table interpretation are (see also Fig. 1):70

• CEA (Cell-Entity Annotation): to link each entity
mention string tij in table T to its referent entity in E .

• CTA (Column-Type Annotation): to associate a
table column cj with an entity type t ∈ T .

• CPA (Columns-Property Annotation): to associate75

a pair of columns, cs and ct with a property p ∈ P.

3. Design principles

LinkingPark is designed with the following principles:

• Weak dependence on labeled data Recent repre-
sentation learning-based semantic table interpretation80

methods [18, 19, 20] required task-specific labeled data.
In contrast, our system adopts an unsupervised approach
which makes it easier to adapt to new knowledge graphs.

4Our system could be easily modified for other tables, see Sec. 6.6.
5http://wikidata.org/

• Stand-alone In contrast to existing tools, such as bbw [21]
and JenTab [22], LinkingPark does not rely on external85

search services. It is self-contained and therefore does
not depend on blackbox third-party components whose
availability, stability, or efficiency cannot be guaranteed.

• EffectivenessWe tailor our system for real-world scenar-
ios to handle noisy strings with typos. The disambigua-90

tion algorithm considers multiple factors beyond surface
form (e.g., entity popularity information, column-wise
type consistency, and row-wise property relatedness).

• Efficiency We design our system with the aim for real-
time applications while retaining a modest memory cost,95

which is often overlooked in other recent work [21, 22, 23].

• Ease of use The system exposes a RESTful API for
easy integration, as well as a demo interface in the form
of an Excel Add-in for direct user interaction. We also
open-source the code to benefit the research community.100

• Multilingual support By leveraging multilingual re-
sources, LinkingPark can be easily extended to process
multilingual tables and link them to a multilingual knowl-
edge graph such as Wikidata [24].

4. System architecture105

Fig. 2 illustrates the architecture of the LinkingPark
system. A table is passed to the backend to generate
semantic annotations at entity, type, and property levels.

The base annotation workflow starts by processing the
input table through a column analysis module which clas-110

sifies the basic data type of cells and detects the subject
column. The table, along with the initial annotations, is
then passed to the core table interpretation engine. The en-
tity linking module first generates candidate entities through
a candidate generation sub-module, which then become the115

input for both the entity disambiguation sub-module and
the property linking module. The property linking module
outputs property annotations between column pairs, which
also provides important features for the entity disambigua-
tion sub-module. The entity disambiguation sub-module120

then adopts an iterative algorithm to generate entity anno-
tations. Finally, the type inference module outputs type
annotations based on the linked entities.

To make LinkingPark more directly accessible for end
users, we also build a demo interface in the form of an Excel125

Add-in. Due to the space limitation, this demo interface
is described in Appendix A. Next, we describe each core
module in detail.

4.1. Column analysis module

This module conducts column analysis by classifying130

the data type of a cell and detecting the subject column.
We consider four kinds of basic data types: integers (int),
floating numbers (float), datetime, and strings. A cell

2

http://wikidata.org/

Input

Knowledge Graph

CEA

CTA

CPA

Backend Frontend

Type Inference Module

Entity Linking Module

Candidate Generation Entity Disambiguation

Property Linking Module

Entity Property Literal Property

Z `

RESTful
API

Column
Analysis

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 2: LinkingPark System Architecture.

content is classified into int, float, or datetime if it can
be converted into that type using standard type conversion135

functions, otherwise it is treated as string. The second
step is to detect the subject column (with its index denoted
as ξ) of the table. Based on the assumption that impor-
tant information appears first [25], we implement a simple
heuristic that assigns the leftmost column that contains140

cells of the string data type as the subject column.6

4.2. Candidate generation sub-module

Given an entity mention tij , we want to generate its
corresponding candidate entities Eij = (eij1, . . . , eijk) in
the target KG. In order to deal with the potential mis-145

spellings in tij , we design a cascade pipeline to balance the
effectiveness and efficiency. This module includes an offline
step for alias map mining and two core online steps:

• Alias map mining: In practice, an entity can be re-
ferred by not only its canonical name but also its aliases150

(e.g., nicknames and abbreviations). In order to handle
the naming variation, we construct a large alias map
table7 by mining entity aliases from multiple sources
including the multilingual labels of an entity, aliases in
Wikidata, and anchor texts in Wikipedia, similar to the155

strategies used in some previous studies [26].

• Search via dictionary lookup: The next step after
alias map mining is to conduct dictionary lookup over
the alias map. However, this could not handle mention
strings with spelling errors (e.g., “Michael Jackson” →160

“Michael Jacksonn”). Following the design principles of
a typical spelling corrector8, we implement a tailored
mention spelling corrector for better candidate retrieval.
Specifically, our corrector checks all strings within one9

edit distance to the original mention string, then retains165

the strings in the alias map as candidates. The spelling
corrector is triggered only if the exact dictionary lookup

6In practice, we found this simple heuristic can reach a high
coverage on a sample of web tables from Common Crawl.

7Aliases are the keys and their potential entities are the values.
8https://norvig.com/spell-correct.html
9Setting the edit distance threshold larger than one is compu-

tationally expensive as the number of candidate corrections grows
exponentially with the length of edit distance.

fails to generate candidates, which is efficient in practice
as the dictionary lookup happens in memory.

• Search via fine-grained fuzzy matching: The above170

step is not intended for mention strings with multiple
spelling errors due to computational complexity. There-
fore, we build a fine-grained index to conduct fuzzy string
matching for mention strings that can not acquire candi-
dates in the above step. Specifically, this index is built175

using all the observed aliases in the mined alias map.10

During prediction time, search uses a weighted combina-
tion of word-based BM25 score and character trigram-
based11 BM25 score to do fuzzy matching12. This step
improves the recall of candidate generation, but may also180

return more false positive candidates compared with the
previous step.

4.3. Property linking module

Given the subject column (whose index is denoted as
ξ) and a non-subject column (say the j-th column), the185

property linking module aims to associate a pair of columns,
cξ and cj with a property p ∈ P. The property p can be
classified into two categories according to the data type
of the arguments: entity property (e.g., place of birth

(P19)) or literal property (e.g., date of birth (P569)),190

which our system handles separately.
For property linking, we utilize an approach similar

to [27]. The pseudo-code of the property linking algorithm
is shown in Algorithm 1. For each non-subject j-index col-
umn, the algorithm outputs its entity property distribution195

Pentity,j(p) and literal property distribution Pliteral,j(p).
The entity property distribution Pentity,j(p) is computed

by the proportion of cells in j-index column with entity
property p (Line 7). The possible entity properties between
the cell tξj in subject column and the cell tij in j-index
column, propentity(i, j), are computed via fentity(Eiξ, Eij)
which is formally defined by:

fentity(Eiξ, Eij) = {p|s ∈ Eiξ, o ∈ Eij , ⟨s, p, o⟩ ∈ F}. (1)

Specifically, it finds all possible properties p whose subject
lies in Eiξ and object lies in Eij .

As for the literal property distribution Pliteral,j(p), it
is similarly computed by accumulating row-wise statis-200

tics (Line 8). Similar to the above, propliteral(i, j) con-
tains the set of possible literal properties between the cell
tξj in the subject column and the cell tij in j-index col-
umn. Different from the entity property, the calculation
of propliteral(i, j) requires a matching process between the205

property’s value and the cell contents tij , which is shown in
the sub-procedure fliteral(Eiξ, tij) of Algorithm 1. Basically,

10The details for the index construction are in Appendix B.
11The character n-gram index is used to balance precision/recall

and searching efficiency. In practice, we found that the trigram-based
index worked well. We did not explore much on this parameter.

12Indexed by the Elasticsearch engine - https://www.elastic.co/

3

https://norvig.com/spell-correct.html
https://www.elastic.co/

Algorithm 1 Property linking algorithm

Input: Table T with candidate lists {Eij}, subject column
index ξ, matching confidence weights {ω1, ω2}
Output: Entity property distribution {Pentity,j(p)} and
literal property distribution {Pliteral,j(p)} for each non-
subject j-index column

1: for j = 1 to n do
2: if j ̸= ξ then
3: for i = 1 to m do
4: propentity(i, j) = fentity(Eiξ, Eij)
5: propliteral(i, j), wi,j = fliteral(Eiξ, tij)
6: end for
7: Pentity,j(p) =

|{i|p∈propentity(i,j),i∈{1,2,...,m}}|
m

8: Pliteral,j(p) =
∑m

i=1;p∈propliteral(i,j)
ωi,j

m
9: end if

10: end for
11: return {Pentity,j(p)}, {Pliteral,j(p)}
Sub-procedure fliteral(Eiξ, tij)

1: if fliteral exact(Eiξ, tij) ̸= {} then ▷ Try exact match
2: return fliteral exact(Eiξ, tij), ω1

3: else
4: return fliteral fuzzy(Eiξ, tij), ω2 ▷ Fuzzy match
5: end if

it first tries to find exact matches between property’s value
and cell contents. If it succeeds, it will return the matched
properties along with a confidence weight w1. Otherwise, it210

resorts to finding a fuzzy match and will return a relative
lower confidence weight w2. Due to space limitations, the
detailed matching function implementation is described in
Appendix C.

After acquiring entity property distribution Pentity,j(p)
and literal property distribution Pliteral,j(p), the linked
property p̂j for j-index column is defined as:

p̂j = argmax
p∈P

(max(Pentity,j(p), Pliteral,j(p))). (2)

4.4. Entity disambiguation sub-module215

Given an entity mention tij along with its candidate list
Eij = (eij1, . . . , eijk), the entity disambiguation stage aims
to select the correct entity êij ∈ Eij from its candidate list
based on their contextual information.

Formally, given a table T = {{t11, . . . , t1n}, . . . , {tm1,
. . . , tmn}}, the objective of entity disambiguation is to find
the most compatible entity assignments for each cell tij :

argmax
e11,e12,...,emn∈E11×E12×···×Emn

g(e11, e12, . . . , emn|T). (3)

where the function g(e11, e12, . . . , emn|T) measures the com-220

patibility score among different entities {e11, e12, . . . , emn}
linked by the cells of table T . For example, Microsoft
(Q2283) is more compatible with the candidate entity -
Apple Inc (Q312) than apple (Q89) for the mention
“Apple” in Fig. 1.225

Since the exact inference of the above objective is NP-
hard, we adopt the framework of an Iterative Classification
Algorithm (ICA) [28] for approximate inference. ICA is an
iterative local search method which greedily re-assigns each
cell to the entity that maximises the probability conditioned230

on the current entity assignments of other cells.
The main assumption behind the design of the disam-

biguation model is to characterise: (1) type consistency
along each column of entities, and (2) property relatedness
within each row of attribute values. In other words, enti-235

ties mentioned in the same column should have compatible
types, while entities or values mentioned in the same row
(henceforth describing the same entity) should be related
via relational facts and satisfy lexical constraints.

The disambiguation procedure is shown in Algorithm 2,240

which can be described as the following two steps:

1. Initialization (line 1): Let etij be the entity assignment
of cell tij at iteration t. Initially, the entity assignments
for all cells are independently set by maximising scores
for each specific cell (line 1). The score is a weighted245

combination of the lexical similarity lexical sim(e, tij)
and a row support score srowij (e). For tie-breaking, the

initial assignment of e0ij prefers the candidate entity
which has the larger number of incoming links in the
knowledge graph (here, Wikidata). The number of in-250

coming links13 can capture the entity prominence which
serves as a proxy for entity popularity. The lexical simi-
larity is computed by calculating the maximum string
similarity based on edit distance between the cell text
and each of the entity names in Wikidata. The row255

support score srowij (e) is calculated by extracting the
property features at both entity and literal level. This
feature characterises the property relatedness between
the current candidate entity and the remaining cells in
the same row. The pseudo-code of the calculation is260

shown in sub-procedure srowij (e) of Algorithm 2.

2. Iterative refinement phase (lines 2-5): During the
iterative phase, besides lexical similarity and row sup-
port score as in previous phase, we also consider one
extra feature - column score scolij (e) to characterize type265

consistency along the column. The column score scolij (e)
is calculated by averaging the entity similarity between
the current candidate entity and the entity assignments
of the other cells in the same column after the previous
iteration (et−1

kj). Specifically, we represent each entity270

as a sparse feature vector where each property and

13We have considered the page views data (https://dumps.
wikimedia.org/other/pageview_complete/readme.html) in Wiki-
data and the prior statistics computed from Wikipedia anchor
links to estimate the entity popularity. However, both methods
suffered from limited coverage problems and were less applicable
to other KGs. Furthermore, DBpedia Lookup Service (https:
//wiki.dbpedia.org/lookup) and Wikidata Lookup Service (https:
//www.mediawiki.org/wiki/API:Search) also include the number of
incoming links as a kind of entity popularity.

4

https://dumps.wikimedia.org/other/pageview_complete/readme.html
https://dumps.wikimedia.org/other/pageview_complete/readme.html
https://wiki.dbpedia.org/lookup
https://wiki.dbpedia.org/lookup
https://www.mediawiki.org/wiki/API:Search
https://www.mediawiki.org/wiki/API:Search

Algorithm 2 Iterative entity disambiguation algorithm

Input: Table T with candidate lists {Eij}, subject column index ξ, property distributions {Pentity,j(p)}, {Pliteral,j(p)},
parameters {α, β}, maximum number of iterations N
Output: Entity assignments {êij} for each cell tij

1: e0ij = argmaxe∈Eij
α · srowij (e) + β · lexical sim(e, tij) ▷ Initialization

2: while t < N and any entity assignment has changed do ▷ Refinement
3: scolij (e) = 1

m−1

∑m
k=1;k ̸=i ent sim(e, et−1

kj) ▷ Column score calculation

4: etkj = argmaxe∈Eij
α · srowij (e) + β · lexical sim(e, tij) + (1− α− β) · scolij (e)

5: end while
6: return {etij}

Sub-procedure srowij (e) ▷ Row score calculation

1: if j = ξ then ▷ Subject column
2: sentityik (e) = max

p∈fentity({e},Eik)
(Pentity,j(p)) ▷ Entity property support score from column k

3: sliteralik (e) = max
(p,w)∈fliteral({e},tik)

(Pliteral,j(p) · w) ▷ Literal property support score from column k

4: return 1
n−1

∑n
k=1;k ̸=ξ max(sentityik (e), sliteralik (e)) ▷ Average property support score from each relational column

5: else
6: return max

p∈fentity(Eiξ,{e})
(Pentity,j(p)) ▷ Property support score with the subject column

7: end if

the value of instance of (P31) / subclass of (P279)
properties serve as one feature dimension. Our basic
assumption is that the properties of an entity are also a
proxy of its type, besides the explicit type annotation275

in the KG. The ent sim(·, ·) function is implemented
by calculating the cosine similarity of the above sparse
feature vectors.

Finally, after the maximum number of iterations is
reached, or all entity assignments remain unchanged, the280

linked entity êij for entity mention tij is set as etij .

4.5. Type inference module

Our type inference algorithm is a heuristic voting method
that is fully dependent on the entity linking results. Given
an entity e, we retrieve its entity types T (e) from the Wiki-
data knowledge graph.14 To predict the type of the j-th
column, we first find the most common type shared by
most of the linked entities via majority voting. However,
the most common type may not be unique. In this case, we
want to prioritise the most specific type. However, the type
ontology in Wikidata is noisy, thus it is hard to determine
the specificity of a certain type [9]. In this work, we design
a set of criteria for tie-breaking. The first criterion named
AverageLevel(t) characterises the specificity of a type t
based on the type ontology:

AverageLevel(t) =
1

m

m∑
i=1

1[t ∈ T (êij)] · l(êij , t) (4)

14Implemented by tracing the instance of (P31) property of the
entity followed by at most two subclass of (P279) properties in the
type ontology, treating the values of instance of (P31) and subclass

of (P279) as the types. Further increasing the number of hops will
increase the time complexity and retrieve too generic and not useful
types (e.g., metaclass (Q19478619) and concept (Q151885)).

Here l(êij , t) denotes the distance between the entity êij
and type t in the type hierarchy. Since a lower distance
with respect to the entity nodes indicates a more specific
type, we select the type with the minimum AverageLevel(t)
to break the above ties. However, this method does not
guarantee uniqueness. In practice, we found the following
scheme works well on the SemTab datasets for tie-breaking.
For the subject column, we select the type with minimum
Population(t) on Wikidata:

Population(t) =
∑
e∈E

1[t ∈ T (e)] (5)

For relational columns, we select the type with the mini-
mum InstanceRank(t):

InstanceRank(t) =
1

m

m∑
i=1

1[t ∈ T (êij)] · r(êij , t) (6)

r(êij , t) is the position of the type t among the statement
group of the instance of (P31) property for entity êij .

4.6. Knowledge graph module285

LinkingPark requires frequent access to the knowledge
graph to retrieve specific information (e.g., entity name,
entity types, and property values, etc.) for a given entity.
However, accessing information in a large-scale knowledge
graph via SPARQL queries is inefficient. In order to meet290

realistic requirements for efficient access and flexibility, we
expose a key-value interface to query the KG, which maps
item id to a serialized binary object for the referenced entity.
This structure and the overall system make no assumptions
about the ontology in use to accommodate noisy ontologies295

such as Wikidata.

5

Moreover, to allow flexibility in deployment environ-
ments and usage scenarios, this KG access layer can be
configured in two modes: 1) Memory-based: an in-memory
key-value data store15, for scenarios where low latency is300

critical; and 2) Disk-backed: a persistent disk-mapped key-
value store16, where memory/disk balance can be better
controlled. The details are described in Appendix D.

5. Related work

Semantic table interpretation (STI) is important for305

applications in semantic web and database communities. It
has attracted substantial research attention over the years.
Starting from the earliest work [29, 30] which studies this
task in a domain-specific fashion, the later research efforts
have been focusing on matching tabular elements to general310

domain knowledge graphs (e.g., DBpedia and Freebase).
Limaye et al. [5] build a probabilistic graphical model to
capture the interdependence relationship between the three
subtasks in STI. However, conducting probabilistic infer-
ence over their method is very computationally expensive.315

This approach was later improved by Mulwad et al. [31]
with semantic message passing. These two works did not
consider non-entity columns, thus failing to give a complete
semantic table annotation. Later work such as T2K [32]
and TableMiner+ [16] considered literal columns. Most of320

the above methods are targeted at annotating web tables,
where sufficient context (e.g., column headers, table names,
surrounding paragraphs) are used as the matching features.
In contrast, our system only assumes the existence of tabu-
lar contents, which is typical in the spreadsheet program325

scenario.
As one of the most popular KGs, Wikidata was not

used as the target KG for semantic table interpretation
before the SemTab 2020 challenge [10]. Compared with
previous popular KGs (e.g., DBpedia) used in the STI330

literature, Wikidata brings additional challenges due to
its large scale17 and noisy type ontology [9]. Among the
core participants in SemTab 2020, MTab4Wikidata [23]
leverages a symmetric delete spelling correction algorithm18

to handle spelling errors by pre-calculating a large index.335

LinkingPark@SemTab20 [9] includes a cascade pipeline
using the MediaWiki API for candidate generation and
an iterative coarse-to-fine entity disambiguation algorithm.
DAGOBAH [33] designs an entity lookup method based on
regular expressions and the Levenshtein distance via the340

Spark framework, using 150 machines. bbw [21] designs
a meta-lookup method searching over 80 engines (e.g.,
Wikidata, Wikipedia, Bing, etc). JenTab [22] uses a Create,
Filter, and Select approach leveraging the publicly available
endpoints of Wikidata. SSL [34] generates conceptual345

15Implemented over Redis - https://redis.io/.
16Utilizing RocksDB - http://rocksdb.org/ as engine.
17The latest Wikidata contains about 100 million entities, which

is more than 15 times larger than DBpedia.
18https://github.com/wolfgarbe/SymSpell

subgraphs by creating SPARQL queries over the public
Wikidata SPARQL endpoint. MantisTable SE [35], an
extension of MantiesTable [36] on Wikidata, provides a tool
to support querying the knowledge graph. LinkingPark
differs from the systems mentioned above as it has (1)350

a stand-alone architecture vs. LinkingPark@SemTab20,
bbw, JenTab, and SSL, etc; (2) an efficient and stable
infrastructure for KG access and lookup vs. DAGOBAH
and MantisTable SE; (3) significantly reduced disk resource
consumption for the candidate generation module19 vs.355

MTab4Wikidata.
STI approaches need to address the challenges of noise

and incompleteness in knowledge graphs. In this work, we
leverage the properties of an entity as a proxy of entity
type to address these problems. Other viable ways include360

completing the type annotation first via neural networks
based methods [37, 38] for predicting the missing types in
noisy KGs.

6. Evaluation

6.1. Data statistics365

This work uses Wikidata20 as the target knowledge
graph. We use the JSON dump (version 20200525) down-
loaded from Wikimedia21. The statistics about the knowl-
edge graph are shown in Table 1. For evaluation, we use
the benchmark datasets provided by SemTab 2020 [10]. It370

consists of four evaluation rounds with datasets coming
from two sources: automatically generated (AG) datasets
relying on an automatic table generator [17] and the Tough
Table (2T) dataset [11] which consists of real tables with
controlled noise from multiple resources. Table 2 shows the375

statistics for these datasets. These large-scale manually-
or automatically-curated tables with multiple noisy levels
pose various challenges (e.g., name variation, ambiguity,
and efficiency, etc.) for the task of table interpretation.
Therefore, they can be considered a comprehensive testbed380

for matching/linking systems.

Table 1: Statistics of the Wikidata knowledge graph.
Entities # Types # Properties #
86,494,417 165,119 7,567

Table 2: Statistics of the SemTab 2020 datasets used for evaluation.
Automatically Generated (AG) 2T

Round1 Round2 Round3 Round4 Round4
Tables # 34,294 12,173 62,614 22,207 180
Avg. Rows # 7.3 7.0 6.3 21.4 1,080.2
Avg. Cols # 5.0 4.6 3.7 3.5 4.5
CEA Targets # 985,110 283,447 768,325 994,921 667,244
CTA Targets # 34,294 26,727 97,586 31,922 540
CPA Targets # 135,774 43,753 166,633 56,476 −

1930GB vs. 1.5TB SSD resource.
20https://www.wikidata.org/
21https://dumps.wikimedia.org/wikidatawiki/entities/

6

https://redis.io/
http://rocksdb.org/
https://github.com/wolfgarbe/SymSpell
https://www.wikidata.org/
https://dumps.wikimedia.org/wikidatawiki/entities/

6.2. Setup and evaluation metrics

For this evaluation, our system was hosted in a Linux
virtual machine on Azure22 with 640GB RAM memory and
80 CPU cores with EPYCTM 7551 Series processors. We385

empirically set α to be 0.50, β to be 0.30, N to be 10, w1

to be 1.0, w2 to be 0.8, and retain at most 1000 candidate
entities per mention from the candidate generation mod-
ule.23 We slice the tables into multiple mini tables, each
with 20 rows, with respect to the natural occurrence order390

(top-down) in the table and process them separately for
tables in larger sizes, in a parallel fashion.24 For simplicity,
we extract the type and property annotations only based
on the first 20 rows. Our system at most consumes 165GB
RAM memory and 350GB disk resources, with 10 CPUs at395

25% usage, which are requirements easily met in modern
enterprise computer servers.

As for the experiments, we follow the SemTab evalu-
ation setup where the annotation targets (cells, columns,
column pairs) are pre-specified and extra annotations are400

disregarded.25 We use the official evaluation tools26 pro-
vided by SemTab 2020 [10]. The evaluation metrics for
CEA and CPA tasks are the standard Precision, Recall, and
F1-score. While, for the evaluation of CTA task, SemTab
2020 designs approximate metrics for Precision (APreci-405

sion), recall (ARecall), and F1-score (AF1) by considering
partially correct annotations based on the type ontology
of Wikidata.

6.3. Compared systems

We compare our system with other systems participat-410

ing in SemTab 2020 [10], which provides a common testbed
to facilitate unbiased comparisons. We do not compare
with other systems, such as T2K [32] and TableMiner+ [16],
due to the non-trivial cost to adapt them to the specific
task settings in our experiments and porting to other KGs.415

LinkingPark@SemTab20 [9] is the earlier version of
our system for the SemTab 2020 challenge. It includes a
cascade pipeline including MediaWiki API for candidate
generation, an iterative coarse-to-fine entity disambigua-
tion algorithm with dynamic TF-IDF weighting scheme,420

a multi-pass property linking algorithm that makes use
of knowledge graph embeddings, and a type inference al-
gorithm tackling the loose ontology in Wikidata. It also
adopts the ranking information returned from MediaWiki
as a proxy for entity popularity for both the candidate list425

22Standard L80s v2 series VM size
23Since there is no development set for SemTab 2020 bench-

marks [10], we randomly sample 500 tables (about 1.5% of the data)
from each round except the relatively small Tough Tables [11] for
analysis. We set the parameters based on the observed patterns in
the development set.

24Implemented with the multiprocessing package in Python.
25In practice, LinkingPark also supports NIL detection (i.e., decide

when not to output predictions) by score thresholding as implemented
in our codebase.

26https://github.com/sem-tab-challenge/aicrowd-evaluator

shortlist and as the prior feature in the entity disambigua-
tion algorithm. It achieved the overall second prize among
28 teams participating in SemTab 2020 [10].

LinkingPark is the latest version of our system pre-
sented in this paper. Compared with our earlier system,430

LinkingPark: i) removes the dependency of the external
MediaWiki API for candidate generation to improve system
stability (Sec 4.2); ii) reduces the computational cost of
the previous system by removing heavyweight designs, in-
cluding dynamic TF-IDF weighing scheme for column-wise435

entity similarity calculation and property linking methods
based on KG embeddings (Sec 4.3 and 4.4). Due to the re-
duced computational cost, LinkingPark can handle a much
larger size of entity candidates with maximum of 1,000
instead of 50 as in LinkingPark@SemTab20.440

Other SemTab 2020 participants such as bbw,
JenTab, SSL, DAGOBAH, MTab4Wikidata, and Man-
tisTable SE, described earlier in Sec. 5, are included in our
comparison and we directly quote their official results from
the SemTab 2020 competition.445

6.4. Performance

6.4.1. Comparison with the earlier system at SemTab 2020

We compare the performance between the new Link-
ingPark system presented in this paper and its prototype
at SemTab 2020 in Table 3. We can observe that Link-450

ingPark@SemTab20 performs quite well on Rounds 1-3
and is even ranked at top1 at certain task/rounds. Round
4 introduces a subset of the Tough Tables (2T) dataset
with an average number of ≈ 1, 080 rows per table. This
additional complexity makes it almost infeasible to use the455

original candidate generation scheme, with the number of
queries significantly increased. Without the ranking infor-
mation for entity candidates returned from the MediaWiki
API, which we creates our entity prior scoring and candi-
date list shortlist, the performance of our earlier system460

drops on Round 4, especially on the 2T subset.
Relying on MediaWiki API makes it difficult to pro-

vide stable and low-latency service and is not suited for
real world applications. Therefore, one of the key goals
in designing the new version of LinkingPark is to remove465

dependency without loss of quality. We can observe that
the re-architected LinkingPark achieves comparable perfor-
mance27 with LinkingPark@SemTab20 on Round 1-3 and
improves significantly on Round 4 and the Tough Tables
datasets due to the more scalable popularity features and470

increased size of candidate lists for better entity recall.

27We suspect the key reasons for the slight performance drop in
Round 1 and Round 2 are due to (1) we remove the dependency
to the external MediaWiki API for candidate generation, which
usually returns a smaller number of candidates (less than 50), thus
potentially better for precision. Our candidate generation method
is recall-oriented, which sometimes returns a much larger number
of candidates, which may confuse the downstream disambiguation
model; (2) as introduced in Sec. 6.3, we replace some sophisticated
and heavyweight modules of our earlier solution, which may also
affect performance.

7

https://github.com/sem-tab-challenge/aicrowd-evaluator

Table 3: Performance of LinkingPark@SemTab20 and LinkingPark (this paper). Bold scores denote LinkingPark (this paper) outperforms the
LinkingPark@SemTab20. Underlined scores denote LinkingPark (this paper) marginally underperforms the LinkingPark@SemTab20.

System Dataset
CEA CTA CPA

F1 Precision # AF1 APrecision # F1 Precision #

LinkingPark
@SemTab20

Round1 0.987 0.988 1 0.926 0.926 1 0.967 0.978 2
Round2 0.993 0.993 2 0.984 0.985 1 0.993 0.994 2
Round3 0.986 0.986 2 0.978 0.978 1 0.985 0.988 3
Round4 0.985 0.985 2 0.953 0.953 4 0.985 0.988 5
2T 0.810 0.811 3 0.686 0.687 3 - - -

LinkingPark
(this paper)

Round1 0.987 0.987 - 0.938 0.938 - 0.967 0.970 -
Round2 0.993 0.993 - 0.984 0.985 - 0.992 0.993 -
Round3 0.987 0.987 - 0.979 0.979 - 0.993 0.994 -
Round4 0.988 0.988 - 0.972 0.972 - 0.995 0.995 -
2T 0.908 0.908 - 0.784 0.784 - - - -

6.4.2. Comparison with other systems

Table 4 shows a comparison against other top systems
participating in SemTab 2020 [10]. We can observe that
most of the top systems perform quite well on the automat-475

ically generated datasets. In contrast, the performances
on the Tough Tables dataset are much lower, where only
MTab4Wikidata, LinkingPark, and bbw managed to main-
tain F1 scores over 0.85 for the CEA task. It is worth
mentioning that MantisTable SE and DAGOBAH achieve480

relatively high performance in terms of precision but suf-
fer from low recall. The results for the CTA task on the
Tough Tables dataset are similar to the CEA task with the
exception that bbw achieves a much lower AF1 on the CTA
task. Most of the systems except MTab4Wikidata and485

LinkingPark struggle on Tough Tables since they either
rely on external search services or are not equipped with
stable infrastructure to conduct efficient candidate lookup.
LinkingPark is second only to MTab4Wikidata on the auto-
mated generated dataset, but achieves better performance490

on the Tough Tables dataset. We suspect that the candi-
date generation step causes the slight performance gap in
the automatically generated data, since MTab4Wikidata
builds a resource-heavy hashing table which exhaustively
stores all possible spelling errors and can better handle495

data noise. Furthermore, our system both handles single
column scenarios and fully explores tabular context due to
the column feature, while MTab4Wikidata only considers
row-wise matching features. Due to the space limitations,
we show an ablation study over the key components in our500

system in Appendix E.

6.5. Latency

The running times of LinkingPark over the SemTab 2020
datasets are shown in Table 5. In this work, we thoroughly
measure the speed of our system on each dataset. First,505

as noted in our earlier work [9], LinkingPark@SemTab20
consumed 2-3 days (roughly 6.572 seconds/table) just for
entity candidate generation by calling the MediaWiki API.
In contrast, LinkingPark (Memory-based) only takes 0.825
seconds to annotate a table. We can also observe that510

LinkingPark (Memory-based), as expected, is faster than
LinkingPark (Disk-backed) due to the unconstrained KG

access. Finally, the time consumption in our system highly
depends on the size of the tables, so it can be further sped
up via multi-processing.28515

6.6. Limitations

Although LinkingPark has already achieved excellent
performance in comparison with other existing semantic
table interpretation tools, we identify a few improvement
opportunities.520

Type of tables: the current system is targeting rela-
tional tables with a single subject column in line with most
existing works [2, 4, 6, 13, 14, 15] in the semantic table
interpretation literature. However, there are other types of
tables (e.g., non-relational tables or denormalized tables525

with multiple subject columns) that are not covered. We
plan to integrate the existing works on table type classi-
fication [40, 41, 42] as a pre-processing step to filter the
high-quality relational table and adopt the method [43] to
decompose multi-subject tables into smaller single-subject530

tables. Furthermore, we also provide an extended algo-
rithm to cope with tables with multiple subject columns
in Appendix H.

Subject column detection: the current system in-
cludes a simple heuristic for detecting the subject column.535

However, subject column detection on denormalized tables
can be complex. We leave the improvement of the subject
column detection algorithm as future work.

Initialization of the disambiguation algorithm:
the disambiguation algorithm described in Sec. 4.4 includes540

an initialization phase, where we initially use a weighted
combination of the lexical similarity and a row support
score as the primary criterion, then the number of incoming
links in the knowledge graph for tie-breaking. This design
might not be effective in some scenarios, especially when545

28Previous systems rarely report the speed of their system thor-
oughly, re-running their systems is difficult, even impossible due to
the unavailability of open-sourced implementation. To the best of
our knowledge, only three systems (MTab [39], JenTab [22], and
DAGOBAH [33]) in SemTab 2020 provide latency results for their
systems in their papers or extension work. We summarize their speed
measurements in Appendix G for reference. These results are not
strictly comparable due to different hardware and setup.

8

Table 4: Comparison with other top systems in SemTab 2020. F1/AF1 scores are used as the primary metric in SemTab 2020.

System
Automatically Generated Dataset (Round4) Tough Tables
CEA CTA CPA CEA CTA

F1 Pr AF1 APr F1 Pr F1 Pr AF1 APr

MTab4Wikidata 0.993 0.993 0.981 0.982 0.997 0.997 0.907 0.907 0.728 0.730
DAGOBAH 0.984 0.985 0.972 0.972 0.995 0.995 0.412 0.749 0.718 0.747
bbw 0.978 0.984 0.980 0.980 0.995 0.996 0.863 0.927 0.516 0.789
JenTab 0.973 0.975 0.930 0.930 0.994 0.994 0.374 0.541 0.624 0.669
SSL 0.833 0.833 0.946 0.946 0.924 0.924 0.198 0.198 0.363 0.363
MantisTable SE 0.812 0.985 0.725 0.989 0.803 0.988 0.400 0.804 0.474 0.639

LinkingPark@SemTab20 0.985 0.985 0.953 0.953 0.985 0.988 0.810 0.811 0.686 0.687
LinkingPark (this paper) 0.988 0.988 0.972 0.972 0.995 0.995 0.908 0.908 0.784 0.784

Table 5: Average running times (seconds) per table for LinkingPark at different setup over the SemTab 2020 datasets.
System Round1 Round2 Round3 Round4 2T Avg.

LinkingPark (Memory-based) 0.439 0.595 0.537 1.682 84.339 0.825
LinkingPark (Disk-backed) 0.461 0.607 0.569 2.131 101.579 0.947

Figure 3: Use case: semantic flash fill.

handling abbreviations with limited context as we observed.
We plan to investigate a better initialization strategy in
the future.

Cross-lingual matching: the current multilingual
table annotation is supported by the multilingual resources550

in the KG. However, it could not handle the cross-lingual
matching cases [44], which could be implemented by utiliz-
ing multilingual embeddings (e.g., multilingual BERT [45])
as a future research direction.

Multiple KGs: the system currently only supports555

linking to the Wikidata KG. However, as there are many
KGs in the world, we deem the extension of LinkingPark
to the other KGs as important future work.

7. Use cases

In this section, we describe two potential use cases of560

LinkingPark in Excel to improve tabular data productivity.

7.1. Semantic flash fill

As shown in Fig. 3, assume a user inputs a couple of
rows in Excel, then LinkingPark can automatically detect
named entities (e.g., Microsoft (Q2283)) and infer the565

relationship between the pair of columns (e.g., the rela-
tionship between column A and column B is founded by

28,311

Figure 4: Use case: table fact checking.

(P112), the relationship between column A and column
C is headquarters location (P159)). After the user
continues to type a list of cells in the left-most column,570

LinkingPark can automatically link these cells to their cor-
responding entities (e.g., Apple Inc. (Q312)) based on
the partial tabular context and fill the content of the miss-
ing cells by retrieving corresponding property information
from the KG (e.g., Wikidata). This functionality can speed575

up the table creation process for Excel users.

7.2. Table fact checking

As shown in Fig. 4, assume a user inputs or pastes
a table, then LinkingPark can analyze that this table is
describing a list of US states (e.g., Alabama (Q173))580

along with their population (P1082) and areas (P2046).
After that, the system can automatically detect the incon-
sistency between the data in the table and the KG, then
inform the user. For example, the area of Hawaii29 is 28,311
square kilometers in Wikidata. In this way, LinkingPark585

can power a table fact-checking functionality to detect data
mismatches and fix potential data errors.

29https://www.wikidata.org/wiki/Q782

9

https://www.wikidata.org/wiki/Q782

8. Conclusion

We present LinkingPark, an automatic semantic table
interpretation system. Built upon our previous design on590

SemTab 2020, LinkingPark achieves highly competitive
results on the SemTab 2020 and Tough Tables benchmarks,
while enabling some real world table intelligence scenarios
(exemplified in the available Excel Add-in interface). We
believe LinkingPark can contribute significantly to future595

research efforts towards a better understanding of tabular
data. For the ease of future usage and extensions, we
are standardizing the specification of the knowledge graph
resources and automating the migration process for other
knowledge graphs that follows this specification. In this600

way, new knowledge graphs can be easily consumed by
LinkingPark as long as they can be converted into our
specified data interface, then the system can act as a hub
of annotation services targeting various knowledge graphs,
fitting the vision of Semantic Web.605

Acknowledgements

We would like to thank Börje F. Karlsson, Xi Chen,
and Qian Liu for their constructive suggestions, and all the
anonymous reviewers for their helpful feedback.

References610

[1] E. Muñoz, A. Hogan, A. Mileo, Using linked data to mine
rdf from wikipedia’s tables, in: Proceedings of the 7th ACM
international conference on Web search and data mining, 2014,
pp. 533–542.

[2] D. Ritze, O. Lehmberg, Y. Oulabi, C. Bizer, Profiling the poten-615

tial of web tables for augmenting cross-domain knowledge bases,
in: Proceedings of the 25th international conference on world
wide web, 2016, pp. 251–261.

[3] S. Zhang, Smarttable: equipping spreadsheets with intelligent
assistance functionalities, in: The 41st International ACM SIGIR620

Conference on Research & Development in Information Retrieval,
2018, pp. 1447–1447.

[4] S. Zhang, K. Balog, Auto-completion for data cells in relational
tables, in: Proceedings of the 28th ACM International Con-
ference on Information and Knowledge Management, 2019, pp.625

761–770.
[5] G. Limaye, S. Sarawagi, S. Chakrabarti, Annotating and search-

ing web tables using entities, types and relationships, Proceed-
ings of the VLDB Endowment 3 (1-2) (2010) 1338–1347.

[6] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca, W. Shen,630

F. Wu, G. Miao, Recovering semantics of tables on the web, in:
Proceedings of the VLDB Endowment, 2011, pp. 528–538.

[7] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang,
Y. Ye, Katara: A data cleaning system powered by knowledge
bases and crowdsourcing, in: Proceedings of the 2015 ACM635

SIGMOD international conference on management of data, 2015,
pp. 1247–1261.

[8] S. Gupta, P. Szekely, C. A. Knoblock, A. Goel, M. Taheriyan,
M. Muslea, Karma: A system for mapping structured sources
into the semantic web, in: Extended Semantic Web Conference,640

Springer, 2012, pp. 430–434.
[9] S. Chen, A. Karaoglu, C. Negreanu, T. Ma, J.-G. Yao,

J. Williams, A. Gordon, C.-Y. Lin, Linkingpark: An integrated
approach for semantic table interpretation., in: SemTab@ ISWC,
2020, pp. 65–74.645

[10] E. Jiménez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen,
K. Srinivas, V. Cutrona, Results of semtab 2020, in: CEUR
Workshop Proceedings, Vol. 2775, 2020, pp. 1–8.

[11] V. Cutrona, F. Bianchi, E. Jiménez-Ruiz, M. Palmonari, Tough
tables: Carefully evaluating entity linking for tabular data, in:650

International Semantic Web Conference, Springer, 2020, pp.
328–343.

[12] S. Chen, A. Karaoglu, C. Negreanu, B. F. Karlsson, T. Ma, J.-G.
Yao, J. Williams, F. Jiang, A. Gordon, C.-Y. Lin, LinkingPark:
Automatic Semantic Table Interpretation Software (Apr. 2022).655

doi:10.5281/zenodo.6496662.
[13] F. Chirigati, J. Liu, F. Korn, Y. Wu, C. Yu, H. Zhang, Knowledge

exploration using tables on the web, Proceedings of the VLDB
Endowment 10 (3) (2016) 193–204.

[14] S. Zhang, K. Balog, Ad hoc table retrieval using semantic simi-660

larity, in: Proceedings of the 2018 world wide web conference,
2018, pp. 1553–1562.

[15] S. Zhang, E. Meij, K. Balog, R. Reinanda, Novel entity discovery
from web tables, in: Proceedings of The Web Conference 2020,
2020, pp. 1298–1308.665

[16] Z. Zhang, Effective and efficient semantic table interpretation
using tableminer+, Semantic Web 8 (6) (2017) 921–957.

[17] E. Jiménez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen,
K. Srinivas, Semtab 2019: Resources to benchmark tabular data
to knowledge graph matching systems, in: European Semantic670

Web Conference, Springer, 2020, pp. 514–530.
[18] J. Chen, E. Jiménez-Ruiz, I. Horrocks, C. Sutton, Colnet: Em-

bedding the semantics of web tables for column type prediction,
in: Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33, 2019, pp. 29–36.675

[19] X. Deng, H. Sun, A. Lees, Y. Wu, C. Yu, Turl: table understand-
ing through representation learning, Proceedings of the VLDB
Endowment 14 (3) (2020) 307–319.

[20] D. Wang, P. Shiralkar, C. Lockard, B. Huang, X. L. Dong,
M. Jiang, Tcn: Table convolutional network for web table inter-680

pretation, in: Proceedings of the Web Conference 2021, 2021,
pp. 4020–4032.

[21] R. Shigapov, P. Zumstein, J. Kamlah, L. Oberländer, J. Mech-
nich, I. Schumm, bbw: Matching csv to wikidata via meta-lookup,
in: CEUR Workshop Proceedings, Vol. 2775, RWTH, 2020, pp.685

17–26.
[22] N. Abdelmageed, S. Schindler, Jentab: A toolkit for seman-

tic table annotations, in: Second International Workshop On
Knowledge Graph Construction Co-located with the ESWC,
2021.690

[23] P. Nguyen, I. Yamada, N. Kertkeidkachorn, R. Ichise, H. Takeda,
Mtab4wikidata at semtab 2020: Tabular data annotation with
wikidata., in: SemTab@ ISWC, 2020, pp. 86–95.

[24] D. Vrandečić, M. Krötzsch, Wikidata: a free collaborative knowl-
edgebase, Communications of the ACM 57 (10) (2014) 78–85.695

[25] Wang, Xinxin, Tabular abstraction, editing, and formatting, in:
Thesis of University of Waterloo, UWSpace, 2016.

[26] V. Efthymiou, O. Hassanzadeh, M. Rodriguez-Muro,
V. Christophides, Matching web tables with knowledge
base entities: from entity lookups to entity embeddings, in:700

International Semantic Web Conference, Springer, 2017, pp.
260–277.

[27] A. Karaoglu, C. Negreanu, S. Chen, J. Williams, D. Fabian,
A. Gordon, C.-Y. Lin, Wiki2row - the in’s and out’s or row
suggestion with a large scale knowledge base, Tech. Rep. MSR-705

TR-2020-37, Microsoft (October 2020).
[28] L. Getoor, Link-based classification, in: Advanced methods for

knowledge discovery from complex data, Springer, 2005, pp.
189–207.

[29] G. Hignette, P. Buche, J. Dibie-Barthélemy, O. Haemmerlé,710

An ontology-driven annotation of data tables, in: International
Conference on Web Information Systems Engineering, Springer,
2007, pp. 29–40.

[30] G. Hignette, P. Buche, J. Dibie-Barthélemy, O. Haemmerlé,
Fuzzy annotation of web data tables driven by a domain ontology,715

in: European Semantic Web Conference, Springer, 2009, pp. 638–

10

http://dx.doi.org/10.5281/zenodo.6496662

653.
[31] V. Mulwad, T. Finin, A. Joshi, Semantic message passing for

generating linked data from tables, in: International Semantic
Web Conference, Springer, 2013, pp. 363–378.720

[32] D. Ritze, O. Lehmberg, C. Bizer, Matching html tables to dbpe-
dia, in: Proceedings of the 5th International Conference on Web
Intelligence, Mining and Semantics, 2015, pp. 1–6.

[33] V.-P. Huynh, J. Liu, Y. Chabot, T. Labbé, P. Monnin, R. Troncy,
Dagobah: Enhanced scoring algorithms for scalable annotations725

of tabular data., in: SemTab@ ISWC, 2020, pp. 27–39.
[34] D. Kim, H. Park, J. K. Lee, W. Kim, Generating conceptual

subgraph from tabular data for knowledge graph matching., in:
SemTab@ ISWC, 2020, pp. 96–103.

[35] M. Cremaschi, R. Avogadro, A. Barazzetti, D. Chieregato, Man-730

tistable se: an efficient approach for the semantic table interpre-
tation., in: SemTab@ ISWC, 2020, pp. 75–85.

[36] M. Cremaschi, F. De Paoli, A. Rula, B. Spahiu, A fully auto-
mated approach to a complete semantic table interpretation,
Future Generation Computer Systems 112 (2020) 478–500.735

[37] A. Melo, J. Völker, H. Paulheim, Type prediction in noisy rdf
knowledge bases using hierarchical multilabel classification with
graph and latent features, International Journal on Artificial
Intelligence Tools 26 (02) (2017) 1760011.

[38] V. Cutrona, G. Puleri, F. Bianchi, M. Palmonari, Nest: Neural740

soft type constraints to improve entity linking in tables, in:
Further with Knowledge Graphs, IOS Press, 2021, pp. 29–43.

[39] P. Nguyen, I. Yamada, N. Kertkeidkachorn, R. Ichise, H. Takeda,
Demonstration of mtab: Tabular data annotation with knowl-
edge graphs, in: International Semantic Web Conference, Posters,745

Demos, and Industry Tracks, 2021.
[40] Y. Wang, J. Hu, A machine learning based approach for table

detection on the web, in: Proceedings of the 11th international
conference on World Wide Web, 2002, pp. 242–250.

[41] O. Lehmberg, D. Ritze, R. Meusel, C. Bizer, A large public750

corpus of web tables containing time and context metadata, in:
Proceedings of the 25th International Conference Companion
on World Wide Web, 2016, pp. 75–76.

[42] J. Eberius, K. Braunschweig, M. Hentsch, M. Thiele, A. Ah-
madov, W. Lehner, Building the dresden web table corpus: A755

classification approach, in: 2015 IEEE/ACM 2nd International
Symposium on Big Data Computing (BDC), IEEE, 2015, pp.
41–50.

[43] K. Braunschweig, M. Thiele, W. Lehner, From web tables to
concepts: A semantic normalization approach, in: International760

Conference on Conceptual Modeling, Springer, 2015, pp. 247–
260.

[44] A. Sil, G. Kundu, R. Florian, W. Hamza, Neural cross-lingual
entity linking, in: Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.765

[45] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-
training of deep bidirectional transformers for language under-
standing, in: NAACL, ACL, Minneapolis, Minnesota, 2019, pp.
4171–4186.

[46] P. Nguyen, I. Yamada, H. Takeda, Mtabes: Entity search with770

keyword search, fuzzy search, and entity popularities, in: The
35th Annual Conference of the Japanese Society for Artificial
Intelligence, 2021, pp. 1N4IS1a02–1N4IS1a02.

[47] V. Cutrona, J. Chen, V. Efthymiou, O. Hassanzadeh, J.-R.
Ernesto, J. Sequeda, K. Srinivas, N. Abdelmageed, M. Hulsebos,775

D. Oliveira, C. Pesquita, Results of semtab 2021, in: CEUR
Workshop Proceedings, Vol. 3103, 2021, pp. 1–12.

[48] N. Abdelmageed, S. Schindler, B. König-Ries, Biodivtab: A
table annotation benchmark based on biodiversity research data,
in: CEUR Workshop Proceedings, Vol. 3103, 2021, pp. 13–18.780

[49] R. Boeddinghaus, S. Marhan, D. Berner, S. Boch, M. Fischer,
J. Kattge, V. Klaus, T. Kleinebecker, Y. Oelmann, D. Prati,
D. Schäfer, I. Schöning, M. Schrumpf, E. Sorkau, E. Kandeler,
P. Manning, E. Kandeler, Plant functional trait shifts explain
concurrent changes in the structure and function of grassland785

soil microbial communities (2017).
[50] M. Fischer, T. Nauss, M. Tschapka, W. Weisser, J. Müller, Ag-

gregated species richness and habitat heterogeneity variables for
testing the habitat-heterogeneity hypothesis, 2006-2018 (2020).

[51] S. Seibold, M. Gos̈ner, N. Simons, N. Blüthgen, J. Müller, D. Am-790

barli, C. Ammer, J. Bauhus, M. Fischer, C. Fürstenau, J. C.
Habel, K. E. Linsenmair, T. Nauss, A. Ostrowski, C. Penone,
D. Prati, P. Schall, E.-D. Schulze, J. Vogt, S. Wöllauer,
W. Weisser, Arthropod data from 150 grassland plots, 2008-2017,
and 140 forest plots, 2008-2016, used in ”Arthropod decline in795

grasslands and forests is associated with drivers at landscape
level”, Nature (2019).

[52] S. Leonhardt, B. Peters, A. Keller, Trap nesting solitary bee
species measured on all grassland VIPs 2017-2018 (2020).

[53] S. Leonhardt, B. Peters, A. Keller, Fatty acids in pollen of Osmia800

bicornis larval provisions 2017-2018 (2020).
[54] S. Leonhardt, B. Peters, A. Keller, Amino acids in pollen of

Osmia bicornis larval provisions 2017-2018 (2020).
[55] M. Staab, A. Schuldt, T. Assmann, H. Bruelheide, A. Klein, Ant

community structure during forest succession in a subtropical805

forest in South-East China (2014) 32–40.
[56] T. Wubet, Y. Wu, F. Buscot, Soil Fungal metagenome from 12

CSPs based on the fungal ITS rDNA pyrotags (2013).
[57] K. Nadrowski, Deviations from stem breaking probabilities at

species level (2013).810

[58] H. Bruelheide, D. Eichenberg, W. Kröber, M. Böhnke, C. Ristok,
Main Experiment: Leaf traits and chemicals from individual
trees in the Main Experiment (Site A & B) (2012).

[59] V.-P. Huynh, J. Liu, Y. Chabot, F. Deuzé, T. Labbé, P. Mon-
nin, R. Troncy, Dagobah: Table and graph contexts for efficient815

semantic annotation of tabular data, in: CEUR Workshop Pro-
ceedings, Vol. 3103, 2021, pp. 19–31.

[60] N. Abdelmageed, S. Schindler, Jentab meets semtab 2021’s new
challenges, in: CEUR Workshop Proceedings, Vol. 3103, 2021,
pp. 42–53.820

Appendix A. User interface

To allow users to interact directly with the system
and better understand its capabilities, we offer a direct
user interface - shown in Fig. A.5. Using Microsoft Excel,
users can input data and select a range of cells to trigger825

the LinkingPark annotation service by simply clicking the
“Detect” button in the right-side taskpane. Resulting linked
entities, types, and properties are shown in this taskpane.
And links are added in-place in the spreadsheet, which users
can follow for more information about each cell entity.830

Appendix B. Index construction

This index is built to facilitate fuzzy string matching
over the alias map. Specifically, the index contains two
properties, “title” which is an indexed field storing the
aliases in the mined alias map, and “qid” which is an un-835

indexed field storing the associated Wikidata IDs with such
an alias.

As for the “title” field, its main field uses a standard an-
alyzer in Elasticsearch and a character-based sub-field with
a character trigram-based analyzer. During the querying840

phrase, the scoring function is “2×word-based BM 25 score+
character-based BM 25 score”.

Appendix C. Matching procedure

As for the matching procedure fliteral exact(Eiξ, tij) and
fliteral fuzzy(Eiξ, tij), it tries to find all possible properties845

11

(a) User input and select a range of cells (b) Click the Detect button in the Add-in Taskpane

(c) Clicking the hyperlink to see linked entity

Figure A.5: Snippets of the direct user interface of LinkingPark in Microsoft Excel.

whose subject lies in Eiξ, whose object matches tij under
a given matching function. The strict matching function is
implemented based on the basic data type of each property:
exact match is used for strings, match within a threshold30

is applied for numerical quantities and the exact match850

under the ISO datetime format for dates and times. As for
the fuzzy match, we implement unit conversion functions
for numerical properties including length, area, volume,
frequency, mass, temperature, etc31, and match its value
with the cell value under unit conversion; For datetime855

entries, the fuzzy match allows at most a difference of ten
days.

Appendix D. Data access layer

In our current implementation, the extra data access
layer consists of three dictionaries: 1) Entity name map:860

which maps an item id to its entity names, which is used
in the lexical similarity calculation. For fast lookup it can
be fully stored in memory and consumes 26.1 GB RAM;
2) Entity property values map: which maps an item id
to its all the properties along with values; 3) Entity type865

information map: which maps an item id to its entity types.
As discussed in 4.6, these last two stores can be configured
into either Memory-only or Disk-backed modes depending
on the requirements of specific scenarios or deployment
environment constraints.870

30In practice, we choose 1e−2.
31https://www.wikidata.org/wiki/Wikidata:Units

Appendix E. Ablation studies

Appendix E.1. Feature ablation

We conduct an ablation study for the different features
used in the entity disambiguation algorithm with results
displayed in Table E.6. By removing the row score, the875

entity linking system F1-score drops 0.04 and 0.17 on au-
tomatically generated tables of Round 4 and Tough Tables
respectively. The column score, which characterizes type
consistency along the column, takes little effects on the
automatically generated tables, but improves 0.012 F1 on880

Tough Tables. This is due to the automatic generation
process [17] producing tables based on existing properties
in the KG, therefore utilizing row score to characterize
property relatedness is already sufficient to resolve the
ambiguity. However, the Tough Tables dataset contains885

real tables with cells which may not have correspondence
in the target KG, or the table might even only have one
single column as context which could only benefit from the
column score feature. Similar trends can be observed by
removing the lexical or popularity features. In order to890

make the system robust in real-world tables (which can be
extremely varied), we should consider all available aspects
of information.

Table E.6: Feature ablation of entity disambiguation on Round4
dataset of SemTab 2020.

Setting
Round 4 (AG) Tough Tables
F1 Pr F1 Pr

LinkingPark (full) 0.988 0.988 0.908 0.908
LinkingPark (w/o row score) 0.948 0.948 0.738 0.738
LinkingPark (w/o col. score) 0.987 0.987 0.896 0.896
LinkingPark (w/o lexical) 0.986 0.986 0.898 0.898
LinkingPark (w/o popularity) 0.988 0.988 0.883 0.883

12

https://www.wikidata.org/wiki/Wikidata:Units

Table E.7: Entity linking performance of Round4 dataset of SemTab
2020 under different candidate generation methods, DS denotes Dic-
tionary Search, FS denotes Fuzzy Search.

Setting
Round 4 (AG) Tough Tables
F1 Pr F1 Pr

LinkingPark (DS+FS) 0.988 0.988 0.908 0.908
LinkingPark (DS-only) 0.985 0.989 0.809 0.897

Appendix E.2. Candidate generation method ablation

Table E.7 shows the entity linking performance under895

different candidate generation methods. Specifically, we
compare the full candidate generation method, LinkingPark
(DS+FS), which combines the dictionary search and fuzzy
search, with LinkingPark (DS-only), which only adopts
the dictionary search method32. As we can see from Ta-900

ble E.7, LinkingPark (DS+FS) improves over LinkingPark
(DS) 0.003 F1 on the automatically generated dataset of
Round4. It demonstrates the dictionary search which can
handle 1 edit typo can handle most of the cases in the
automatically generated dataset. However, LinkingPark905

(DS+FS) significantly improves LinkingPark (DS) over
0.099 F1 points on Tough Tables due to the significantly
improved recall. The above results show that candidate
generation based on fuzzy search is complementary to the
candidate generation methods based on dictionary search,910

which is especially helpful on Tough Table and potentially
in real-world scenarios with noisier data.

Appendix F. Latency of other systems

We summarize the detailed measurements of other sys-
tems as reported in their original papers in Table F.8.915

Appendix G. Results on SemTab 2021 datasets

We also report the performance of LinkingPark on
SemTab 2021 [47] datasets with Wikidata as the target KG
in Table G.9. We make the following changes to migrate
LinkingPark to SemTab 2021.920

1. Re-index the KG with Wikidata JSON dump (version
20210830), which is the closest downloadable dump
to the specified version (20210828) in SemTab 2021.33

2. For the BioTable dataset whose CPA task consists
of multi-subjects, we use the target files for the CPA925

task as input to predict the property annotation. We
believe this strategy has also been adopted by other
systems.

32Searching only with fuzzy search both impacts performance
and is not a good design choice, so we did not compare against
LinkingPark (FS-only).

33In practice, we found using different versions of Wikidata in-
fluenced the results on SemTab 2021 a lot, especially on the au-
tomatically generated data set. For example, the CEA result on
HardTablesR2 is 0.940 F1 on our previous dump used in SemTab
2020.

3. For the BiodivTab dataset [48]34 which includes col-
umn headers35, we output the CTA annotation matched930

with the column headers which performs better than
voting from cell contents.

Except for the above-mentioned changes, all of the model
designs including parameter settings are the same as the
presented system in the main paper. As you can see, our935

system still maintains highly competitive performance over
SemTab 2021 datasets compared with other top systems.
The results support the claim that our system generalises
well.

Appendix H. Multi-subject extension940

Although we focus on processing tables with a single
subject column, we provide a simple extension of our algo-
rithms for scenarios with no assumption on the number of
subject columns. Specifically, we modify Algorithm 1 and
Algorithm 2 with no pre-specified subject column index
as the input. The adapted algorithms are shown in Algo-
rithm 3 and Algorithm 4 respectively. As for Algorithm 3,
instead of only matching with the single subject column as
in Algorithm 1, we check all the columns pairs to calculate
both the entity property distribution {Pentity,i,j(p)} and
literal property distribution {Pliteral,i,j(p)} between the
i-index column and j-index column. Then the final prop-
erty distribution between the i-index column and j-index
column becomes:

Pi,j(p) = max(Pentity,i,j(p), Pliteral,i,j(p)). (H.1)

Finally, we can output the property with the highest confi-
dence and set a confidence threshold δ to prune predictions
with low confidence.

As for Algorithm 4, we also maintain the iterative entity
disambiguation framework as in Algorithm 2, with only the945

modification for the row score calculation. Specifically, the
row score is now calculated by considering all the possible
properties from the other columns. We treat the j-index
column as both the subject column and object column when
measuring the support score with the remaining columns,950

and then select the larger one (Line 19 in Algorithm 4).
To verify the effectiveness of the extended algorithms,

we conduct experiments on the BioTable, whose CPA task
contains multiple subject column targets.36 As you can see
from Table G.10, the extended version indeed significantly955

improves the performance of LinkingPark on the BioTable
dataset. However, we also note that the performance gain

34This dataset is created based on the tables from the following
biodiversity research papers [49, 50, 51, 52, 53, 54, 55, 56, 57, 58].
According to the license of BioTable dataset, we need to cite the
above papers.

35Our previous system does not rely on column headers.
36To the best of our knowledge, the CPA task of the remaining

datasets (linking to Wikidata KG) in SemTab 2020 and SemTab 2021
only evaluate the single subject column scenario.

13

Table F.8: Average running times (seconds) per table between different systems over the SemTab 2020 datasets. − denotes that the system
does not report their latency/speed in the corresponding dataset. †: JenTab only reports latency on the merged Round4 and 2T. For reference,
the speed of LinkingPark (Memory-based) is 2.346 s/table, while the speed of LinkingPark (Disk-backed) is 2.931 s/table on the merged split.
‡: DAGOBAH only reports latency on the Round 1-3 datasets. Note that this table is for reference only and not strictly comparable, since the
speed of different systems are measured on different hardware.

System Round1 Round2 Round3 Round4 2T Avg.

MTab [46] − − − − − 1.520

JenTab [22] 1.260 17.744 2.070 15.409† 4.270

DAGOBAH [33] 4.619 18.927 15.409 − − 12.430‡

LinkingPark (Memory-based) 0.439 0.595 0.537 1.682 84.339 0.825
LinkingPark (Disk-backed) 0.461 0.607 0.569 2.131 101.579 0.947

Table G.9: Comparison with other top systems in SemTab 2021. Bold scores denote the best performance, while the underlined scores denote
secondary performance. ∗ denotes results from SemTab 2020.

System
Tough Tables HardTablesR2 BioTable BiodivTab HardTablesR3
CEA CTA CEA CTA CPA CEA CTA CPA CEA CTA CEA CTA CPA

MTab [39] 0.907∗ 0.728∗ 0.985 0.977 0.997 0.964 0.956 0.947 0.522 0.123 0.968 0.984 0.993
DAGOBAH [59] 0.923 0.832 0.975 0.976 0.996 0.970 0.916 0.899 0.496 0.381 0.974 0.990 0.991

JenTab [60] 0.457 0.697 0.966 0.914 0.996 0.857 0.835 0.899 0.602 0.107 0.940 0.942 0.992
LinkingPark 0.908 0.784 0.982 0.959 0.998 0.953 0.892 0.899 0.576 0.210 0.959 0.967 0.999

Table G.10: Performance of the multi-subject extended algorithm on
BioTable dataset. ∗ denotes the result of LinkingPark under strict
single subject column assumption, without making the second change
specified in Appendix G.

System CEA CTA CPA

LinkingPark (single-subject) 0.953 0.892 0.671∗

LinkingPark (multi-subject) 0.964 0.897 0.899

of the extended version is at the cost of the increased
computational cost since we currently need to enumerate
all column pairs in the table. We treat improving the960

efficiency of the multi-subject extension version as future
work.

Algorithm 3 Extended property linking algorithm

Input: Table T with candidate lists {Eij}, matching con-
fidence weights {ω1, ω2}
Output: Entity property distribution {Pentity,i,j(p)} and
literal property distribution {Pliteral,i,j(p)} for between sub-
ject i-index column and non-subject j-index column

1: for i = 1 to n; j = 1 to n do
2: if i ̸= j then
3: for k = 1 to m do
4: propentity(i, j, k) = fentity(Eki, Ekj)
5: propliteral(i, j, k), wi,j,k = fliteral(Eki, tkj)
6: end for
7: Pentity,i,j(p) =

|{k|p∈propentity(i,j,k),k∈{1,2,...,m}}|
m

8: Pliteral,i,j(p) =
∑m

k=1;p∈propliteral(i,j,k) ωi,j,k

m
9: end if

10: end for
11: return {Pentity,i,j(p)}, {Pliteral,i,j(p)}
Sub-procedure fliteral(Eki, tkj)

1: if fliteral exact(Eki, tkj) ̸= {} then ▷ Try exact match
2: return fliteral exact(Eki, tkj), ω1

3: else
4: return fliteral fuzzy(Eki, tkj), ω2 ▷ Fuzzy match
5: end if

14

Algorithm 4 Extended iterative entity disambiguation algorithm

Input: Table T with candidate lists {Eij}, property distributions {Pentity,i,j(p)}, {Pliteral,i,j(p)}, parameters {α, β},
maximum number of iterations N , minimum property confidence threshold δ
Output: Entity assignments {êij} for each cell tij

1: e0ij = argmaxe∈Eij
α · srowij (e) + β · lexical sim(e, tij) ▷ Initialization

2: M = gen mask({Pentity,i,j(p)}, {Pliteral,i,j(p)}) ▷ Generate property mask
3: while t < N and any entity assignment has changed do ▷ Refinement
4: scolij (e) = 1

m−1

∑m
k=1;k ̸=i ent sim(e, et−1

kj) ▷ Column score calculation

5: etkj = argmaxe∈Eij
α · srowij (e,M) + β · lexical sim(e, tij) + (1− α− β) · scolij (e)

6: end while
7: return {etij}

Sub-procedure srowij (e,M) ▷ Row score calculation

1: r = 0 ▷ Number of columns having relationship with the column j
2: for k = 1 to n do ▷ Enumerate each column except the column j
3: if j ̸= k then
4: if Mkj then ▷ Treat column k as subject column, column j as non-subject column

5: oentityik (e) = max
p∈fentity(Eik,{e})

(Pentity,k,j(p)) ▷ The entity property support score from column k

6: else
7: oentityik (e) = 0
8: end if
9: if Mjk then ▷ Treat column j as subject column, column k as non-subject column

10: sentityik (e) = max
p∈fentity({e},Eik)

(Pentity,j,k(p)) ▷ The entity property support score from column k

11: sliteralik (e) = max
(p,w)∈fliteral({e},tik)

(Pliteral,j,k(p) · w) ▷ The literal property support score from column k

12: else
13: sentityik (e) = 0
14: sliteralik (e) = 0
15: end if
16: if Mkj or Mjk then
17: r = r + 1
18: end if
19: sik(e) = max(oentityik (e),max(sentityik (e), sliteralik (e))) ▷ Select the better support
20: end if
21: end for
22: return 1

r

∑n
k=1;k ̸=j sik(e) ▷ Average property support score from each relational column

Sub-procedure gen mask({Pentity,i,j(p)}, {Pliteral,i,j(p)}) ▷ Generate property mask

1: c = max
p∈P

(max(Pentity,i,j(p), Pliteral,i,j(p)))

2: if c ≥ δ then
3: Mij = 1
4: else
5: Mij = 0
6: end if
7: return M

15

	Introduction
	Task formulation
	Design principles
	System architecture
	Column analysis module
	Candidate generation sub-module
	Property linking module
	Entity disambiguation sub-module
	Type inference module
	Knowledge graph module

	Related work
	Evaluation
	Data statistics
	Setup and evaluation metrics
	Compared systems
	Performance
	Comparison with the earlier system at SemTab 2020
	Comparison with other systems

	Latency
	Limitations

	Use cases
	Semantic flash fill
	Table fact checking

	Conclusion
	User interface
	Index construction
	Matching procedure
	Data access layer
	Ablation studies
	Feature ablation
	Candidate generation method ablation

	Latency of other systems
	Results on SemTab 2021 datasets
	Multi-subject extension

