# Machine Learning for Solvi ng Combinatorial Problems: Some Empirical Studies

# Junchi Yan

yanjunchi@sjtu.edu.cn Department of Computer Science and Engineering, SJTU November 26<sup>th</sup>, 2022

### **Acknowledgement of Major Collaborative Students**



Class of 2019

Class of 2020

Class of 2020

Class of 2021

Class of 2021

https://thinklab.sjtu.edu.cn/

https://github.com/Thinklab-SJTU/

# 2. Recent Work

# 3. Summary and Outlook







Continuous













 CVPR'22 Best Paper: Learning to Solve Hard Minimal Problems
 EJOR'21 A Survey by Prof. Bengio: Machine Learning for CO
 NSF makes \$20 million investment in Optimization-focused AI Research Institute

# 2. Recent Work

# 3. Summary and Outlook

1) Graph Matching 2) Generality 3) Robustness 4) Graph Application

## **Classical Solution to Graph Matching Problem**

• NP-hard GM Problem:







• Sinkhorn: differentiable, exact linear assignment algorithm



 How to invoke: pip install pygmtools (already support numpy, pytorch, paddle, jittor; will support tensorflow, mindspore)

```
>>> import torch
```

```
>>> import pygmtools as pygm
```

```
>>> pygm.BACKEND = 'pytorch'
```

```
>>> np.random.seed(0) # 2-dimensional (non-batched) input
```

- >>> s\_2d = torch.from\_numpy(np.random.rand(5, 5))
- >>> s\_2d tensor([[0.5488, 0.7152, 0.6028, 0.5449, 0.4237], [0.6459, 0.4376, 0.8918, 0.9637, 0.3834], [0.7917, 0.5289, 0.5680, 0.9256, 0.0710], [0.0871, 0.0202, 0.8326, 0.7782, 0.8700], [0.9786, 0.7992, 0.4615, 0.7805, 0.1183]])

 Permutation Loss: The matching problem can be considered as a binary classification problem for each element



 Compared with the regression based offset loss used in the past, the permutation loss better portrays the combinatorial optimization nature of graph matching





 $L_{perm} = 5.139, L_{off} = 0.070$ 

#### Matching results on PascalVOC:

Permutation Loss>Offset Loss, Intra-+Cross-graph GNN>Intra-graph GNN>Classical GM

| Model     | CNN   | GM Formulation                         | Loss Func | Matching Acc |
|-----------|-------|----------------------------------------|-----------|--------------|
| GMN       | VGG16 | Classical GM (Zanfir et al. CVPR 2018) | Offs Loss | 55.3         |
| GMN-PL    | VGG16 | Classical GM (Zanfir et al. CVPR 2018) | Perm Loss | 57.9         |
| PIA-GM-OL | VGG16 | Intra-graph GNN                        | Offs Loss | 61.6         |
| PIA-GM    | VGG16 | Intra-graph GNN                        | Perm Loss | 63.0         |
| PCA-GM    | VGG16 | Intra-+Cross-graph GNN                 | Perm Loss | 63.8         |

#### The model has the capability to transfer across categories:



### **Improvement on Graph Embedding and Loss Function ICLR20**

Learning deep graph matching with channel-independent embedding and Hungarian attention, ICLR 2020

- Improve Graph Embedding Module: Simulate multi-head attention, propose a Channel Independent Embedding (CIE) method
- Experiment: Under control variates, CIE outperforms other GNN structures



| method              | aero b | oike         | bird | boat | bottle | bus  | car  | cat  | chair | COW  | iable | dog   | horse       | mbike | person | plant | sheep | sofa    | train | tv   | Ave  |
|---------------------|--------|--------------|------|------|--------|------|------|------|-------|------|-------|-------|-------------|-------|--------|-------|-------|---------|-------|------|------|
| GMN-D               | 31.9 4 | 17.2         | 51.9 | 40.8 | 68.7   | 72.2 | 53.6 | 52.8 | 34.6  | 48.6 | 72.2  | 47.7  | 54.8        | 51.0  | 38.6   | 75.1  | 49.5  | 45.0    | 83.0  | 86.3 | 55.3 |
| GMN-P               | 31.1.4 | 46.2         | 58.2 | 45.9 | 70.6   | 76.4 | 61.2 | 61.7 | 35.5  | 53.7 | 3.9   | 57.5  | 56.9        | 49.3  | 34.1   | 77.5  | 57.1  | 53.6    | 83.2  | 88.6 | 57.9 |
| GAT-P               | 46.4 6 | 60.5         | 60.9 | 51.8 | 79.0   | 70.9 | 62.7 | 70.1 | 39.7  | 63.9 | 66.2  | 6.2.8 | <b>55.8</b> | 62.8  | 39.5   | 82.0  | 66.9  | 50.1    | 78.5  | 90.3 | 63.6 |
| GAI-H               | 47.2 0 | 01.0         | 05.2 | 33.3 | 79.7   | /0.1 | 00.5 | 70.5 | 38.4  | 04./ | 62.9  | 05.4  | 00.2        | 62.5  | 41.1   | /8.8  | 07.1  | 01.0    | 81.4  | 91.0 | 04.0 |
| EPN-P               | 47.6 6 | 55.2         | 62.2 | 52.7 | 77.8   | 69.5 | 63.4 | 69.6 | 37.8  | 62.8 | 63.6  | 63.9  | 64.6        | 61.9  | 39.9   | 80.5  | 66.7  | 45.5    | 77.6  | 90.6 | 63.2 |
| PIA-D               | 39.7 3 | )/./         | 0.6C | 47.2 | /4.0   | /4.2 | 02.1 | 00.0 | 33.0  | 01.7 | 00.4  | 29.0  | 07.1        | 29'A  | 41.9   | 11.1  | 04.7  | <u></u> | 01.0  | 94.4 | 01.0 |
| PIA-P               | 41.5 5 | 55.8         | 60.9 | 51.9 | 75.0   | 75.8 | 59.6 | 65.2 | 33.3  | 65.9 | 62.8  | 62.7  | 67.7        | 62.1  | 42.9   | 80.2  | 64.3  | 59.5    | 82.7  | 90.1 | 63.0 |
| PCA-P               | 40.9 3 | 0.0          | 8.60 | 47.9 | /0.9   | 77.9 | 03.5 | 07.4 | 35.1  | 02.2 | 03.0  | 01.3  | 08.9        | 02.8  | 44.9   | 11.5  | 07.4  | 57.5    | 80.7  | 90.9 | 03.8 |
| PCA-H               | 49.8 6 | 60.7         | 63.9 | 52.6 | 79.8   | 72.5 | 63.8 | 71.2 | 38.4  | 62.5 | 71.7  | 65.4  | 66.6        | 62.5  | 40.5   | 84.7  | 66.1  | 47.9    | 80.5  | 91.1 | 64.6 |
| PCA+-P              | 46.6 6 | 61.0         | 62.3 | 53.9 | 78.2   | 72.5 | 64.4 | 70.5 | 39.0  | 63.5 | 74.8  | 65.2  | 65.0        | 61.6  | 40.8   | 83.2  | 67.1  | 50.5    | 79.6  | 91.6 | 64.6 |
| CIE <sub>2</sub> -P | 50.9 6 | 55.5         | 68.0 | 57.0 | 81.0   | 75.9 | 70.3 | 73.4 | 41.1  | 66.7 | 53.2  | 68.3  | 68.4        | 63.5  | 45.3   | 84.8  | 69.7  | 57.2    | 79.8  | 91.6 | 66.9 |
| CIE <sub>2</sub> -H | 51.2 6 | 58.4         | 69.5 | 57.3 | 82.5   | 73.5 | 69.5 | 74.0 | 40.3  | 67.8 | 60.0  | 69.7  | 70.3        | 65.1  | 44.7   | 86.9  | 70.7  | 57.3    | 84.2  | 92.2 | 67.4 |
| CIE <sub>1</sub> -P | 52.1 6 | <b>59.4</b>  | 69.9 | 58.9 | 80.6   | 76.3 | 71.0 | 74.2 | 41.1  | 68.0 | 60.4  | 69.7  | 70.7        | 65.1  | 46.1   | 85.1  | 70.4  | 61.6    | 80.7  | 91.7 | 68.1 |
| CIE <sub>1</sub> -H | 51.20  | <b>19.</b> 2 | /0.1 | 55.0 | 04.0   | 12.0 | 09.0 | 74.4 | 39.0  | 00.0 | /1.0  | 70.0  | /1.0        | 00.0  | 44.0   | 05.4  | 09.9  | 05.4    | 03.2  | 94.4 | 00.9 |

### **Improvement on Graph Embedding and Loss Function ICLR20**

 Improve Loss Function: Permutation loss requires the output to be 0/1, which may cause overfitting

- Propose Hungarian
  Attention, focusing
  on inconsistent ma tches after Hungarian
- Experimental results: mitigating overfitting and improving test set performance



# Learning GM Solvers TPAMI22

• GM is equivalent to node classification on an association graph:



- Node 1 matches node a + 1a=1 on association graph
- Therefore, GM solvers == node classifier on association graph
- Naturally, GNN that excel in node classification can serve as graph matching solvers!

# Learning GM Solvers TPAMI22



# Learning GM Solvers TPAMI21



# Self-Supervised Learning for GM ECCV22

Self-supervised Learning of Visual Graph Matching, ECCV 2022



# Self-Supervised Learning for GM ECCV22





**Existing Deep GM Models**: Require ground truth node

correspondence as labels for supervised learning

# Self-Supervised Learning for GM ECCV22



## Solving Graph Edit Distance and Edit Path CVPR21

Combinatorial Learning of Graph Edit Distance via Dynamic Embedding, CVPR 2021



h(p) cost of unmatched parts (predicted value)

## Solving Graph Edit Distance and Edit Path CVPR21

Combinatorial Learning of Graph Edit Distance via Dynamic Embedding, CVPR 2021



## Solving Graph Edit Distance and Edit Path CVPR21

| Combinatorial Lear                                | ombinatorial Learning of Graph Edit Distance via Dynamic Embedding, CVPR 2021 |                          |       |       |                    |       |       |                          |             |       |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------|--------------------------|-------|-------|--------------------|-------|-------|--------------------------|-------------|-------|--|--|--|
| Accuracy Metrics for GED on 3 Real-world Datasets |                                                                               |                          |       |       |                    |       |       |                          |             |       |  |  |  |
| Method                                            | Edit                                                                          | AJ                       | IDS   |       | LIN                | JUX   |       | Willo                    | Willow-Cars |       |  |  |  |
| Wethou                                            | Path                                                                          | mse (×10 <sup>-3</sup> ) | ρ     | p@10  | mse (× $10^{-3}$ ) | ρ     | p@10  | mse (×10 <sup>-3</sup> ) | ρ           | p@10  |  |  |  |
| SimGNN [3]                                        | ×                                                                             | 1.189                    | 0.843 | 0.421 | 1.509              | 0.939 | 0.942 | -                        | -           | -     |  |  |  |
| GMN [26]                                          | $  \times$                                                                    | 1.886                    | 0.751 | 0.401 | 1.027              | 0.933 | 0.833 | -                        | -           | -     |  |  |  |
| GraphSim [4]                                      | × '                                                                           | 0.787                    | 0.874 | 0.534 | 0.058              | 0.981 | 0.992 | -                        | -           | -     |  |  |  |
| GENN (ours)                                       | ×                                                                             | 1.618                    | 0.901 | 0.880 | 0.438              | 0.955 | 0.527 | -                        | -           | -     |  |  |  |
| Beam Search [20]                                  | $\checkmark$                                                                  | 12.090                   | 0.609 | 0.481 | 9.268              | 0.827 | 0.973 | 1.820                    | 0.815       | 0.725 |  |  |  |
| Hungarian [31]                                    | 🗸 '                                                                           | 25.296                   | 0.510 | 0.360 | 29.805             | 0.638 | 0.913 | 29.936                   | 0.553       | 0.650 |  |  |  |
| VJ [13]                                           |                                                                               | 29.157                   | 0.517 | 0.310 | 63.863             | 0.581 | 0.287 | 45.781                   | 0.438       | 0.512 |  |  |  |
| GENN-A* (ours)                                    | $\checkmark$                                                                  | 0.635                    | 0.959 | 0.871 | 0.324              | 0.991 | 0.962 | 0.599                    | 0.928       | 0.938 |  |  |  |

The integratable algorithm preserves the high accuracy of classical solvers

Achieve high efficiency with machine learning algorithm



### Solving Combinatorial Optimization over Graphs by a General Bi-level ML Framework NeurIPS21

A Bi-level Framework for Learning to Solve Combinatorial Optimization over Graphs, NeurIPS 2021

#### For CO problems over graphs, current formulation is



Shortest first: 16.0

### Solving Combinatorial Optimization over Graphs by a General Bi-level ML Framework NeurIPS21

**Propose a Bi-level Optimization Formulation:** 

Upper-level: Adopt a reinforcement learning agent to adaptively modify the graphs

$$\min_{\mathbf{x}',\mathcal{G}'} f(\mathbf{x}'|\mathcal{G}) \qquad s.t. \quad H_j(\mathcal{G}',\mathcal{G}) \le 0, \text{ for } j = 1...J$$

 $\mathcal{G}'$ 

$$\mathbf{x}' \in \arg\min_{\mathbf{x}'} \left\{ f(\mathbf{x}'|\mathcal{G}') : h_i(\mathbf{x}',\mathcal{G}') \le 0, \text{ for } i = 1 \dots \right\}$$

**Lower-level: Optimize decision variables by heuristics** 

**Bi-level Framework:** When the upper-level RL modifies graph structure, the lower-level heuristic is invoked

**Upper-level Optimizer: RL action network(trained by PPO)** 



Lower-level Optimizer: Heuristic algorithms

### Solving Combinatorial Optimization over Graphs by a General Bi-level ML Framework NeurIPS21 A General Framework for Different Graph Theory Problems





|                                |                 |              |                   |                     |                 |              |                   |                                               |                 |              | _                |
|--------------------------------|-----------------|--------------|-------------------|---------------------|-----------------|--------------|-------------------|-----------------------------------------------|-----------------|--------------|------------------|
| DAG Sche Time<br>TPC-H Dataset | Custo-<br>mized | Gen-<br>eral | Improv-<br>ements | GED<br>AIDS Dataset | Custo-<br>mized | Gen-<br>eral | Improv-<br>ements | Hamiltonian<br>Cycle Accuracy<br>FHCP Dataset | Custo-<br>mized | Gen-<br>eral | Improv<br>ements |
| 50 DAGs                        | 9821            | 8906         | 9.3%              | 20-30 nodes         | 37.4            | 29.1         | 22.2%             | 500-600<br>nodes                              | 20              | 25           | 25%              |
| 100 DAGs                       | 16914           | 15193        | 10.2%             | 30-50 nodes         | 70.4            | 61.1         | 13.2%             |                                               |                 |              |                  |
| 150 DAGs                       | 24429           | 22371        | 8.4%              | 50+ nodes           | 101.9           | 77           | 24.4%             |                                               |                 |              |                  |

← edit paths →

reward =  $f(\mathbf{x}^0|\mathcal{G}) - f(\mathbf{x}^1|\mathcal{G})$ 

 $\nabla$ 

 $\mathbf{x}^1$ 

 $\mathcal{D}$ 

 $\mathbf{x}^0$ 

 $\mathcal{D}$ 

 $\mathbf{x}^0$ 

 $\mathcal{D}$ 

 $\mathbf{x}^1$ 

← scheduling orders → reward =  $f(\mathbf{x}^0|\mathcal{G}) - f(\mathbf{x}^1|\mathcal{G})$ 

### **Appearance and Structure Aware Robust Deep Visual Graph Matching CVPR22**

Appearance and structure aware robust deep visual graph matching: Attack, defense and beyond, CVPR 2022 **Research Problem:** Robust Decision for Deep Visual GM in Adversarial Attack Contexts Deep Visual GM Pipeline (Wang, TPAMI 2021, Rolinek, ECCV 2020):



Multi-graph with keypoints

Similarity between multi-graphs Challenge 1: Existing adversarial attack algorithms for graph structures are not feasible for MGM

OR code

- Adding or deleting nodes will degrade matching accuracy
- Adding or deleting edges will be reverted in multi-graph construction
- Challenge 2: Existing adversarial defense algorithms on a single graph are not feasible GitHub repo for MGM
  - Learn discriminative features between nodes on a single graph
  - Learn correspondences between multiple graphs for MGM

Github Code: https://github.com/Thinklab-SJTU/robustMatch

### Appearance and Structure Aware Robust Deep Visual Graph Matching CVPR22

- Attack Strategy: Locality attack by perturbing keypoint localities and pixel attack by perturbing image pixel values
  - Bi-level Constrained Optimization Problem:
    - $\Box$  *c*, *z* refers to keypoint localities, features, respectively  $\Box$   $\epsilon_c$ ,  $\epsilon_z$  refers to perturbation budget, unavailable to attack

 $\max_{c',z'} \max_{G'} L(f(c', \overline{z'}, \overline{G'}), y)$ 

 $s.t.d_{\infty}(c',c) \leq \epsilon_c, d_{\infty}(z',z) \leq \epsilon_z$ 

- Impact of Keypoint Locality Attack on Models:
  - □ Influence the extraction of keypoint features in the graph
  - Determine the connectivity between keypoints (edge addition or deletion)

Before Attack Multi-graph Pixel Attack After Attack



### Appearance and Structure Aware Robust Deep Visual Graph Matching CVPR22

- **Defense Strategy:** Vulnerability of appearance-similar keypoints in embedding space and explicit constraints
  - Appearance-similar keypoints are vulnerable to attack
    Similar shape, similar texture, symmetrical structure



After attack



 Actively attack to discover appearance-similar keypoints during training and expand their distances in embedding space



Combined with adversarial training, the adversarial samples generated by the attack are received as input to further improve the robustness predicted



Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning, ICML22



Code available at "https://github.com/Thinklab-SJTU/GAMF"

- 1. Model Ensemble
  - Prediction-based Model Ensemble: Need to maintain all individual models
  - Fusion-based Model Ensemble: Need to maintain only one model
- 2. Federated Learning
  - FL Pipeline:
    - 1) Global server sends the global model to each local client
    - 2) Each client train the local model with their own datasets
    - 3) Local clients send the local model back to global server
    - 4) Global server gathers all local models and merge them into a shared global model



Li, Q., He, B., and Song, D. Model-contrastive federated learning. CVPR, 2021.





**Model Fusion** 



### **Graph Optimization Problem of Placement and Routing**







### **Graph Optimization Problem of Placement and Routing**

# The Policy-gradient Placement and Generative Routing Neural Networks for Chip Design, NeurIPS21

#### **Formulation of Mixed-size Placement**

- The key elements of the Markov Decision Processes (MDPs) for mixedsize placement are defined as follows:
- State s : the state representation consists of two part, global image *I* portrayed the layout and netlist graph *H* which contains detailed position of placed macros. The initial state  $I_{xy} = 1$  if (x, y) has already been occupied before placement
- Action *a* : position  $(x_o, y_o)$  is available if all points p in the region R satisfy  $I_p = 0$ , where  $R = \{(x, y) | |x x_o| \le \frac{h}{2}, |y y_o| \le \frac{w}{2}\}$ .
- **Reward** *r* : to further control the overlap in the final placement, the reward at the end of episode is a negative weighted sum of wirelength, routing congestion and overlapping area:  $R_E = -L_{wl} \lambda_1 * L_{cg} \lambda_2 * L_{ol}$

#### **Architecture of Generative Routing Model**



### Neural Macro Placement and Routing Pipeline



<sup>(4)</sup> placement and net ordering model are optimized jointly in a whole RL framework

- Combining the RL-based model for learning mixed-size macro placement with one-shot generative routing network to perform routing as we introduce above, we propose a pure neural pipeline for macro placement and routing.
- Inspired by EM algorithm, we first update the generative router using placement result from mixed-size agent (similar to E step), then placement and net order agents are learned jointly in a whole reinforcement learning framework to minimize wirelength calculated by trained generative model

(corresponding to M step)

The generator is composed of a basic generator for the input size of 64
 × 64 or below and an extension for the input size of larger than 64 ×
 64. The discriminator consists of two sub-discriminators to estimate
 routes from validity and realness.

### **Graph Optimization Problem of Placement and Routing**

# The Policy-gradient Placement and Generative Routing Neural Networks for Chip Design, NeurIPS21

#### **Results on Mixed-size Placement**

With only a slight increase of the total wirelength (within 1.3% difference on average), our mixed-size macro placer achieves approximately 4× reduction over DeepPlace on the overlapping area, stressing the importance of modeling macro's shape in state space.

| Circuit   | # Cells  | # Mov | Mixed-size te           | chnique (ours) | DeepPlace [1]           |               |  |  |
|-----------|----------|-------|-------------------------|----------------|-------------------------|---------------|--|--|
| chrount   | ii eenis |       | Wirelength $\downarrow$ | Overlap Area↓  | Wirelength $\downarrow$ | Overlap Area↓ |  |  |
| adaptec 1 | 211K     | 514   | 82783826                | 12606828       | 80117232                | 66608273      |  |  |
| adaptec2  | 255K     | 542   | 123307824               | 19485631       | 123265964               | 47085963      |  |  |
| adaptec3  | 451K     | 710   | 232373680               | 58588016       | 241072304               | 140272759     |  |  |
| adaptec4  | 496K     | 1309  | 234008876               | 73075220       | 236391936               | 169853555     |  |  |
| bigblue1  | 278K     | 551   | 141020208               | 2041890        | 140435296               | 3519755       |  |  |
| bigblue2  | 558K     | 948   | 144803296               | 70702107       | 140465488               | 103663199     |  |  |
| bigblue3  | 1097K    | 1227  | 468632064               | 39664931       | 450633360               | 574956948     |  |  |
| bigblue4  | 2177K    | 659   | 1001315712              | 67794270       | 951984128               | 87630042      |  |  |
| ratio     | -        | -     | 1.000                   | 1.0            | 0.987                   | 3.9           |  |  |

#### **Results on Routing**

 We compare the full version with ResNet-based cGAN, as well as the pure ResNet generator. The ResNet generator outdoes the cGAN, but the bi-discriminator significantly improves the generator. Moreover, the enhanced loss improves the wirelength at the marginal expense of correctness.

#### **Results on Overall Placement and Routing**

| variants of our PRNet                               |      | ptec 1 | adaptec3 |        |  |
|-----------------------------------------------------|------|--------|----------|--------|--|
|                                                     | WL↓  | RC↓    | WL↓      | RC↓    |  |
| RL-based Placer (i.e. DeepPlace [1])                | 6149 | 10.565 | 30154    | 62.751 |  |
| RL-based Placer + GR                                | 5940 | 10.464 | 29711    | 73.324 |  |
| RL-based Placer + GR + NOL (full version of PRNet ) | 5787 | 9.386  | 29462    | 43.207 |  |

 We compare our PRNet with DeepPlace, along with an ablation study to verify the impact of net order learning. For all test cases, our neural placement and routing pipeline outperforms the other two methods in terms of both wirelength (WL) and routing congestion (RC). The significant difference in routing congestion without net order learning indicates that net order agent is able to arrange the sequence of routing efficiently.

| our router w/ different generative models                                                     | Route-                                                                                                                   | small-4                                                                                                                  | Route-small                                                                                                              |                                                                                                                          |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| our router in, enterent generative mouths                                                     | CrrtR↑                                                                                                                   | WLR↓                                                                                                                     | CrrtR↑                                                                                                                   | WLR↓                                                                                                                     |  |  |
| CVAE*(CNN) [9]<br>CVAE*-cGAN(CNN)<br>CVAE*-bcGAN(CNN)                                         | $\begin{array}{c} 0.414 {\pm} 0.020 \\ 0.557 {\pm} 0.065 \\ 0.474 {\pm} 0.048 \end{array}$                               | $\substack{1.179 \pm 0.033 \\ 1.292 \pm 0.108 \\ 1.525 \pm 0.029}$                                                       | $\begin{array}{c} 0.397 {\pm} 0.008 \\ 0.439 {\pm} 0.021 \\ 0.488 {\pm} 0.007 \end{array}$                               | $\begin{array}{c} 1.042 {\pm} 0.006 \\ 1.315 {\pm} 0.015 \\ 1.241 {\pm} 0.012 \end{array}$                               |  |  |
| U-Net* [39]<br>cGAN(U-Net*) [29]<br>bcGAN(U-Net*)                                             | $\begin{array}{c} 0.724 {\pm} 0.001 \\ 0.602 {\pm} 0.009 \\ 0.721 {\pm} 0.012 \end{array}$                               | $\begin{array}{c} 3.306 {\pm} 0.266 \\ 1.028 {\pm} 0.001 \\ 1.134 {\pm} 0.055 \end{array}$                               | $\begin{array}{c} 0.524 {\pm} 0.005 \\ 0.532 {\pm} 0.011 \\ 0.552 {\pm} 0.007 \end{array}$                               | $\substack{1.232 \pm 0.016 \\ 1.286 \pm 0.022 \\ 1.104 \pm 0.054}$                                                       |  |  |
| ResNet [40]<br>cGAN(ResNet)<br>bcGAN(ResNet)<br>bcGAN(ResNet)+EL (full version of our router) | $\begin{array}{c} 0.783 {\pm} 0.002 \\ 0.698 {\pm} 0.010 \\ 0.804 {\pm} 0.021 \\ \textbf{0.814} {\pm} 0.001 \end{array}$ | $\begin{array}{c} 1.023 {\pm} 0.003 \\ 1.073 {\pm} 0.011 \\ 1.035 {\pm} 0.013 \\ \textbf{1.010} {\pm} 0.000 \end{array}$ | $\begin{array}{c} 0.594 {\pm} 0.004 \\ 0.568 {\pm} 0.020 \\ \textbf{0.738} {\pm} 0.005 \\ 0.735 {\pm} 0.010 \end{array}$ | $\begin{array}{c} 1.030 {\pm} 0.007 \\ 1.320 {\pm} 0.151 \\ 1.036 {\pm} 0.002 \\ \textbf{1.018} {\pm} 0.004 \end{array}$ |  |  |





**Our Mixed-size Placer** 

# 2. Recent Work

# 3. Summary and Outlook

## **Some Thoughts on Typical Paradigms**



# Thanks and Q&A

### Awesome Machine Learning for Combinatorial Optimization Resources

We would like to maintain a list of resources that utilize machine learning technologies to solve combinatorial optimization problems.

We mark work contributed by Thinklab with the .

Maintained by members in SJTU-Thinklab: Chang Liu, Runzhong Wang, Jiayi Zhang, Zelin Zhao, Haoyu Geng, Tianzhe Wang, Wenxuan Guo, Wenjie Wu and Junchi Yan. We also thank all contributers from the community!

We are looking for post-docs interested in machine learning especially for learning combinatorial solvers, dynamic graphs, and reinforcement learning. Please send your up-to-date resume via yanjunchi AT sjtu.edu.cn.

#### https://github.com/Thinklab-SJTU/awesome-ml4co