
Machine Learning for Solvi
ng Combinatorial Problems:

Some Empirical Studies

Junchi Yan

yanjunchi@sjtu.edu.cn

Department of Computer Science

and Engineering, SJTU

November 26th, 2022

Acknowledgement of Major Collaborative Students

Runzhong Wang

PhD

Class of 2019

Chang Liu

PhD

Class of 2020

Qibing Ren

MS

Class of 2020

Han Lu

PhD

Class of 2021

https://thinklab.sjtu.edu.cn/

https://github.com/Thinklab-SJTU/

Ruoyu Cheng

MS

Class of 2021

1. Background of Research

2. Recent Work

3. Summary and Outlook

Background of Research

Graph Construction
and Optimization

PCB PlacementHalf-century researches

on classical graph

matching problem

50 years
of

research
on a

single
graph
theory

problem

TSP

GCP

MFP

MCP Robert Bixby
Prof. at Rice

Jerome Chailloux
Asst. Prof. at IP Paris

Erling Andersen
Asst. Prof. at SDU

More
graph
theory

problem
challenges

in real-
world

scenarios

50 years of research on a single graph
theory problem

Discrete/Unconstrained

Discrete/Constrained

Continuous/Unconstrained

Continuous/Constrained

(Deep)Neural Network

Logistic Regression

PCA

Graph Theory and CO
Clustering

Graph Cut

Path Planning

Matching

…

Background of Research

Decision Trees

Gaussian Mixed Model

Support Vector Machine

Naïve Bayes

Probabilistic Topic Models

Continuous Discrete

Unconstrained

Constrained

Matrix/

Sequence

Graph

Structure

Perceptual

Problems

Graph Theory

Problems

Continuous

Unconstrained

Discrete

Constrained

Background of Research

Problem

Setting

Data

Form

General NN CO Models
Methodology

Innovation

Background of Research

 CVPR’22 Best Paper: Learning to Solve Hard Minimal Problems

 EJOR’21 A Survey by Prof. Bengio: Machine Learning for CO

 NSF makes $20 million investment in Optimization-focused AI

Research Institute

Open Scenarios

Velocity

Volume

Variety

Veracity

Classical
Comfort Zone

Relative
Stability

Moderate
Size

Classical
Problem

Machine
Learning

Classical
Solvers

Large
Size

Rapid
Change

Multiple
Forms

More
Uncertainty

Exact
Certainty

1. Background of Research

2. Recent Work

3. Summary and Outlook

1) Graph Matching

2) Generality

3) Robustness

4) Graph Application

Classical Solution to Graph Matching Problem

• NP-hard GM Problem:

• Classical GM Pipeline:

SIFT feature
extractor

compute
node, edge
similarity

classical
algorithm

approximate
solution

matching
result

Fixed method,
e.g. Gaussian
Kernel Function

(limited representation
capability of SIFT)

(limited capacity due
to fixed similarity) (limited performance of

classical algorithm)

Learning GM by Graph Embedding Model ICCV19/TPAMI20

• Classical GM Pipeline:

SIFT feature
extractor

compute
node, edge
similarity

classical
algorithm

approximate
solution

matching
result

• Deep Graph Embedding GM Pipeline:

CNN
feature

extractor

intra-+cross-
graph GNN
embedding

Sinkhorn
algorithm

matching
result

learn node
similarity

(robust to noise)

relu5_1

relu4_2

(embedding graph to node features,
complexity reduced)

(learning
weighted
similarity) (differentiable exact

solution)

[1] Combinatorial Learning of Robust Deep Graph Matching: an Embedding based Approach, TPAMI 2020
[2] Learning Combinatorial Embedding Networks for Deep Graph Matching, ICCV 2019

GitHub repo
QR code

(limited representation
capability of SIFT)

(limited capacity due
to fixed similarity)

(limited performance of
classical algorithm)

• Sinkhorn: differentiable, exact linear assignment algorithm

• How to invoke: pip install pygmtools
(already support numpy, pytorch, paddle, jittor; will support

tensorflow, mindspore)
>>> import torch

>>> import pygmtools as pygm

>>> pygm.BACKEND = 'pytorch’

>>> np.random.seed(0) # 2-dimensional (non-batched) input

>>> s_2d = torch.from_numpy(np.random.rand(5, 5))

>>> s_2d tensor([[0.5488, 0.7152, 0.6028, 0.5449, 0.4237],

[0.6459, 0.4376, 0.8918, 0.9637, 0.3834],

[0.7917, 0.5289, 0.5680, 0.9256, 0.0710],

[0.0871, 0.0202, 0.8326, 0.7782, 0.8700],

[0.9786, 0.7992, 0.4615, 0.7805, 0.1183]])

>>> x = pygm.sinkhorn(s_2d)

>>> x tensor([[0.1888, 0.2499, 0.1920, 0.1603, 0.2089],

[0.1895, 0.1724, 0.2335, 0.2219, 0.1827],

[0.2371, 0.2043, 0.1827, 0.2311, 0.1447],

[0.1173, 0.1230, 0.2382, 0.1996, 0.3219],

[0.2673, 0.2504, 0.1536, 0.1869, 0.1418]])

>>> print('row_sum:', x.sum(1), 'col_sum:', x.sum(0))

row_sum: tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.0000])

col_sum: tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.0000])

Learning GM by Graph Embedding Model ICCV19/TPAMI20

• Permutation Loss: The matching problem can be considered as
a binary classification problem for each element

𝐿𝑝𝑒𝑟𝑚 =
1

𝑁

𝑖𝑗

𝑆𝑖𝑗
𝑔𝑡
log 𝑆𝑖𝑗 + 1 − 𝑆𝑖𝑗

𝑔𝑡
log 1 − 𝑆𝑖𝑗

• Compared with the regression
based offset loss used in the
past, the permutation loss
better portrays the combina-
torial optimization nature of
graph matching

Learning GM by Graph Embedding Model ICCV19/TPAMI20

Model CNN GM Formulation Loss Func Matching Acc

GMN VGG16 Classical GM（Zanfir et al.
CVPR 2018）

Offs Loss 55.3

GMN-PL VGG16 Classical GM（Zanfir et al.
CVPR 2018）

Perm Loss 57.9

PIA-GM-OL VGG16 Intra-graph GNN Offs Loss 61.6

PIA-GM VGG16 Intra-graph GNN Perm Loss 63.0

PCA-GM VGG16 Intra-+Cross-graph GNN Perm Loss 63.8

• Matching results on PascalVOC:
Permutation Loss>Offset Loss，Intra-+Cross-graph GNN>Intra-graph GNN>Classical GM

• The model has the capability to transfer across categories:

Learning GM by Graph Embedding Model ICCV19/TPAMI20

Improvement on Graph Embedding and Loss Function ICLR20

• Improve Graph Embed-
ding Module: Simulate
multi-head attention, pr-
opose a Channel Indep-
endent Embedding (CIE)
method

• Experiment: Under control
variates, CIE outperforms
other GNN structures

Learning deep graph matching with channel-independent embedding and Hungarian attention, ICLR 2020

Split over

channels

Node
Embedding

N x C

Edge
Embedding
N x N x C

Split over

channels

(N x N) x C

(N) x C

x x C

New Node Embedding
N x C

Edge embedding as
channel-wise adjacency
matrices

• Improve Loss Fun-

ction：Permutation

loss requires the out-

put to be 0/1, which

may cause overfitting

• Propose Hungarian

Attention, focusing

on inconsistent ma-

tches after Hungarian

Training Acc Test Acc

Perm. Loss 88.2 63.8

Hung. Attn 78.7 68.9

• Experimental results:
mitigating overfitting
and improving test
set performance

Improvement on Graph Embedding and Loss Function ICLR20

1c

2a

1b

2c

1a

2b

3a

3b

3c K1a,2b

• GM is equivalent to node classification on an association graph:

Association Graph Graph Matching Problem

• Node 1 matches node a 1a=1 on association graph

• Therefore, GM solvers==node classifier on association graph

• Naturally, GNN that excel in node classification can serve as
graph matching solvers!

Learning GM Solvers TPAMI22

Compute

leading N

eigenvectors

(N=3)

Extend to Multi-graph Matching👉
Adopt permutation synchronization technique

Pachauriy et al., Solving the multi-way matching problem by permutation synchronization, in NIPS 2013

Extend to Hyper Graph Matching👇

Neural Graph
Matching

(NGM) GM

Neural Hyper
Graph Matching
(NHGM) HGM

1/2 order features high-order features

association graph association hypergraph

update features along edges update features along hyperedges

matching acc 80.1 matching acc 80.7

MGM Test Dataset Matching Acc

NGMv2 (2GM) 97.5

NHGMv2 (HGM) 97.8

NMGMv2 (MGM) 98.2

1

2

a

b
c

1c

2a

1b

2c

K1a,2b

K1a,1a

K2b,2b

1a

2b 3

3a

3b

3c

e e

1c

2a

1b

2c

1a

2b

3a
3b

3cH1a,2b,3c

(a) association graph (b) graph matching (c) association hypergraph

Learning GM Solvers TPAMI22

QAP
𝑚𝑎𝑥
x

x K x𝑇 GNN Node
Classifier

Double
Stochastic
Iteration

Solu-
tion

Quadratic Assignment Problem (QAP) Test Dataset: https://www.opt.math.tugraz.at/qaplib/

Assoc Graph
Construction

54

56

58

60

62

64

66

68

0.01 0.1 1 10 100 1000

sc
o

re

x
1

0
0

0
0

0

time (sec. log scale) bur26a in QAPLIB

Compared with SOTA
Sinkhorn-base algorithm
SIAM J. Imaging Sci. 2019

Annealing
Algorithm
ECCV10Learning

Algorithm
CVPR18 Best
Paper
Honorable
Mentions

Compared with Gurobi

Proposed Learning Algorithm
TPAMI22

GPU
Computing

CPU
Computing

1631x acceleration!

431x acceleration!

Intel(R) Xeon(R) W-
3175X CPU @ 3.10GHz

NVIDIA RTX8000
(48G)

Running Time(log scale) Dataset:

Neural Graph Matching Network: Learning Lawler’s Quadratic Assignment Problem with Extensions to Hypergraph
and Multi-graph matching, TPAMI 2021

Lo
ss

 F
u

n
c

(l
o

w
e
r

is
 b

e
tt

e
r)

Learning GM Solvers TPAMI21

(Leordeanu & Hebert, 2005)

node-node similarity

+
edge-edge similarity

NP-hard

𝐊

𝐊

Generally referred to as
Lawler’s Quadratic Assignment Problem
(Lawler’s QAP)

Self-supervised Learning of Visual Graph Matching, ECCV 2022

Code available at “https://github.com/Thinklab-SJTU/ThinkMatch-SCGM”

GitHub repo
QR code

Self-Supervised Learning for GM ECCV22

• Rolínek, Michal, et al. "Deep graph matching via blackbox differentiation of combinatorial solvers." ECCV. Springer, Cham, 2020.

Lawler's QAP

CNN

images feature extractor affinity matrix association graph embeddings matching

Optional

Sinkhorn

Lawler's QAP

CNN

images feature extractor affinity matrix association graph embeddings matching

Optional

Sinkhorn

GNN

Label Prediction

Loss
Existing Deep GM Models:

Require ground truth node
correspondence as labels
for supervised learning

Self-Supervised Learning for GM ECCV22

• Self-supervised Learning for Graph Matching (SCGM)

• Two-stage Data Augmentation

• Contrastive Learning on Node Layers

Self-Supervised Learning for GM ECCV22

Graph Edit Distance(GED):

Classical A* Algorithm——𝒈(𝒑) and 𝒉 𝒑 :

Solving Graph Edit Distance and Edit Path CVPR21

Combinatorial Learning of Graph Edit Distance via Dynamic Embedding, CVPR 2021

𝓖𝟐

GED(𝓖𝟏, 𝓖𝟐) = 3

edge deletion

cost=1

𝓖𝟏
edge deletion

cost=1 cost=1

node deletion

𝒈(𝒑)

𝒉(𝒑)

cost of matched parts (exact value)

cost of unmatched parts (predicted value)

GitHub repo
QR code

select solution
from priority

queue

acquire
partial

solution

update partial
solution and
add to queue

unmatched
parts in
graph 1

unmatched
part in
graph 2

G
N

N

A
tte

n
tio

n

similarity
prediction
network

predict
𝒉(𝒑)

matched
parts in
graph 1

matched
part in
graph 2

graph 1

graph 2

output
complete
solution

Yes

No
input

exactly
compute

𝒈(𝒑)

Integratable ML Module

Classical A* Algorithm

Combinatorial Learning of Graph Edit Distance via Dynamic Embedding, CVPR 2021

Solving Graph Edit Distance and Edit Path CVPR21

complete
solution?

Combinatorial Learning of Graph Edit Distance via Dynamic Embedding, CVPR 2021

The integratable algorithm preserves the high accuracy of classical solvers

Achieve high efficiency with machine learning algorithm

Classical Algorithm vs Integratable Algorithm: Size of Search Trees

Accuracy Metrics for GED on 3 Real-world Datasets

Solving Graph Edit Distance and Edit Path CVPR21

Solving Combinatorial Optimization over Graphs by a
General Bi-level ML Framework NeurIPS21

A Bi-level Framework for Learning to Solve Combinatorial Optimization over Graphs, NeurIPS 2021

Decision Variable Objective Function
Constraints

Action Sequence Reward Action Feasible Domain

For CO problems over graphs, current formulation is

Existing papers use
reinforcement learning
modeling :

However • Larger scale，longer action sequence Sparse reward, hard to converge
• Assume adequate model capacity to learn NP-hard problem，

hard to devise model

Adding cutting planes for integer programming

Resort to the classic idea: Modifying the original problem to aid problem solving

This paper:
Modifying
graph
structure

Add edges

GitHub repo
QR code

Upper-level: Adopt a reinforcement learning agent to adaptively modify the graphs

Lower-level: Optimize decision variables by heuristics

Propose a Bi-level Optimization Formulation:

Bi-level Framework: When the upper-level RL modifies graph structure, the lower-
level heuristic is invoked

Upper-level Optimizer: RL action network(trained by PPO)

Lower-level Optimizer：Heuristic algorithms

Solving Combinatorial Optimization over Graphs by a
General Bi-level ML Framework NeurIPS21

✔ ❌

A General Framework for Different Graph Theory Problems

(a) DAG Scheduling (b) GED Problem (c) Hamiltonian Cycle

DAG Sche Time
TPC-H Dataset

Custo-
mized

Gen-
eral

Improv-
ements

50 DAGs 9821 8906 9.3%

100 DAGs 16914 15193 10.2%

150 DAGs 24429 22371 8.4%

Custo-

mized

Gen-
eral

500-600

nodes
20 25 25%

GED
AIDS Dataset

Custo-
mized

Gen-
eral

Improv-
ements

20-30 nodes 37.4 29.1 22.2%

30-50 nodes 70.4 61.1 13.2%

50+ nodes 101.9 77 24.4%

Solving Combinatorial Optimization over Graphs by a
General Bi-level ML Framework NeurIPS21

Improv-
ements

Hamiltonian
Cycle Accuracy
FHCP Dataset

keypoints
feature

extractor

Multi-graph with keypoints Similarity between multi-graphs

VGG16 with
SplineConv

multi-graph
construction

Delaunay
Triangulation

GM
solver

GNN or Blackbox
Solvers

◼ Research Problem: Robust Decision for Deep Visual GM in Adversarial Attack Contexts

◼ Deep Visual GM Pipeline (Wang, TPAMI 2021, Rolinek, ECCV 2020):

◼ Challenge 1: Existing adversarial attack algorithms for graph structures are not feasible for MGM

• Adding or deleting nodes will degrade matching accuracy
• Adding or deleting edges will be reverted in multi-graph construction

◼ Challenge 2: Existing adversarial defense algorithms on a single graph are not feasible
for MGM

• Learn discriminative features between nodes on a single graph
• Learn correspondences between multiple graphs for MGM

GitHub repo
QR code

Github Code: https://github.com/Thinklab-SJTU/robustMatch

Appearance and Structure Aware Robust Deep Visual
Graph Matching CVPR22

Appearance and structure aware robust deep visual graph matching: Attack, defense and beyond, CVPR 2022

◼ Attack Strategy: Locality attack by perturbing keypoint localities and pixel attack by
perturbing image pixel values
• Bi-level Constrained Optimization Problem:

 𝑐, 𝑧 refers to keypoint localities, features, respectively
 𝜖𝑐 , 𝜖𝑧 refers to perturbation budget, unavailable to attack

• Impact of Keypoint Locality Attack on Models:
 Influence the extraction of keypoint features in the graph
 Determine the connectivity between keypoints (edge addition or

deletion)

Cat: 9 / 11 Cat: 2 / 11locality attack (epsilon= 8)

Pixel attack (epsilon= 8/255)

Attack Direction
Newly Added Edges
Deleted Edges

Multi-graph Pixel Attack

Multi-graph Locality Attack
Matched: 9/11 Matched: 2/11

Before Attack After Attack

max
c′,z′

max
G′

L(f(c′, z′, G′), y)

𝑠. 𝑡. d∞ 𝑐′, 𝑐 ≤ 𝜖𝑐 , d∞ 𝑧′, 𝑧 ≤ 𝜖𝑧

Appearance and Structure Aware Robust Deep Visual
Graph Matching CVPR22

◼ Defense Strategy: Vulnerability of appearance-similar keypoints in embedding
space and explicit constraints
• Appearance-similar keypoints are vulnerable to attack

 Similar shape, similar texture, symmetrical structure

• Actively attack to discover appearance-similar keypoints during training
and expand their distances in embedding space

• Combined with adversarial training, the adversarial samples generated by the attack are
received as input to further improve the robustness

Cat: 9 / 11 Cat: 2 / 11locality attack (epsilon= 4)

Pixel attack (epsilon= 8/255)

Cat: 9 / 11 Cat: 2 / 11locality attack (epsilon= 4)

Pixel attack (epsilon= 8/255)
𝐺1 𝐺2

After attack

adversarial
samples

generation
deep GM module

predicted
matching

matrix

predicted
matching

matrix

ground
truth

ground
truth

Appearance
Aware Regularizer

Appearance
Aware Regularizer

Cross Entropy LossCross Entropy Loss

Appearance and Structure Aware Robust Deep Visual
Graph Matching CVPR22

Graph Matching Based Model Fusion ICML22

Input Model Alignment Model

fusion

Output Model

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning, ICML22

Code available at “https://github.com/Thinklab-SJTU/GAMF”

GitHub repo
QR code

1. Model Ensemble

– Prediction-based Model Ensemble: Need to maintain all individual models

– Fusion-based Model Ensemble: Need to maintain only one model

2. Federated Learning

– FL Pipeline：

– Efficiently aggregate local models by Model Fusion

• Li, Q., He, B., and Song, D. Model-contrastive federated learning. CVPR, 2021.

Client 1 Client N

Global Server

Graph Matching Based Model Fusion ICML22

1) Global server sends the global model to

each local client

2) Each client train the local model with their

own datasets

3) Local clients send the local model back to

global server

4) Global server gathers all local models and

merge them into a shared global model

Neural

Channel

Graph

Node

Edge

Similarity

To be

Matched
~ ~

Weight

Similarity

~

Challenge: Problem Scale

• Model Fusion: Large scale of common NN,

with up to 1024 channels each layer and a

total number of channels exceeding 10000

• Graph Matching：Less than 100 keypoints in

a graph in commonly used dataset, which

differs significantly from the requirements of

Model Fusion

Output layer
(fixed nodes)

Hidden layer 2
(matched nodes)

Hidden layer 1
(matched nodes)

Input layer
(fixed nodes)

Model 1 Model 2

Graph Matching Based Model Fusion ICML22

Structure of
Permutation Matrix 𝑃

1

2

3

4

5

6

7

6

9

6

A

B

C

D

E

F

G

H

I

J

Model 1

Model 2

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Graduated Assignment

• Select 3 adjacent layers

at a time

• Fix front and back layers

• Update the permutation

matrix of the middle layer

• Iterate until convergence

Graph Matching Based Model Fusion ICML22

Output layer
(fixed nodes)

Hidden layer 2
(matched nodes)

Hidden layer 1
(matched nodes)

Input layer
(fixed nodes)

Model 1 Model 2

Graph Optimization Problem of Placement and Routing

RL place
macros

DL place
standard cells

RL combined with
classical algorithm

route

reward
function

RL place
macros

reward
function

classical
algorithm place
standard cells

DeepPR
(NeurIPS21)

ISPD

2005
Dataset

8%↓

Explore solving Placement and Routing via Machine Learning, as an

alternative to classical algorithms

Cheng & Yan, On Joint Learning for Solving Placement and Routing in Chip Design, NeurIPS’21

On Joint Learning for Solving Placement and Routing in Chip Design, NeurIPS21

Background

Propose
a Cyclic

Placement
and

Routing
Model

wire-
length

Architecture of Generative Routing Model

▪ The generator is composed of a basic generator for the input size of 64

× 64 or below and an extension for the input size of larger than 64 ×

64. The discriminator consists of two sub-discriminators to estimate

routes from validity and realness.

Formulation of Mixed-size Placement

• The key elements of the Markov Decision Processes (MDPs) for mixed-
size placement are defined as follows:

• State s : the state representation consists of two part, global image I
portrayed the layout and netlist graph H which contains detailed
position of placed macros. The initial state 𝐼𝑥𝑦 = 1 if (x, y) has already
been occupied before placement

• Action a : position (𝑥𝑜, 𝑦𝑜) is available if all points p in the region R
satisfy 𝐼𝑝 = 0 , where 𝑅 = 𝑥, 𝑦 𝑥 − 𝑥𝑜 ≤

ℎ

2
, 𝑦 − 𝑦𝑜 ≤

𝑤

2
}.

• Reward r : to further control the overlap in the final placement, the
reward at the end of episode is a negative weighted sum of wirelength,
routing congestion and overlapping area: 𝑅𝐸 = −𝐿𝑤𝑙 − 𝜆1 ∗ 𝐿𝑐𝑔 −
𝜆2 ∗ 𝐿𝑜𝑙

Neural Macro Placement and Routing
Pipeline

▪ Combining the RL-based model for learning mixed-size macro

placement with one-shot generative routing network to

perform routing as we introduce above, we propose a pure

neural pipeline for macro placement and routing.

▪ Inspired by EM algorithm, we first update the generative router

using placement result from mixed-size agent (similar to E step),

then placement and net order agents are learned jointly in a

whole reinforcement learning framework to minimize

wirelength calculated by trained generative model

(corresponding to M step)

Graph Optimization Problem of Placement and Routing

The Policy-gradient Placement and Generative Routing Neural Networks
for Chip Design, NeurIPS21

Results on Mixed-size Placement

▪ With only a slight increase of the total wirelength (within 1.3%

difference on average), our mixed-size macro placer achieves

approximately 4× reduction over DeepPlace on the overlapping area,

stressing the importance of modeling macro’s shape in state space.

Results on Routing
▪ We compare the full version with ResNet-based cGAN, as well

as the pure ResNet generator. The ResNet generator outdoes

the cGAN, but the bi-discriminator significantly improves the

generator. Moreover, the enhanced loss improves the

wirelength at the marginal expense of correctness.

Results on Overall Placement and Routing

▪ We compare our PRNet with DeepPlace, along with an ablation

study to verify the impact of net order learning. For all test cases,

our neural placement and routing pipeline outperforms the other

two methods in terms of both wirelength (WL) and routing

congestion (RC). The significant difference in routing congestion

without net order learning indicates that net order agent is able

to arrange the sequence of routing efficiently.

DeepPlace Our Mixed-size Placer

Graph Optimization Problem of Placement and Routing

The Policy-gradient Placement and Generative Routing Neural Networks
for Chip Design, NeurIPS21

1. Background of Research

2. Recent Work

3. Summary and Outlook

Some Thoughts on Typical Paradigms

Paradigm1:
Differentiable
learning to
improve overall
front- and back-
end agility

Paradigm2:
Multi-task
distributed self-
supervised
learning to
improve
generalizability

FuseEnd-to-end,
Differentiable

Hard
Example
Mining

Output
Solver

Front-end
Perception

Machine
Learning

Perception
Results

Machine
Learning

Back-end
Decision

Classical
Algorithm

Input
Solver

Generator
Optimization

Solver
Optimization

https://github.com/Thinklab-SJTU/awesome-ml4co

Thanks and Q&A

