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Abstract

Recently, self-supervised learning (SSL) has demonstrated
strong performance in speaker recognition, even if the pre-
training objective is designed for speech recognition. In this
paper, we study which factor leads to the success of self-
supervised learning on speaker-related tasks, e.g. speaker verifi-
cation (SV), through a series of carefully designed experiments.
Our empirical results on the Voxceleb-1 dataset suggest that the
benefit of SSL to SV task is from a combination of mask speech
prediction loss, data scale, and model size, while the SSL quan-
tizer has a minor impact. We further employ the integrated
gradients attribution method and loss landscape visualization
to understand the effectiveness of self-supervised learning for
speaker recognition performance.
Index Terms: Self-Supervised Learning, Speaker Recognition,
Speaker Verification

1. Introduction
Recently, self-supervised learning (SSL) has achieved the state-
of-the-art results on a diverse array of downstream speech tasks
[1, 2, 3, 4, 5, 6, 7]. Typical SSL methods either discrim-
inate the correlated positive samples from the negative ones
(e.g. wav2vec 2.0) [1], or predict discrete pseudo-labels on the
masked regions (e.g. HuBERT) [2]. Both methods try to implic-
itly learn short-time phonetic information from a huge amount
of unlabeled speech, and mainly target at self-supervised learn-
ing for automatic speech recognition task (SSL4ASR).

Due to the high correlation with phoneme units, it is
straightforward to understand that SSL4ASR has the potential
to drastically improve the speech recognition task. Interest-
ingly, SSL4ASR also achieves state-of-the-art performance on
the speaker-related tasks, e.g. speaker verification (SV). For in-
stance, WavLM [6] and BigSSL [3] show the best performance
on different partitions of VoxCeleb1 dataset [8], and the ensem-
ble of WavLM model and Res2Net [9, 10] ranks at the top po-
sition on VoxSRC 2021 speaker verification permanent leader-
board1 with the team name Strasbourg-Spk.

In this work, our goal is to understand which factor leads
to the success of SSL4ASR in speaker recognition. Specifically,
we try to answer the following questions:

1. Can supervised ASR model benefit the SV task?

2. How does SSL benefit the SV task?

3. What is the best SSL setup for the SV task?

1https://competitions.codalab.org/competitions/34066#results.

Figure 1: Self-supervised learning for speaker verification task.

To this end, we carefully design and conduct a series of exper-
iments to investigate what is the indispensable part of SSL. We
also perform Integrated Gradients attribution analysis and loss
landscape visualization to further understand the contribution of
SSL to SV performance.

The main finding is three-fold as follows. First, SSL4ASR
models have significantly better transferability than supervised
ASR models in an apple-to-apple comparison, indicating the
SSL objective function is a key ingredient for achieving ex-
cellent transferability. Second, the HuBERT style loss, mask
speech prediction, is slightly better than other SSL losses, such
as contrastive learning and Mean Squared Error (MSE) loss,
while how to generate pseudo-labels has minor impacts on the
performance of HuBERT style models. Even pre-training with
simple clustering methods on raw inputs could provide good
performance on the SV task. Data augmentation proposed in
WavLM [6] is very helpful, even if the pre-train data is scaled
up to 94k hours. In addition, data scale and model scale have
a strong correlation to model transferability. Third, our anal-
ysis shows that SSL models only learn speaker related knowl-
edge with shallow layers in pre-training stage, while fine-tuning
stage could unleash the full capability of the model. We ob-
serve that an SSL model could provide a wider optima in fine-
tuning, which enables better resistance against small perturba-
tion, stronger generalization capability, and easier SV model
optimization.

2. Background
Self-supervised learning (SSL) has been shown to be an ef-
fective means of improving state-of-the-art results on SV task
[5, 11, 6]. A common practice is: We first optimize the pre-train
model with SSL objective on the large-scale unsupervised data,
then fine-tune the pre-trained model along with a downstream
SV model on the annotated dataset.

The typical SSL objectives are designed for automatic
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speech recognition task (SSL4ASR) by implicitly learning
short-time phonetic information from unlabeled speech [1, 2].
Specifically, given a raw audioX , a latent representation H0 =
{h0

t}Tt=1 is obtained by a CNN feature extractor, where T is the
number of frames. Then the representation is fed to an L layer
Transformer model, yielding hidden states Hl = {hlt}Tt=1,
where l denotes the l-th layer in the encoder. During pre-
training, we employ the masked-based self-supervised learn-
ing methods to optimize the Transformer-based model. Be-
fore feeding the latent representation to the Transformer model,
SSL methods first mask a proportion of them in some random
frames, then minimize a variety of self-supervised objective
functions based on the last layer hidden states output HL in
the masked regions.

During fine-tuning, we weighted average the hidden states
of each layer to generate the output representation O = {ot =∑L
l=0 wl · h

l
t}Tt=1, where wl is a learnable weight for the hid-

den state of the l-th layer. Then we employ ECAPA-TDNN [12]
as the downstream SV model following [11], and feed the out-
put representation into the downstream model to generate the
speaker embedding e = ECAPA-TDNN(o1, ...,oT ). We use
the additive angular margin (AAM) loss [13] as the supervised
objective function, and train the downstream SV model along
with the pre-trained model for two stages. In the first stage,
we optimize the parameters of the downstream model with the
pretrained parameters fixed. In the second stage, we continue to
optimize the parameters of the downstream model as well as the
pre-trained model. In addition, we can also apply large-margin
fine-tuning strategy and score calibration to further improve the
speaker verification performance [14].

3. Why does SSL4ASR Benefit the SV task?
3.1. Can supervised ASR model benefit the SV task?

Given the similar modeling unit between SSL4ASR and super-
vised ASR models, it is a natural question whether the super-
vised ASR model can also benefit speaker verification task. To
verify this hypothesis, we compare the transferability of super-
vised ASR and SSL4ASR, both of which are trained on Lib-
riSpeech 960h [15] and use the Transformer structure of Hu-
BERT [2].

The ASR model is trained with the Connectionist Tem-
poral Classification (CTC) loss function [16] in a supervised
way. We use the character sequence as the target golden la-
bels, and require the ASR model to predict the golden label
Y golden given the hidden states of the last encoder layer HL:
LCTC = − log pCTC(Y

golden|HL). Spec-augmentation is also
applied following [17].

HuBERT, based on masked pseudo-label prediction loss, is
selected as the SSL4ASR model for the comparison [2]. The
pseudo labels are generated by iterative clustering. At the first
iteration, we conduct an offline clustering step on the MFCC
feature of the input audio, where the clustering center of each
frame is indexed as the pseudo label. Then we use the hid-
den states HL = {hLt }Tt=1 to predict the embeddings E =
{eyt}Tt=1 corresponding to the pseudo labels Y = {yt}Tt=1

with the cross-entropy loss function in the masked regions M :

LHuBERT =
∑
t∈M

− log
exp(sim(hLt W, eyt)/τ)∑K
ŷ=1 exp(sim(hLt W, eŷ)/τ)

,

where W is the projection matrix, sim(·, ·) denote the cosine
similarity function, τ is a pre-defined hyperparameter, and K
is the number of clusters. Starting from the second iteration,

Table 1: Transferability of supervised ASR and SSL4ASR

Model EER (%)
Vox1-O Vox1-E Vox1-H

FBank [12] 1.01 1.24 2.32
Random 3.696 3.71 6.034
CTC 1.159 1.256 2.434
HuBERT 0.84 0.879 1.726

Table 2: SSL with different objective functions

Model EER (%)
Vox1-O Vox1-E Vox1-H

MSE 0.979 1.075 1.98
wav2vec 2.0 0.973 0.933 1.831
HuBERT 0.84 0.879 1.726

we perform the offline clustering step with the hidden states ex-
tracted from the last iteration pretrained HuBERT model, and
then train a new HuBERT model with the pseudo labels ob-
tained by the new clustering centers.

We also use a random initialized Transformer model as a
baseline to get rid of the effect of the additional parameters in-
troduced by the pre-trained model and focus on the performance
of different pre-training methods.

Table 1 shows SSL4ASR model can provide a better repre-
sentation than the handcrafted FBank feature, while the repre-
sentations from the ASR model with CTC loss and the random
initialized Transformer model are inferior to the FBank feature.
It indicates that the key to the success of SSL4ASR on SV task
is neither the Transformer structure nor the fine-tuning pipeline,
but the self-supervised learning procedure.

3.2. What is the best SSL objective for the SV task?

Besides HuBERT, which is based on masked pseudo-label pre-
diction loss, we also evaluate the transferability of wav2vec
2.0 [1] and Mean Squared Error (MSE) loss based pre-training
method. It should be noted that all the three methods use the
same mask setting proposed in HuBERT.

MSE firstly calculates the FBank feature F = {ft}Tt=1 of
the raw audio, then measures the mean square error between
the FBank feature and the linear projection of last layer hidden
states output HL = {hLt }Tt=1 in the masked regions M as the
objective function: LMSE =

∑
t∈M ||ft − htW||2.

Wav2vec 2.0 firstly discretizes the latent representation h0
t

of each masked timestep t to the quantized latent representa-
tion qt, then uses the context representation hLt to identify the
true quantized latent representation qt out of a set of candidate
representations q̂ ∈ Qt with contrastive loss function:

Lwav2vec 2.0 =
∑
t∈M

− log
exp(sim(hLt W,qt)/τ)∑

q̂∈Qt
exp(sim(hLt W, q̂)/τ)

.

Table 2 demonstrates that all the three SSL methods can
provide better representation than the FBank feature, which is
attributed to the contextual speech representation learning from
the masked speech. HuBERT achieves the best performance,
indicating the better generalization and effectiveness of pseudo-
label prediction loss than contrastive loss and MSE loss.

3.3. What is the best SSL quantizer for the SV task?

Since HuBERT style loss is better than others, we explore the
performance of different pseudo-label creation methods (quan-
tizers) for HuBERT loss. Besides the MFCC Clustering and
Hidden State Clustering introduced by HuBERT, we also ex-



Table 3: HuBERT style loss with different quantizers.

Model EER (%)
Vox1-O Vox1-E Vox1-H

MFCC Clustering 0.872 0.917 1.766
Hidden State Clustering 0.840 0.879 1.726
Random Projection (500 codes) 0.899 0.95 1.775
Random Projection (8192 codes) 0.883 0.903 1.675
VQ-VAE 0.824 0.899 1.655
Phoneme 0.867 0.918 1.776

periment with the labels obtained by Random Projection [18],
VQ-VAE quantizers [19], and frame-phoneme alignment.

With random projection quantizer, we first extract the
FBank features F = {ft}Tt=1 of the input audio, project ft to
the vector Aft with a random initialized matrix A, and then
find the closest vector from a set of random initialized vectors
V = {vi}Ki=1, where K is the vector (code) numbers. The
pseudo label of t-th frame is defined as the index of the closest
vector: yt = argmini ||vi −Aft||.

With VQ-VAE quantizer, we first extract the FBank fea-
tures F = {ft}Tt=1 of the input audio, and train a VQ-VAE
model [19] to reconstruct the FBank feature on LibriSpeech
960h [15]. Given the latent variable Z = {zt}Tt=1 obtained
by a 6-layer Transformer-based encoder, we discretize it with
the closest vector {ẑt = argminvi

||vi − zt||}Tt=1 in a latent
embedding space V = {vi}Ki=1, where K is the embedding
numbers, and then reconstruct the features zq(F) with a 6-layer
Transformer-based decoder. The training loss of VQ-VAE is to
minimize the mean squared error between the reconstructed fea-
tures and the input features, along with the difference between
the encoded variable and the discrete variable:

LVQ-VAE = ||zq(F)−F||2 + ||sg[Z]− Ẑ||2 + β||Z− sg[Ẑ]||2,

where sg[·] is the stopgradient operator and β is a pre-defined
hyperparameter. During inference, the pseudo label of t-th
frame is defined as the index of the discrete latent variables in
the latent embedding space: yt = argmini ||vi − zt||.

In addition, we also consider using the phoneme sequence
of the input audio as the pseudo label to see if ASR-related
pseudo label can benefit the SV performance. Here, we use
force-alignment tool [20] to get the frame-phoneme pairs on
LibriSpeech 960h data.

Table 3 shows that all the quantizers have similar perfor-
mance on the speaker verification task. Even when we use
the phone sequence as the pseudo label, which is irrelevant to
the speaker information, we can still obtain a well-performed
speaker verification model with the masked pseudo-label pre-
diction SSL method.

3.4. Large-Scale SSL on SV task

Moreover, we also leverage the data augmentation and scale-
up strategy to further strengthen the self-supervised learning
for speaker verification task. Following WavLM [6], we em-
ploy the masked speech denoising and prediction framework
as the data augmented self-supervised learning method to im-
prove pre-trained model robustness for complex acoustic en-
vironments and the preservation of speaker identity. We also
scale up unlabeled pre-training data to 94k hours of public au-
dios [6], including 60k hours of Libri-Light [21], 10k hours of
GigaSpeech [22], and 24k hours of VoxPopuli [23], and enlarge
the model to 24 layer Transformers with 316M parameters.

Table 4 shows that the data augmentation strategy used in
WavLM can successfully benefit the self-supervised learning

Table 4: Data and Model Scale Up. ∗ means using large margin
finetune and calibration

Model EER (%)
Vox1-O Vox1-E Vox1-H

HuBERT 960h 0.84 0.879 1.726
WavLM 960h 0.777 0.829 1.629
HuBERT 94kh 0.734 0.847 1.725
WavLM 94kh 0.739 0.742 1.483
WavLM 94kh Large 0.505 0.579 1.176
WavLM 94kh Large∗ 0.308 0.462 0.906

for SV task. The performance improvement would be more sig-
nificant if we scale up the pre-training data to 94kh. Thanks
to the larger parameter capacity, the WavLM Large model can
bring more than 20% EER reduction compared to the WavLM
Base model. With the large-margin fine-tuning strategy and
score calibration methods, the WavLM Large model can achieve
33.2%, 27.1%, and 8.8% relatively EER reduction compared to
the state-of-the-art supervised model (Vox1-O: 0.461, Vox1-E:
0.634, Vox1-H: 0.993) [24] on all the three VoxCeleb1 trial lists.

4. Discussion and Analysis
4.1. Contribution Attribution

We employ the Integrated Gradients (IG) attribution method
[25] to demonstrate how each layer of the pre-trained model
contributes to the final SV performance. Compared with
method in [5, 6], IG better models contribution estimation
as it consider not only the layer weight, but also the magni-
tude of each layer’s hidden states. Specifically, given a well-
trained downstream model F (·), the hidden states {Hi}Li=1 ex-
tracted from all layers, and the corresponding learned weights
{wi}Li=1, the attribution score of l-th layer hidden states is as-
signed as:

IG(Hl) =
∑
t,f

(
Hl ×

∫ 1

α=0

∂F (α(
∑L
i=0 wi ·H

i))

∂Hl
dα

)
,

where × denotes Hadamard product, and
∑
t,f (·) denotes the

summation over the time and feature dimensions. The larger at-
tribution score indicates the more importance of the correspond-
ing hidden states. The summation of the attribution scores of all
the hidden states indicates the final prediction of the SV model,
i.e.,

∑L
l=0 IG(Hl) = F (

∑L
l=0 wl · H

l) − F (0). Due to the
intractability, we approximate IG(·) with the gradients summa-
tion as:

IGapprox(Hl) =
∑
t,f

(
Hl × 1

K

K∑
k=0

∂F ( k
K
(
∑L
i=0 wi ·H

i))

∂Hl

)
,

where K is the number of approximation steps for computing
integrated gradients. We set K to 50 in our experiment.

Figure 2 shows the contribution attribution from each layer
of different pre-trained models. As for the first stage of fine-
tuning, where we train the downstream model with the pre-
trained parameters fixed, the contribution mostly comes from
the output of the CNN feature extractor and the first encoder
layer for all the pre-trained models. It indicates that only the
shallow layers of pre-trained models learn the speaker-related
information during the self-supervised learning procedure. If
the hidden states are extracted from the ASR model, which
is supervised trained with CTC loss, only the latent feature
extracted by CNN extractor contributes to the final predic-
tion. And if the hidden states are extracted from the SSL4ASR
model, such as wav2vec 2.0 and HuBERT, the contribution is
also dominated by the CNN extracted feature. In contrast, if



(a) Stage 1: we fix the pre-trained model and only
train the downstream model.

(b) Stage 2: we train both the pre-trained model
and the downstream model.

Figure 2: Contribution attributed to each layer of each pre-
trained model

we pre-train HuBERT with data augmentation or the phoneme-
independent quantizer, such as MFCC clustering or random
projection, there are more contributions from the hidden states
encoded by Transformer layers.

As for the second stage of fine-tuning, we update the pa-
rameters of the downstream model as well as the pre-trained pa-
rameters. Since we unleash the full capability of the pre-trained
model, the higher Transformer-based encoder layers can also
learn to model the speaker information with the SV training ob-
jective, and make more contribution to the final prediction than
in the first stage, leading to better speaker verification perfor-
mance .

4.2. Loss Landscape Visualization

To better understand how self-supervised learning benefits the
SV task, we visualize and compare the two-dimensional loss
landscapes along with the optimization trajectories of different
SV models. For better comparison of different input features,
we plot the parameters of the downstream models, and the op-
timization trajectories in the first fine-tuning stage where the
pre-trained parameters are kept frozen.

Following [26, 27], we first define the origin and two
axes of the loss surface as the random initialized downstream
model’s parameters and two directions in the parameter space,
respectively. Then, we uniformly sample multiple points around
the initialized parameters, and plot the training loss of the down-
stream model with the parameters of each sampled point and the
input feature from the pre-trained model.

Let θ0, θ1 denote the random initialized parameters and
well-trained parameters of the SV downstream model respec-
tively, we can define one of the axes as the optimization direc-
tion δ1 = θ1 − θ0. The other axis is set as a random direction
δ2 = θ2 − θ0, where θ2 is the randomly generated parameters.
Due to the high-dimensional parameter space, experimental re-
sults confirm that the two axes δ1 and δ2 are divergent and or-
thogonal to each other. Then, the 2-D loss surface can be plotted
with the function: f(α, β) = L(θ1 + αδ1 + βδ2) , where α, β
are scalar values and L is the loss function of the SV model
training. For better visualization, we scale the second direction

(a) FBank feature (b) RI-WavLM (c) WavLM

Figure 3: Visualization of the loss landscape and optimization
trajectories of SV model with different input features (FBank
feature, Random-Initialized WavLM feature, and WavLM fea-
ture ). The figure below is a top view of the figure above.

vector δ2 to the same norm as the first one δ1 by δ2 = ||δ1||
||δ2||

δ2,
where || · || is the Euclidean norm. We set the range of α and
β to [−2, 2], and uniformly sample 29 points for each axis.
In addition, we also project the optimization trajectory of the
SV downstream model onto the two-dimensional loss surface.
Specifically, for the parameters of the downstream model θi at
i-th training epoch, δi = θi − θ0 denotes the optimization di-
rection at the i-th epoch, we can calculate the cosine similarity
between the optimization direction δi and each of the projected
directions δ as cos(δi, δ) = δi·δ

||δi||||δ|| . Then, the correspond-

ing projected point (αi, βi) in the 2-D loss surface of θi can be
calculated as: αi = ||δi||

||δ1||
cos(δi, δ1) = δi·δ1

||δ1||2
, βi = δi·δ2

||δ2||2
.

Figure 3 shows the visualization of speaker verification
downstream model with different input features. Compared
with the FBank feature, we can find that the representation from
the Random-Initialized WavLM model can provide a wider op-
tima, which enables better resistance against some small per-
turbation, and leads to easier SV model optimization. How-
ever, without the self-supervised pretraining, the speaker ver-
ification model would stuck into a poor local minima with
worse speaker verification performance. With large-scale self-
supervised learning, the pretrained WavLM representation can
provide a better initial point with a much broader and deeper
optimum area. Even with some small disturbance, the WavLM
input feature enables the downstream model to converge to the
expected optimal region, and prevent it from skipping the opti-
mal region with a steep loss hill.

5. Conclusion

Our experimental results demonstrate that the self-supervised
learning procedure is the key to the success on SV task. Among
a variety of SSL methods, the masked pseudo-label predic-
tion loss can provide the representation with best generaliza-
tion capability on SV task, regardless of the pseudo-label cre-
ation methods. We also show that data augmentation and model
scale-up can further strengthen SSL for SV task. Moreover, our
analyses show that two-stage fine-tuning can make use of the
full capacity of SSL models, and that SSL models can facili-
tate the SV model optimization with a better initial point with a
broader and deeper optimum area.
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