
ARTICLE

Communication-efficient federated learning via
knowledge distillation
Chuhan Wu 1, Fangzhao Wu 2✉, Lingjuan Lyu 3, Yongfeng Huang 1✉ & Xing Xie 2

Federated learning is a privacy-preserving machine learning technique to train intelligent

models from decentralized data, which enables exploiting private data by communicating

local model updates in each iteration of model learning rather than the raw data. However,

model updates can be extremely large if they contain numerous parameters, and many

rounds of communication are needed for model training. The huge communication cost in

federated learning leads to heavy overheads on clients and high environmental burdens.

Here, we present a federated learning method named FedKD that is both communication-

efficient and effective, based on adaptive mutual knowledge distillation and dynamic gradient

compression techniques. FedKD is validated on three different scenarios that need privacy

protection, showing that it maximally can reduce 94.89% of communication cost and achieve

competitive results with centralized model learning. FedKD provides a potential to efficiently

deploy privacy-preserving intelligent systems in many scenarios, such as intelligent health-

care and personalization.

https://doi.org/10.1038/s41467-022-29763-x OPEN

1 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China. 2Microsoft Research Asia, Beijing 100080, China. 3 Sony AI, 1-7-1 Konan
Minato-ku, Tokyo 108-0075, Japan. ✉email: fangzwu@microsoft.com; yfhuang@tsinghua.edu.cn

NATURE COMMUNICATIONS | (2022) 13:2032 | https://doi.org/10.1038/s41467-022-29763-x | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29763-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29763-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29763-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29763-x&domain=pdf
http://orcid.org/0000-0001-5730-8792
http://orcid.org/0000-0001-5730-8792
http://orcid.org/0000-0001-5730-8792
http://orcid.org/0000-0001-5730-8792
http://orcid.org/0000-0001-5730-8792
http://orcid.org/0000-0001-9138-1272
http://orcid.org/0000-0001-9138-1272
http://orcid.org/0000-0001-9138-1272
http://orcid.org/0000-0001-9138-1272
http://orcid.org/0000-0001-9138-1272
http://orcid.org/0000-0003-3170-4994
http://orcid.org/0000-0003-3170-4994
http://orcid.org/0000-0003-3170-4994
http://orcid.org/0000-0003-3170-4994
http://orcid.org/0000-0003-3170-4994
http://orcid.org/0000-0003-3825-2230
http://orcid.org/0000-0003-3825-2230
http://orcid.org/0000-0003-3825-2230
http://orcid.org/0000-0003-3825-2230
http://orcid.org/0000-0003-3825-2230
http://orcid.org/0000-0002-8608-8482
http://orcid.org/0000-0002-8608-8482
http://orcid.org/0000-0002-8608-8482
http://orcid.org/0000-0002-8608-8482
http://orcid.org/0000-0002-8608-8482
mailto:fangzwu@microsoft.com
mailto:yfhuang@tsinghua.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications

The boom of deep learning in recent years has greatly
benefited humans in various fields such as intelligent
healthcare1 and personalized web applications2. In most

scenarios, abundant and accessible data is usually a prerequisite
for training high-quality deep learning models3. Thus, many deep
learning-based approaches rely on centralized data storage for
centralized model training4. However, many types of data are
privacy-sensitive in nature, such as medical data kept by hospitals
and user behavior data stored on users’ personal devices5,6. With
the increasing attention on privacy protection, many data pro-
tection regulations like GDPR have strictly restricted sharing
privacy-sensitive data among different clients or platforms7.
Thus, it can be difficult to collect and aggregate decentralized data
into a unified dataset for centralized model training, which poses
great challenges to the applications of many existing deep
learning techniques without privacy awareness8.

Federated learning is a recent technique to learn intelligent
models from decentralized private data4, which has been widely
used in various applications that involve privacy-sensitive data
such as intelligent healthcare9,10, personalized recommendation11,
and mobile keyboard prediction12. Federated learning offers a
privacy-aware learning paradigm that does not require raw data
sharing, but allows participants to collaboratively construct
a better global model by only sharing their local model updates4.
Instead of collecting and storing data in a centralized database, in
federated learning private data is locally stored on different
clients13. Each client keeps a local model and computes the model
updates by learning on its local data. In each iteration, a number
of clients first compute their local model updates and upload them
to a server, which aggregates the local model updates into a global
one to update its maintained global model. Then, the server dis-
tributes the global update to each client to conduct a local model
update. This process is iteratively executed for many rounds until
the model converges. Since the communicated model updates
usually contain much less private information than the raw data,
user privacy can be protected to some extent when training
machine learning models on decentralized data13.

In federated learning, the server and clients need to intensively
communicate the model updates during model training14. Thus,
the communication cost is enormous if the model is in large size.
Unfortunately, the state-of-the-art deep learning models (e.g.,
pretrained language models) have become more and more giant
in recent years, which contain billions and even trillions of
learnable parameters15,16. It can lead to a huge overhead when
communicating these cumbersome models, which is especially
non-practical for decentralized clients with relatively limited
communication bandwidth and throughput17. Thus, though quite
promising in terms of their performance, big models are rarely
deployed in conventional federated learning systems18.

In recent years, researchers have been making great efforts in
improving the communication efficiency of federated learning19.
One potential way is gradient compression17,20,21, which can
directly reduce the size of model updates. However, they usually
suffer from a heavy performance sacrifice when the compression
ratio is required to be very large22. In addition, compressing the
global model updates may also degrade the model capability in
handling the heterogeneity of decentralized data due to the limited
model capacity23. Another widely used paradigm in
communication-efficient federated learning is codistillation23–28.
Instead of transferring model updates, it only communicates the
local model prediction on a public dataset that is shared among
different clients, which can reduce the communication cost if the
size of local model is larger than the public data. Unfortunately, in
many real-world scenarios, such as personalized recommendation
and electronic medical records understanding, the data are highly
privacy-sensitive and may not be able to share nor exchange (even

after anonymization). Thus, both effective and communication-
efficient federated learning without the aid of additional data is an
important but still unresolved challenge.

In this work, we present a communication-efficient federated
learning method based on knowledge distillation, named FedKD.
Our method is mainly focused on cross-silo federated learning
where the clients have relatively richer computing resources and
larger local data volume than personal devices. Instead of directly
communicating the large models between the clients and server, in
FedKD there are a small model (mentee) and a large model
(mentor) that learn and distill knowledge from each other, where
only the mentee model is shared by different clients and learned
collaboratively, which can effectively reduce the communication
cost. In this way, different clients have different local mentor
models, which can better adapt to the characteristics of local
datasets to achieve personalized model learning. Motivated by the
Protégé Effect29 ("while we teach, we learn”, Seneca the Younger) in
human learning, we propose an adaptive mutual distillation method
to enable the local mentor and mentee models to reciprocally learn
from the knowledge distilled from their predicted soft labels and
intermediate results, where the distillation intensity is self-
adaptively controlled by the correctness of their predictions. In
addition, to further reduce the communication cost when exchan-
ging the mentee model updates, we introduce a dynamic gradient
approximation method based on singular value decomposition
(SVD) to compress the communicated gradients with dynamic
precision, which can achieve a promising tradeoff between com-
munication cost and model accuracy. We evaluate FedKD on five
benchmark datasets for three different real-world applications that
require privacy protection, including personalized news recom-
mendation, adverse drug reaction (ADR) mentioning text detection,
and medical named entity recognition (NER). Experimental results
demonstrate that FedKD can maximally reduce 94.89% of the
communication cost of standard federated learning methods, which
has the potential to support federated big model learning in prac-
tice. In addition, FedKD achieves comparable or even better per-
formance than centralized model learning, and outperforms many
other communication-efficient federated learning methods. FedKD
also shows great abilities in handling non-independent identically
distributed (non-IID) data on different clients due to the persona-
lization effect of local mentor models, which may provide a
potential direction to heterogeneous data mining.

Results
Performance evaluation. Our experiments are conducted in three
tasks that involve user data. The first task is personalized news
recommendation, which needs to predict whether a user will click a
candidate news based on the user interest inferred from historical
news click behaviors. In this task we use the MIND30 dataset. The
second one is ADR mentioning text detection, which is a binary
classification task. We use the dataset released by the 3rd shared
task of the SMM4H 2018 workshop31. We denote this dataset as
ADR. On these two datasets, to simulate the scenario where private
data is decentralized among different clients, we randomly divide
the training data into four folds and assume that each fold is locally
stored by a different client. We use the average performance of
local mentor models on the local data as the overall performance.
The third task is medical NER, which aims to extract medical
entities from plain texts and classify their types. We conduct
experiment on three public benchmark medical NER datasets, e.g.,
CADEC32, ADE33 and SMM4H34. These three datasets have very
different characteristics such as data collection sources and label
tagging schemes. Thus, we regard that each of them is kept by a
client to evaluate the performance of different federated learning
methods in handling non-IID data. More details of the datasets

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29763-x

2 NATURE COMMUNICATIONS | (2022) 13:2032 | https://doi.org/10.1038/s41467-022-29763-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications

and metrics used for evaluation are provided in the Datasets sec-
tion in Supplementary Information.

In our experiments, on each client we use the Base version of
UniLM35 as the local mentor model. We use its submodels with
the first four or two transformer layers as the mentee models. We
compare FedKD with several groups of baselines. The first
baseline group includes (1) UniLM (Local), (2) UniLM (Cen),
and (3) UniLM (Fed), which stand for learning the full UniLM
model on local data only, on centralized data, or on decentralized
data with the FedAvg4 framework, respectively. Note that we do
not use the classic FedSGD17 method because its communication
cost is unacceptable, i.e., tens of trillionbytes per client. The
second group finetunes different compressed models with
federated learning using the FedAvg algorithm, including: (4)
DistilBERT36, (5) BERT-PKD37, (6) TinyBERT38, (7) MiniLM39,
and (8) UniLM4/2 (the first four or two layers of UniLM). For
DistilBERT, BERT-PKD, TinyBERT, and MiniLM, we compare
their officially released six-layer and four-layer models. The third
group contains several gradient compression methods for
federated learning, including: (9) FetchSGD21, (10)
FedDropout20, (11) SCAFFOLD40, and (12) FedPAQ41. We
compare FedPAQ with 16-bit or 8-bit precision levels. These four
baselines are representative ones that use different ways to
improve communication efficiency, including sketched update,
reducing parameters, convergence acceleration, and parameter
quantization. The metrics used for evaluation are AUC, MRR,
nDCG@5 and nDCG@10 on MIND, and are precision, recall and
Fscore of the positive class on ADR (explanations are given in the
Experimental Settings section of Supplementary Information).
We report the model performance and communication cost on
the MIND and ADR datasets (Table 1). From the results, we find
the performance of UniLM (Local) is inferior to other methods
that can exploit decentralized data, which is mainly due to the
reason that local data on a single client may be insufficient to
learn a strong model. Although UniLM (Fed) achieves compar-
able results with centralized learning, its communication cost for

model learning is huge (e.g., over 2GB for each client on MIND),
which may hinder its applications in real-world systems. Both
model compression methods and gradient compression methods
can reduce the communication cost to certain extents, but they
either have major performance decreases or can only save very
limited communication resources. Different from them, the
performance of FedKD is even comparable with learning a big
model on centralized data. For example, the four-layer FedKD
can achieve a 71.0% AUC on MIND and 60.7% Fscore on ADR,
while the corresponding scores of finetuning the original big
model on centralized data are 71.0% and 60.8%. Further two-
sided t-test also shows that their differences are not significant
p > 0.1. This is because in FedKD there are multiple mentor
models on different decentralized clients for personalized learning
and knowledge distillation. In addition, FedKD can save up to
94.63% and 94.89% of communication cost on MIND and ADR,
respectively, which is more communication-efficient than other
compared federated learning-based methods. This is because
FedKD can learn useful knowledge from the sophisticated local
mentor models to improve the model performance, and can
reduce the communication cost by exchanging the updates of a
small mentee model and meanwhile compress the gradients using
SVD with a dynamic precision. These results show that FedKD
can effectively reduce the communication cost of federated
learning while keeping promising model performance.

We also evaluate the performance of different federated
learning methods in the medical NER task to compare their
effectiveness in handling heterogeneous data (Fig. 1). We find
FedKD outperforms other compared methods with a substantial
margin. For example, the absolute improvement on the SMM4H
dataset over the best-performed baseline is 3.9%. Different from
many other baselines that use globally shared models on all
clients, the local mentor models in FedKD on different clients are
personalized. These local mentor models can better adapt to the
heterogeneous characteristics of local data on different clients.
Thus, FedKD has a greater potential than many non-personalized

Table 1 Performance (with standard deviations) and communication cost per client of different methods on MIND and ADR.

Methods MIND ADR

AUC MRR nDCG@5 nDCG@10 Comm. cost
per client

Precision Recall Fscore Comm. cost
per client

UniLM (Local) 68.8 ± 0.5 33.5 ± 0.4 36.6 ± 0.5 42.4 ± 0.6 – 53.2 ± 1.3 54.6 ± 1.4 53.9 ± 1.1 –
UniLM (Cen) 71.0 ± 0.1 35.8 ± 0.1 39.0 ± 0.1 44.8 ± 0.1 – 60.3 ± 0.7 61.6 ± 0.8 60.8 ± 0.4 –
UniLM (Fed) 70.9 ± 0.3 35.7 ± 0.2 38.9 ± 0.3 44.7 ± 0.4 2.05GB (1.0×) 59.1 ± 0.6 62.3 ± 0.6 60.6 ± 0.4 1.37GB (1.0×)
DistilBERT6 69.3 ± 0.2 34.0 ± 0.2 37.5 ± 0.2 43.0 ± 0.1 1.03GB (2.0×) 56.8 ± 0.8 59.2 ± 0.8 57.9 ± 0.5 0.69GB (2.0×)
DistilBERT4 69.0 ± 0.2 33.7 ± 0.1 37.0 ± 0.1 42.6 ± 0.2 0.69GB (3.0×) 56.5 ± 0.9 58.4 ± 1.1 57.1 ± 0.7 0.46GB (3.0×)
BERT-PKD6 69.6 ± 0.2 34.4 ± 0.3 37.7 ± 0.3 43.4 ± 0.2 1.03GB (2.0×) 56.9 ± 0.9 60.4 ± 0.8 58.4 ± 0.6 0.69GB (2.0×)
BERT-PKD4 69.2 ± 0.2 33.8 ± 0.2 37.1 ± 0.3 42.9 ± 0.3 0.69GB (3.0×) 56.3 ± 1.1 59.9 ± 0.7 58.0 ± 0.6 0.46GB (3.0×)
TinyBERT6 69.7 ± 0.2 34.5 ± 0.2 37.9 ± 0.1 43.5 ± 0.2 1.03GB (2.0×) 57.4 ± 0.8 60.5 ± 0.6 58.6 ± 0.5 0.69GB (2.0×)
TinyBERT4 69.4 ± 0.3 33.9 ± 0.3 37.5 ± 0.2 43.1 ± 0.2 0.17GB (12:1x) 57.0 ± 0.7 59.9 ± 1.2 58.3 ± 0.7 0.12GB (11:4x)
MiniLM6 70.0 ± 0.1 34.9 ± 0.1 38.1 ± 0.1 43.8 ± 0.2 1.03GB (2.0×) 55.9 ± 0.9 62.1 ± 0.8 58.8 ± 0.6 0.69GB (2.0×)
MiniLM4 69.6 ± 0.2 34.0 ± 0.2 37.6 ± 0.2 43.2 ± 0.3 0.17GB (12:1x) 56.8 ± 0.9 60.5 ± 1.0 58.6 ± 0.6 0.12GB (11:4x)
UniLM4 69.6 ± 0.1 34.4 ± 0.2 37.7 ± 0.1 43.4 ± 0.2 0.69GB (3.0×) 56.1 ± 0.9 60.6 ± 0.9 58.2 ± 0.5 0.46GB (3.0×)
UniLM2 68.9 ± 0.2 33.6 ± 0.2 36.8 ± 0.2 42.5 ± 0.1 0.35GB (5.9×) 53.8 ± 0.8 59.1 ± 1.0 56.3 ± 0.6 0.24GB (5.7×)
FetchSGD 70.5 ± 0.4 35.2 ± 0.3 38.2 ± 0.3 44.0 ± 0.4 0.51GB (4.0×) 57.5 ± 0.9 60.4 ± 1.1 59.0 ± 0.8 0.34GB (4.0×)
FedDropout 70.5 ± 0.2 35.1 ± 0.2 38.3 ± 0.3 44.2 ± 0.3 1.23GB (1.7×) 57.8 ± 1.0 61.0 ± 0.8 59.4 ± 0.6 0.82GB (1.7×)
SCAFFOLD 70.7 ± 0.1 35.4 ± 0.2 38.7 ± 0.1 44.5 ± 0.2 2.73GB (0.8×) 58.8 ± 0.8 61.9 ± 0.9 60.3 ± 0.5 2.74GB (0.5×)
FedPAQ (16-bit) 70.8 ± 0.2 35.5 ± 0.1 38.8 ± 0.2 44.7 ± 0.3 1.03GB (2.0×) 58.4 ± 1.1 61.2 ± 0.8 59.7 ± 0.7 0.69GB (2.0×)
FedPAQ (8-bit) 70.2 ± 0.3 35.0 ± 0.3 38.1 ± 0.3 44.0 ± 0.4 0.51GB (4.0×) 56.5 ± 1.2 59.4 ± 0.9 57.9 ± 0.8 0.34GB (4.0×)
FedKD4 71.0 ± 0.1 35.6 ± 0.1 38.9 ± 0.1 44.8 ± 0.1 0.19GB (10.8×) 59.4 ± 0.6 62.8 ± 0.9 60.7 ± 0.5 0.12GB (11:4x)
FedKD2 70.5 ± 0.1 35.3 ± 0.2 38.6 ± 0.1 44.3 ± 0.2 0.11GB (18.6×) 58.2 ± 0.7 62.4 ± 0.9 59.8 ± 0.6 0.07GB (19.6×)

Local: learning model only on local data. Cen: learning on centralized datasets. Fed: a standard federated learning method FedAvg. Subscript numbers indicate the number of model hidden layers. The
best Fscore (bold) of federated methods on ADR is significantly better than the second best one (underline) at the level of p < 0.05. The results show that the standard federated learning method can
lead to heavy communication overheads, and FedKD can achieve promising results with much lower communication costs than FedAvg and other communication-efficient federated learning methods.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29763-x ARTICLE

NATURE COMMUNICATIONS | (2022) 13:2032 | https://doi.org/10.1038/s41467-022-29763-x | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

FL methods in handling data heterogeneity, i.e., training data on
different clients is non-IID.

Model effectiveness. Next, we verify the effectiveness of our
proposed adaptive mutual distillation method in FedKD. We first
compare the performance of mentor and mentee models in FedKD
trained with or without mutual distillation (the mentor model is
only learned on local data, and the mentee still learns from local
mentors) (Fig. 2). We observe that mutual distillation can effec-
tively improve the performance of both mentor and mentee models
with different sizes, especially the mentor model. This is because
the mentor models have deeper architectures, and its encoded
knowledge can benefit the mentee. Since the mentor models are
learned on local data only, the useful knowledge encoded by the
mentee can also bring complementary information to help mentors
break the limitation of the amount of local labeled data. Since we
observe that local mentors slightly outperform the mentee, we
choose to use the mentor models for inference in the test stages.

We further compare FedKD and its variants by removing the
adaptive mutual distillation loss, the adaptive hidden loss or the
adaptive loss weighting method (Fig. 3). Note that we report
the performance of mentor models. We can see that both adaptive
mutual distillation and adaptive hidden losses are useful for
improving the model performance. In addition, the performance is
suboptimal when the adaptive loss weighting method is removed
(this variant is similar to the standard mutual distillation42). This is
because weighting the distillation and hidden losses can be aware of
the correctness of model predictions, which may help distill higher-
quality knowledge and meanwhile mitigate the risk of overfitting.

Analysis of dynamic gradient approximation. We then present
some analysis of our proposed SVD-based gradient compression
method with dynamic precision, which uses different singular value
energy cutoff threshold T at different model training stages. We show

the cumulative energy distributions of singular values of different
parameter gradient matrices in the UniLM model (Fig. 4a, b). We
find all kinds of parameter matrices in the model are low-rank,
especially the parameters in the feed-forward network. This is
because large deep learning models have the over-parameterization
problem43, and thereby the model parameters are low-rank. Thus,
the communication cost can be greatly reduced by compressing the
low-rank gradient matrices. In addition, we find a new phenomenon
that the singular value energy is more concentrated at the beginning
than the end of training. This may be because when the model is not
well tuned, the gradients may have more low frequency components
that aim to push the model to converge more quickly. However,
when the model gets to converge, the updates of model parameters
are usually subtle, which yields more high-frequency components.
We also show the evolution of the number of required singular values
under T= 0.95 (Fig. 4c). Note that the model is trained in a cen-
tralized way to get a nearly continuous curve because FedKD only
has a small number of updates. We can see that more singular values
need to be retained to achieve the same energy threshold. Thus, we
choose to set a higher energy threshold after more iterations to learn
accurate models for FedKD (discussions on the selection of energy
threshold are shown in Supplementary Fig. 2).

Discussion
In this work, we present a communication-efficient federated
learning method named FedKD, which can effectively reduce the
communication cost of federated learning without much perfor-
mance sacrifice. The core idea of FedKD is exchanging the local
updates of a small model rather than the original big models to
reduce the communication cost. Since simply reducing the model
size will lead to a notable performance decrease, we incorporate an
adaptive mutual distillation method to encourage the small model
(mentee) and the local big models (mentors) to reciprocally learn
from each other. The local mentor models can adapt to the unique

60.0

62.0

64.0

66.0

68.0

70.0

F
sc

or
e

67.7

65.1
64.564.8

65.6

64.4

80.0

82.0

84.0

86.0

88.0

90.0

F
sc

or
e

87.4

86.0
85.485.7

86.1
85.5

ADE

26.0

28.0

30.0

32.0

34.0

36.0

F
sc

or
e

34.5

30.6
30.030.1

31.2

29.8

SMM4H

FedAVG
FetchSGD
FedDropout
SCAFFOLD
FedPAQ
FedKD

Fig. 1 Performance comparison of different federated learning methods in the medical NER task. The histogram height represents the Fscore of the
corresponding method. The error bars represent the mean values with 95% confidence intervals (n= 5 independent experiments). The results show that
FedKD is more effective than other compared federated learning methods in handling non-IID data.

Mentor Mentee
67.0

68.0

69.0

70.0

71.0

72.0

A
U

C

68.8

69.9

70.5
70.2

68.8

70.1

71.0
70.7

MIND

Mentor Mentee
45.0

49.0

53.0

57.0

61.0

65.0

F
sc

or
e

53.9

59.259.8 59.5

53.9

60.0
60.7 60.2

ADR

Fig. 2 Influence of mutual distillation on the mentee and mentor models. The mean values of AUC scores on MIND and F1 scores on ADR as well as their
95% confidence intervals are illustrated (n= 5 independent experiments). We compare the performance of mentors and the four-layer or two-layer
mentee models when mutual distillation (MD) is used or not. The results show that mutual distillation can improve the performance of both mentee and
mentor models, which is because useful knowledge can be reciprocally transferred between the mentee and mentor.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29763-x

4 NATURE COMMUNICATIONS | (2022) 13:2032 | https://doi.org/10.1038/s41467-022-29763-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications

characteristics of data on their clients to achieve personalization,
and the mentee model is collaboratively learned on decentralized
data to convey the knowledge distilled from multiple clients. To
distill high-quality knowledge among mentors and the mentee, we
further introduce an adaptive loss weighting mechanism based on
their prediction correctness. Our adaptive mutual distillation
approach is a general method that is not peculiar to the federated
learning scenario. It can provide a new direction to compress large
deep learning models and meanwhile keep high accuracy, which
can serve as a fundamental technique to empower efficient deep
learning. It also enables learning personalized models on non-IID
data, which can alleviate the common challenge of data hetero-
geneity in real-world scenarios. In addition, since it is consistent
with human’s learning patterns, it may provide a new perspective
to facilitate the understanding of knowledge transfer phenomena in
artificial intelligence systems.

In deep learning models their updates are usually low-rank,
and can be further compressed without hurting much precision.
To further reduce the size of communicated model updates, we
propose an SVD-based method to compress the model updates by
exploiting their low-rank properties. However, using a fixed
approximation precision may lead to a suboptimal performance
because the model parameters may change very subtly when the
model nearly converges. We demonstrate that the energy of
singular values of model updates becomes less concentrated and
there are more high-frequency components after more rounds of
iterations. Based on this finding, we introduce a compression
method with dynamic approximation precision to better adapt to
this characteristic to learn more accurate models. The proposed
method is quite simple and effective, and is compatible with

many other gradient compression methods. Our findings can not
only inspire developing more effective model compression
methods, but also can help researchers understand the inherent
learning mechanism of deep learning models.

We conducted extensive experiments on five real-world data-
sets under three different scenarios, including personalized news
recommendation, ADR mentioning text detection, and medical
NER. The results show that FedKD can save up to 94.89% of
communication cost, and can achieve comparable performance
with centralized model learning (the minimal performance loss is
less than 0.1%). In addition, the experimental results on the
medical NER task with non-IID data show that FedKD outper-
forms many other federated learning methods with a substantial
margin. It indicates that FedKD has a greater potential in over-
coming the barrier between heterogeneous data through the
personalization effect brought by different local mentor models.

The framework we proposed can be used as a benchmark for
communication-efficient and privacy-preserving deep learning,
which has the potential to be applied in various scenarios that
involve private user data, such as personalization, intelligent
healthcare and financial services. The proposed approach is espe-
cially suitable for being deployed in clients with limited commu-
nication resources, i.e., edge and personal devices, to save their
communication resources like network bandwidth and throughput
and meanwhile reduce the burden on the environment. It is ben-
eficial for attracting more parties to participate in federated learn-
ing, which can empower the development of swarm intelligence.

In our future work, we will explore combining FedKD with
other communication-efficient federated learning techniques to
further reduce the communication cost. In addition, we plan to

4 Layers 2 Layers
67.0

68.0

69.0

70.0

71.0

72.0

A
U

C

70.4

69.9
70.1

69.4

70.5

70.1

71.0

70.5

MIND

4 Layers 2 Layers
54.0

56.0

58.0

60.0

62.0

64.0

F
sc

or
e

59.4
58.9

57.7
57.1

59.9
59.2

60.7

59.8

ADR

FedKD
- Adaptive Hidden Loss
- Adaptive MD Loss
- Adaptive Loss Weighting

Fig. 3 Effectiveness of the adaptive mutual distillation techniques in FedKD. The mean results with 95% confidence intervals are presented (n= 5
independent experiments). We compare the results by removing the adaptive hidden loss, adaptive mutual distillation loss or the adaptive loss weighting
method from FedKD. Adaptive hidden loss: the distillation loss function that aims to transfer knowledge encoded by the hidden states and intermediate
results of models, where the loss intensity is weighted by the prediction loss of mentee and mentor models. Adaptive MD loss: the distillation loss function
that aims to distill knowledge from the output soft labels of models, and its intensity is also controlled by the prediction loss. Adaptive loss weighting: the
mechanism that weights the two distillation losses based on the summation of cross-entropy losses of the mentor and mentee models. We find the
performance drops when either of them is removed, which verifies their contributions to federated model learning and distillation.

0 75 150 225 300 375 450 525 600
Number of Singular Values

50

60

70

80

90

100

To
ta

l P
er

ce
nt

ag
e

of
 E

ne
rg

y

WQ

WK

WV

W

0 75 150 225 300 375 450 525 600
Number of Singular Values

0

20

40

60

80

100

To
ta

l P
er

ce
nt

ag
e

of
 E

ne
rg

y

WQ

WK

WV

W

0.0 0.2 0.8 1.00.4 0.6
Ratio of Training Steps

0

60

120

180

240

N
um

be
r

of
 S

in
gu

la
r

V
al

ue
s WQ

WK

WV

W

a b c

Fig. 4 Analysis of gradient energy distribution. a Cumulative energy distributions of singular values of different types of parameter gradient matrices at the
beginning of model training. b Cumulative energy distributions of singular values at the end of model training. c Evolution of the number of required singular values
during model training under a singular value energy cutoff threshold T=0.95.WQ: query parameters,WK: key parameters,WV: value parameters,W: feed-forward
network parameters. The results show that the gradients are usually low-rank, and they have more high-frequency components after more rounds of model
training. Thus, a relatively higher energy threshold needs to be used to keep higher gradient precision at the end of model training for better model accuracy.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29763-x ARTICLE

NATURE COMMUNICATIONS | (2022) 13:2032 | https://doi.org/10.1038/s41467-022-29763-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

study how to learn large models on low-resource devices to better
support the application of FedKD in cross-device settings. We
will also explore the application of FedKD in other real-world
scenarios that need privacy-preserving deep learning. Further-
more, we plan to deploy FedKD in real-world personalization
systems to learn intelligent user profiling models to serve users in
a privacy-preserving and efficient way.

However, our work also has the following limitations. First, if
the local data on each client is too scarce, it may be difficult to
learn accurate mentor models. Thus, parameter-efficient deep
learning techniques need to be combined with FedKD when local
data are very limited. Second, in our approach we assume that the
server is trusted and the communication channels are safe. Thus,
if the server is hacked or there are malicious attackers, some
private information encoded in model updates may not be fully
protected. Third, FedKD will slightly increase the computational
cost of local clients since they simultaneously maintain a mentor
and an additional mentee model, which may not be suitable for
edge and mobile devices. Thus, some computation accelerating
methods such as low-bit quantization can be combined with
FedKD to alleviate computational cost in practice.

Methods
In this section, we introduce the details of our communication-efficient federated
learning approach based on knowledge distillation (FedKD). We first present a
definition of the problem studied in this paper, then introduce the details of our
approach, and finally present some discussions on the computation and commu-
nication complexity of our approach.

Problem definition. In our approach, we assume that there are N clients that
locally store their private data, where the raw data never leaves the client where it is
stored. We denote the dataset on the ith client as Di. In our approach, each client
keeps a large local mentor model Ti with a parameter set Θt

i and a local copy of a
smaller shared mentee model S with a parameter set Θs. In addition, a central
server coordinates these clients for collaborative model learning. The goal is to
learn a strong model in a privacy-preserving way with less communication cost.

Federated knowledge distillation. Next, we introduce the details of our federated
knowledge distillation framework (Fig. 5). In each iteration, each client simulta-
neously computes the update of the local mentor model and the mentee model
based on the supervision of the labeled local data, meanwhile distilling knowledge
from each other in a reciprocal way with an adaptive mutual distillation
mechanism. Concretely, the mentor models are locally updated, while the mentee
model is shared among different clients and are learned collaboratively. Since the
local mentor models have more sophisticated architectures than the mentee model,
the useful knowledge encoded by the mentor model can help teach the mentee
model. In addition, since the mentor model can only learn from local data while
the mentee model can see the data on all clients, the mentor can also benefit from
the knowledge distilled from the mentee model.

In our approach, we use three loss functions to learn mentee and mentor models
locally, including an adaptive mutual distillation loss to transfer knowledge from output
soft labels, an adaptive hidden loss to distill knowledge from the hidden states and self-
attention heatmaps, and a task loss to directly provide task-specific supervision for
learning the mentor and mentee models. We denote the soft probabilities of a sample xi
predicted by the local mentor and mentee on the ith client as yti and ysi , respectively.
Since incorrect predictions from the mentor/mentee model may mislead the other one
in the knowledge transfer, we propose an adaptive method to weight the distillation loss
according to the quality of predicted soft labels. We first use the task labels to compute
the task losses for the mentor and mentee models (denoted as Lt

t;i and Ls
s;i). We denote

the gold label of xi as yi, and the task losses are formulated as follows:

Lt
t;i ¼ CEðyi; yti Þ; ð1Þ

Lt
s;i ¼ CEðyi; ysi Þ; ð2Þ

where the binary function CEða; bÞ ¼ �∑iai logðbiÞ stands for cross-entropy. The
adaptive distillation losses for both mentor and mentee models (denoted as Ld

t;i and

Ld
s;i) are formulated as follows:

Ld
t;i ¼

KLðysi ; yti Þ
Lt
t;i þ Lt

s;i

; ð3Þ

Ld
s;i ¼

KLðyti ; ysi Þ
Lt
t;i þ Lt

s;i

; ð4Þ

where KL means the Kullback–Leibler divergence, i.e., KLða; bÞ ¼ �∑iai logðbi=aiÞ. In
this way, the distillation intensity is weak if the predictions of mentor and mentee are
not reliable, i.e., their task losses are large. The distillation loss becomes dominant if the
mentee and mentor are well tuned (small task losses), which has the potential to
mitigate the risk of overfitting. In addition, previous works have validated that
transferring knowledge between the hidden states37 and hidden attention matrices38 (if
available) is beneficial for mentee teaching. Thus, taking language model distillation as
an example, we also introduce additional adaptive hidden losses to align the hidden
states and attention heatmaps of the mentee and the local mentors. The losses for the
mentor and mentee models (denoted as Lh

t;i and Lh
s;i) are formulated as follows:

Lh
t;i ¼ Lh

s;i ¼
MSEðHt

i ;W
h
i H

sÞ þMSEðAt
i ;A

sÞ
Lt
t;i þ Lt

s;i

; ð5Þ

where MSE stands for the mean squared error, Ht
i , A

t
i , H

s, and As respectively denote
the hidden states and attention heatmaps in the ith local mentor and the mentee, and
Wh

i is a learnable linear transformation matrix. Here we propose to control the intensity
of the adaptive hidden loss based on the prediction correctness of the mentee and
mentor. Besides, motivated by the task-specific distillation framework in44, we also learn
the mentee model based on the task-specific labels on each client. Thus, on each client
the unified loss functions for computing the local update of mentor and mentee models
(denoted as Lt;i and Ls;i) are formulated as follows:

Lt;i ¼ Ld
t;i þ Lh

t;i þ Lt
t;i; ð6Þ

Ls;i ¼ Ld
s;i þ Lh

s;i þ Lt
s;i; ð7Þ

The mentee model gradients gi on the ith client can be derived from Ls;i via gi ¼
∂Ls;i

∂Θs ,
where Θs is the parameter set of mentee model. The local mentor model on each client
is immediately updated by their local gradients derived from the loss function Lt;i.

Afterwards, the local gradients gi on each client will be uploaded to the central
server for global aggregation. Since the raw model gradients may still contain some
private information45, we encrypt the local gradients before uploading. The server
receives the local mentee model gradients from different clients and uses a gradient
aggregator (we use the FedAvg method) to synthesize the local gradients into a
global one (denoted as g). The server further delivers the aggregated global
gradients to each client for a local update. The client decrypts the global gradients
to update its local copy of the mentee model. This process will be repeated until
both the mentee model and the mentor model converge. Note that in the test
phase, the mentor model is used for label inference.

Algorithm 1. FedKD

1: Setting the mentor learning rate ηt and mentee learning rate ηs, client number N
2: Setting the hyperparameters Tstart and Tend

3: for each client i (in parallel) do
4: Initialize parameters Θt

i , Θ
s

5: repeat
6: gti ,gi=LocalGradients(i)
7: Θt

i Θt
i � ηtg

t
i

8: gi ←Ui∑iVi

9: Clients encrypt Ui,∑i,Vi

10: Clients upload Ui,∑i,Vi to the server
11: Server decrypts Ui,∑i,Vi

12: Server reconstructs gi
13: Global gradients g ← 0
14: for each client i (in parallel) do
15: g= g+ gi
16: end for
17: g ←U∑V
18: Server encrypts U,∑,V
19: Server distributes U,∑,V to user clients
20: Clients decrypt U,∑,V
21: Clients reconstructs g
22: Θs ←Θs− ηsg/N
23: until Local models converges
24: end for

LocalGradients(i):
25: Compute task losses Lt

t;i and Lt
s;i

26: Compute losses Ld
t;i , Ld

s;i , Lh
t;i , and Lh

s;i
27: Lt

i Lt
t;i þ Ld

t;i þ Lh
t;i

28: Ls
i Lt

s;i þ Ld
s;i þ Lh

s;i
29: Compute local mentor gradients gti from Lt

i
30: Compute local mentee gradients gi from Ls

i
31: return gti ; gi

Dynamic gradients approximation. In our FedKD framework, although the size
of mentee model updates is smaller than the mentor models, the communication

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29763-x

6 NATURE COMMUNICATIONS | (2022) 13:2032 | https://doi.org/10.1038/s41467-022-29763-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications

cost can still be relatively high when the mentee model is not tiny. Thus, we explore
to further compress the gradients exchanged among the server and clients to
reduce computational cost. Motivated by the low-rank properties of model
parameters46, we use SVD to factorize the local gradients into smaller matrices
before uploading them. The server reconstructs the local gradients by multiplying
the factorized matrices before aggregation. The aggregated global gradients are
further factorized, which are distributed to the clients for reconstruction and model
update. More specifically, we denote the gradient gi 2 RP ´Q as a matrix with P
rows and Q columns (we assume P ≥ Q). It is approximately factorized into the
multiplication of three matrix, i.e., gi ≈Ui∑iVi, where Ui 2 RP ´K , ∑i 2 RK ´K ,
Vi 2 RK ´Q are factorized matrices and K is the number of retained singular values.
If the value of K satisfies PK+ K2+ KQ < PQ, the size of the uploaded and
downloaded gradients can be reduced. Note that we formulate gi as a single matrix
for simplicity. In practice, different parameter matrices in the model are factorized
independently, and the global gradients on the server are factorized in the same
way. We denote the singular values of gi as [σ1, σ2, . . . , σQ] (ordered by their
absolute values). To control the approximation error, we use an energy threshold T
to decide how many singular values are kept, which is formulated as follows:

min
K

∑K
i¼1 σ

2
i

∑Q
i¼1 σ

2
i

> T: ð8Þ

To better help the model converge, we propose a dynamic gradient
approximation strategy by using a dynamic value of T. The function between the
threshold T and the percentage of training steps t is formulated as follows:

TðtÞ ¼ Tstart þ ðTend � TstartÞt; t 2 ½0; 1�; ð9Þ
where Tstart and Tend are two hyperparameters that control the start and end values
of T. In this way, the mentee model is learned on roughly approximated gradients
at the beginning, while learned on more accurately approximated gradients when
the model gets to convergence, which can help learn a more accurate
mentee model.

To help readers better understand how FedKD works, we summarize the entire
workflow of FedKD (Algorithm 1).

Complexity analysis. In this section, we present some analysis on the complexity
of our FedKD approach in terms of computation and communication cost. We
denote the number of communication rounds as R and the average data size of
each client as D. Thus, the computational cost of directly learning a large model
(the parameter set is denoted as Θt) in a federated way is O(RD∣Θt∣), and the
communication cost is O(R∣Θt∣) (we assume the cost is linearly proportional to
model sizes). In FedKD, the communication cost is O(R∣Θs∣/ρ) (ρ is the gradient
compression ratio), which is much smaller because ∣Θs∣ ≪ ∣Θt∣ and ρ > 1. The
computational cost contains three parts, i.e., local mentor model learning, mentee

model learning and gradient compression/reconstruction, which are O(RD∣Θt∣),
O(RD∣Θs∣) and O(RPQ2), respectively. The total computational cost of FedKD is
O(RD∣Θt∣+ RD∣Θs∣+ RPQ2). In practice, compared with the standard FedAvg4

method, the extra computational cost of learning the mentee model in FedKD is
much smaller than learning the large mentor model, and SVD can also be very
efficiently computed in parallel. Thus, FedKD is much more communication-
efficient than the standard FedAvg method and meanwhile does not introduce
much computational cost.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets that support the findings of this study are all available ones, and the use of
them in this work adheres to the licenses of these datasets. The MIND dataset is available at
https://msnews.github.io/. The ADR dataset is available at https://healthlanguageprocessing.
org/smm4h18. The CADEC dataset is available at https://data.csiro.au. The ADE dataset is
available at https://sites.google.com/site/adecorpus/. The SMM4H dataset is available at
https://healthlanguageprocessing.org/smm4h19. Source Data are provided with this paper.

Code availability
Codes used for this study are available on a public repository https://github.com/wuch15/
FedKD47. In addition, all experiments and implementation details are described in
sufficient detail in the Methods section and in the Supplementary Information.

Received: 2 December 2021; Accepted: 31 March 2022;

References
1. Rajkomar, A. et al. Scalable and accurate deep learning with electronic health

records. NPJ Digital Med. 1, 18 (2018).
2. Wang, X., He, X., Wang, M., Feng, F. & Chua, T.-S. Neural graph collaborative

filtering. In SIGIR, 165–174 (2019).
3. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436 (2015).
4. McMahan, B., Moore, E., Ramage, D., Hampson, S. & y Arcas, B. A.

Communication-efficient learning of deep networks from decentralized data.
In AISTATS, 1273–1282 (2017).

5. Garcia, D. Privacy beyond the individual. Nat. Hum. Behav. 3, 112–113
(2019).

Global
Mentee
Model

Local
Mentor
Model

Local Data

Client 1

Gradient
Aggregator

Hidden States
& A�en�on

Client N

Local
Gradients

Global
Gradients

Upload Server

…

Compute

Reconstructed
Global Gradients

Distribute

Dynamic
Decomposi�on

Reconstruc�on

Dynamic
Factoriza�on

Reconstruc�on

Dynamic
Decomposi�on

Reconstruc�on

Upload

Reconstruc�on

Adap�ve Mutual
Dis�lla�on Loss

Task Loss Task Loss

Adap�ve
Hidden Loss Hidden States

& A�en�on

Distribute

Global
Mentee
Model

Local
Mentor
Model

Local Data

Hidden States
& A�en�on

Adap�ve Mutual
Dis�lla�on Loss

Task Loss Task Loss

Adap�ve
Hidden Loss Hidden States

& A�en�on

Compute

Update

Update

…

Local Label

Teacher
Predic�on

Student
Predic�on

Teacher
Predic�on

Student
Predic�on

Local Label

Local
Gradients

Reconstructed
Global Gradients

Factorized
Local Gradients

Factorized
Local Gradients

Factorized
Global Gradients

Fig. 5 The framework of our FedKD approach. The local data is used to train the local mentor model and global mentee model. Both models are learned
from local labeled data as well as the prediction and hidden results of each other. The local gradients are decomposed before uploading to the server, and
then reconstructed on the server for aggregation. The aggregated global gradients are further decomposed and distributed to clients for local updates.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29763-x ARTICLE

NATURE COMMUNICATIONS | (2022) 13:2032 | https://doi.org/10.1038/s41467-022-29763-x | www.nature.com/naturecommunications 7

https://msnews.github.io/
https://healthlanguageprocessing.org/smm4h18
https://healthlanguageprocessing.org/smm4h18
https://data.csiro.au
https://sites.google.com/site/adecorpus/
https://healthlanguageprocessing.org/smm4h19
https://github.com/wuch15/FedKD
https://github.com/wuch15/FedKD
www.nature.com/naturecommunications
www.nature.com/naturecommunications

6. Grishin, D., Obbad, K. & Church, G. M. Data privacy in the age of personal
genomics. Nat. Biotechnol. 37, 1115–1117 (2019).

7. Voigt, P. & Von dem Bussche, A. The EU General Data Protection Regulation
(GDPR). A Practical Guide 1st edn, Vol. 10, 3152676 (Cham: Springer Int.
Publ., 2017).

8. Warnat-Herresthal, S. et al. Swarm learning for decentralized and confidential
clinical machine learning. Nature 594, 265–270 (2021).

9. Kaissis, G. A., Makowski, M. R., Rückert, D. & Braren, R. F. Secure, privacy-
preserving and federated machine learning in medical imaging. Nat. Mach.
Intell. 2, 305–311 (2020).

10. Dayan, I. et al. Federated learning for predicting clinical outcomes in patients
with covid-19. Nat. Med. 27, 1735–1743 (2021).

11. Qi, T., Wu, F., Wu, C., Huang, Y. & Xie, X. Privacy-preserving news
recommendation model learning. In EMNLP: Findings, 1423–1432 (2020).

12. Hard, A. et al. Federated learning for mobile keyboard prediction. Preprint at
arXiv:1811.03604 (2018).

13. Yang, Q., Liu, Y., Chen, T. & Tong, Y. Federated machine learning: concept
and applications. TIST 10, 1–19 (2019).

14. Kairouz, P. et al. Advances and open problems in federated learning. Found.
Trends Mach. Learn. 14, 1–210 (2021).

15. Qiu, X. et al. Pre-trained models for natural language processing: a survey. Sci.
China Technol. Sci. 1–26 (2020).

16. Lian, X. et al. Persia: a hybrid system scaling deep learning based
recommenders up to 100 trillion parameters. Preprint at arXiv:2111.05897
(2021).

17. Konečnỳ, J. et al. Federated learning: strategies for improving communication
efficiency. Preprint at arXiv:1610.05492 (2016).

18. Zhang, C. et al. A survey on federated learning. Knowl.-Based Syst. 216,
106775 (2021).

19. Li, T., Sahu, A. K., Talwalkar, A. & Smith, V. Federated learning: challenges,
methods, and future directions. IEEE Signal Process. Mag. 37, 50–60 (2020).

20. Caldas, S., Konečny, J., McMahan, H. B. & Talwalkar, A. Expanding the reach
of federated learning by reducing client resource requirements. Preprint at
arXiv:1812.07210 (2018).

21. Rothchild, D. et al. Fetchsgd: communication-efficient federated learning with
sketching. In ICML, 8253–8265 (PMLR, 2020).

22. Nori, M. K., Yun, S. & Kim, I.-M. Fast federated learning by balancing
communication trade-offs. IEEE Trans. Commun. 69, 5168–5182 (2021).

23. Li, D. & Wang, J. Fedmd: heterogenous federated learning via model
distillation. Preprint at arXiv:1910.03581 (2019).

24. Anil, R. et al. Large scale distributed neural network training through online
distillation. In ICLR (2018).

25. Sui, D. et al. Feded: federated learning via ensemble distillation for medical
relation extraction. In EMNLP, 2118–2128 (2020).

26. Seo, H., Park, J., Oh, S., Bennis, M. & Kim, S.-L. Federated knowledge
distillation. Preprint at arXiv:2011.02367 (2020).

27. Lin, T., Kong, L., Stich, S. U. & Jaggi, M. Ensemble distillation for robust
model fusion in federated learning. In NeurIPS, 2351–2363 (2020).

28. Sun, L. & Lyu, L. Federated model distillation with noise-free differential
privacy. In IJCAI, 1563–1570 (2021).

29. Chase, C. C., Chin, D. B., Oppezzo, M. A. & Schwartz, D. L. Teachable agents
and the protégé effect: Increasing the effort towards learning. J. Sci. Educ.
Technol. 18, 334–352 (2009).

30. Wu, F. et al. Mind: a large-scale dataset for news recommendation. In ACL,
3597–3606 (2020).

31. Weissenbacher, D., Sarker, A., Paul, M. & Gonzalez, G. Overview of the third
social media mining for health (smm4h) shared tasks at emnlp 2018. In
SMM4H, 13–16 (2018).

32. Karimi, S., Metke-Jimenez, A., Kemp, M. & Wang, C. Cadec: a corpus of
adverse drug event annotations. J. Biomed. Inform. 55, 73–81 (2015).

33. Gurulingappa, H. et al. Development of a benchmark corpus to support the
automatic extraction of drug-related adverse effects from medical case reports.
J. Biomed. Inform. 45, 885–892 (2012).

34. Weissenbacher, D. et al. Overview of the fourth social media mining for health
(smm4h) shared tasks at acl 2019. In SMM4H Workshop, 21–30 (2019).

35. Bao, H. et al. Unilmv2: pseudo-masked language models for unified language
model pre-training. In ICML, 642–652 (PMLR, 2020).

36. Sanh, V., Debut, L., Chaumond, J. & Wolf, T. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. Preprint at arXiv:1910.01108 (2019).

37. Sun, S., Cheng, Y., Gan, Z. & Liu, J. Patient knowledge distillation for bert
model compression. In EMNLP-IJCNLP, 4314–4323 (2019).

38. Jiao, X. et al. Tinybert: distilling BERT for natural language understanding. In
EMNLP Findings, 4163–4174 (2020).

39. Wang, W. et al. Minilm: deep self-attention distillation for task-agnostic
compression of pre-trained transformers. NeurIPS 33, 5776–5788 (2020).

40. Karimireddy, S. P. et al. Scaffold: stochastic controlled averaging for federated
learning. In ICML, 5132–5143 (PMLR, 2020).

41. Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A. & Pedarsani, R.
Fedpaq: a communication-efficient federated learning method with periodic
averaging and quantization. In AISTATS, 2021–2031 (PMLR, 2020).

42. Zhang, Y., Xiang, T., Hospedales, T. M. & Lu, H. Deep mutual learning. In
CVPR, 4320–4328 (2018).

43. Su, L. & Yang, P. On learning over-parameterized neural networks: a
functional approximation perspective. In NeurIPS, 32 (2019).

44. Tang, R. et al. Distilling task-specific knowledge from bert into simple neural
networks. Preprint at arXiv:1903.12136 (2019).

45. Zhu, L. & Han, S. Deep leakage from gradients. In Federated Learning, 17–31
(Springer, 2020).

46. Wang, H., Agarwal, S. & Papailiopoulos, D. Pufferfish: communication-
efficient models at no extra cost. MLSys 3, 365–386 (2021).

47. Wu, C., Wu, F., Lingjuan, L., Huang, Y. & Xie, X. Communication-efficient
federated learning via knowledge distillation. https://doi.org/10.5281/zenodo.
6383473 (2022).

Acknowledgements
We thank Tao Qi and Ruixuan Liu for their discussions on this work. This work was
supported by the National Natural Science Foundation of China under Grant numbers
2021ZD0113902 (Y.H.), U1936208 (Y.H.), U1836204 (Y.H.), U1936216 (Y.H.), and the
research initiation project of Zhejiang Lab under Grant number 2020LC0PI01 (C.W.).

Author contributions
Y.H. coordinated the research project and supervised the project with assistance from
X.X. C.W. implemented the models in the FedKD framework and conducted experi-
ments. C.W., F.W. and L.L. discussed and analyzed the results. C.W., F.W. and L.L.
contributed to the writing of the manuscript with assistance from Y.H. and X.X. All
authors contributed to the discussion and design of the FedKD framework.

Competing interests
The authors declare the following competing interests. F.W. and X.X. currently are
employees at Microsoft Research Asia and hold the positions of researcher. L.L. is cur-
rently an employee at Sony AI and holds the position of researcher. No author holds
substantial shares in these companies. The authors declare no other types of competing
interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-29763-x.

Correspondence and requests for materials should be addressed to Fangzhao Wu or
Yongfeng Huang.

Peer review information Nature Communications thanks Siqi Sun and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29763-x

8 NATURE COMMUNICATIONS | (2022) 13:2032 | https://doi.org/10.1038/s41467-022-29763-x | www.nature.com/naturecommunications

https://doi.org/10.5281/zenodo.6383473
https://doi.org/10.5281/zenodo.6383473
https://doi.org/10.1038/s41467-022-29763-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Communication-efficient federated learning via knowledge distillation
	Results
	Performance evaluation
	Model effectiveness
	Analysis of dynamic gradient approximation

	Discussion
	Methods
	Problem definition
	Federated knowledge distillation
	Dynamic gradients approximation
	Complexity analysis

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

