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Abstract

One-to-one set matching is a key design for DETR to
establish its end-to-end capability, so that object detection
does not require a hand-crafted NMS (non-maximum sup-
pression) to remove duplicate detections. This end-to-end
signature is important for the versatility of DETR, and it
has been generalized to broader vision tasks. However, we
note that there are few queries assigned as positive sam-
ples and the one-to-one set matching significantly reduces
the training efficacy of positive samples. We propose a sim-
ple yet effective method based on a hybrid matching scheme
that combines the original one-to-one matching branch with
an auxiliary one-to-many matching branch during training.
Our hybrid strategy has been shown to significantly im-
prove accuracy. In inference, only the original one-to-one
match branch is used, thus maintaining the end-to-end merit
and the same inference efficiency of DETR. The method is
named H-DETR, and it shows that a wide range of rep-
resentative DETR methods can be consistently improved
across a wide range of visual tasks, including Deformable-
DETR, PETRv2, PETR, and TransTrack, among others.
Code is available at: https://github.com/HDETR.

1. Introduction
Since the success of pioneering work DEtection TRans-

former (DETR) [5] on object detection tasks, DETR-based
approaches have achieved significant progress on various
fundamental vision recognition tasks such as object detec-
tion [50, 58, 82, 89], instance segmentation [13, 14, 25, 78],
panoptic segmentation [9, 31, 64, 75, 79], referring expres-
sion segmentation [69, 74], video instance segmentation [8,
65, 70], pose estimation [26, 59, 60], multi-object track-
ing [7, 49, 61], monocular depth estimation [18, 29], text
detection & layout analysis [46, 55, 56, 85], line segment
detection [71], 3D object detection based on point clouds
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or multi-view images [1,30,52,67], visual question answer-
ing [22, 47], and so on.

Many follow-up efforts have improved DETR from var-
ious aspects, including redesigning more advanced trans-
former encoder [15, 89] or transformer decoder architec-
tures [4,16,50,81,89] or query formulations [24,37,68,82].
Different from most of these previous efforts, we focus on
the training efficacy issues caused by one-to-one matching,
which only assigns one query to each ground truth. For ex-
ample, Deformable-DETR typically only selects less than
30 queries from a pool of 300 queries to match with the
ground truth for each image, as nearly 99% of the COCO
images consist of less than 30 bounding boxes annotations,
while the remaining more than 270 queries will be assigned
as ∅ and are supervised with only classification loss, thus
suffering from very limited localization supervision.

To overcome the drawbacks of one-to-one matching and
unleash the benefits of exploring more positive queries,
we present a very simple yet effective hybrid match-
ing scheme, which introduces an additional one-to-many
matching branch that assigns multiple queries to each pos-
itive sample. In inference, we only use the original one-to-
one decoder branch supervised with the one-to-one match-
ing loss. We find that this simple approach can substan-
tially improve the training efficacy, especially regarding the
fitting of positive queries. Since only the original one-to-
one matching branch is used in inference, the merits of the
original DETR framework are almost all maintained, for ex-
ample, avoiding NMS. Our approach also has no additional
computation overhead compared to the original version.

We dub the hybrid matching approach as H-DETR, and
extensively verify its effectiveness using a variety of vision
tasks that adopt DETR methods or the variants, as well
as different model sizes ranging from ResNet-50/Swin-T
to Swin-L. The visual tasks and the corresponding DETR-
based approaches include Deformable-DETR [89] for im-
age object detection, PETRv2 [40] for 3D object detection
from multi-view images, PETR [59] for multi-person pose
estimation, and TransTrack [61] for multi-object tracking.
TheH-DETR achieves consistent gains over all of them, as
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Figure 1. Illustrating the improvements of our hybrid matching scheme across five challenging vision tasks including 2D object detection,
2D panoptic segmentation, 2D pose estimation, 3D object detection, and multi-object tracking (from left to right). Our hybrid matching
scheme gains +1.7%, +1.1%, +1.5%, +1.6%, +1.7%, and +1.6% over various DETR-based approaches on 6× benchmarks respectively.
All the improvements are obtained under the same training epochs and do not require any additional computation cost during evaluation.
We choose VoVNetV2 [23]/ResNet50 for PETRv2/all other methods as the backbone following their original settings.

shown in Figure 1. Specifically, our approach can improve
the Deformable DETR framework (R50) on COCO object
detection by +1.7% mAP (48.7% v.s. 47.0%), the PETR
framework (R50) on COCO pose estimation by +1.6%
mAP (70.9% v.s. 69.3%). In particular, we achieve 59.4%
mAP on COCO object detection, which is the highest accu-
racy on COCO object detection among DETR-based meth-
ods that use the Swin-L model. We achieve 52.38% on
nuScenes val, which is +1.7% higher than a very recent
state-of-the-art approach of PETRv2.

2. Related work

DETR for object detection. With the pioneering work
DETR [5] introducing transformers [63] to 2D object de-
tection, more and more follow-up works [11, 15, 50, 68]
have built various advanced extensions based on DETR be-
cause it removes the need for many hand-designed compo-
nents like non-maximum suppression [53] or initial anchor
boxes generation [17, 35, 38, 57]. Deformable-DETR [89]
introduced the multi-scale deformable self/cross-attention
scheme, which attends to only a small set of key sam-
pling points around a reference and achieves better per-
formance than DETR (especially on small objects). DAB-
DETR [37] further verified that a different novel query for-
mulation can also improve the performance. The follow-
up DINO-DETR [24, 82] has established the new SOTA re-
sults on object detection tasks and demonstrated the advan-
tages of DETR design by introducing a novel query denois-
ing scheme. Different from these works, we focus on the
matching mechanism design of DETR and propose a very
simple strategy to improve the training efficacy while still
avoiding NMS, which also differentiates our efforts from
the very recent DE-DETR [66] that requires NMS.

DETR for other vision tasks. Inspired by the great suc-
cess of DETR in object detection, many recent efforts have
constructed various DETR-based approaches for segmen-
tation tasks [8, 9, 25, 31, 76, 77] that aim for more accu-
rate pixel localization and recognition, 3D object detec-
tion tasks [1, 20, 21, 30, 34, 39, 39, 40, 44, 45, 52, 67] based

on point-cloud or multi-view-images that target to iden-
tify and localize objects in 3D scenes, pose estimation
tasks [2,26,28,48,59,60,83] with the objective of localizing
the key points of the presented persons in a given image, ob-
ject tracking tasks [49,61,72,80,86] that aim at locating the
objects across both spatial and temporal positions within a
given video without any prior knowledge about the appear-
ance, and so on. To verify the generalization ability of our
approach, we first construct a baseline approach, i.e., Mask-
Deformable-DETR, for segmentation tasks, and then com-
bine our hybrid matching scheme with Mask-Deformable-
DETR to deliver strong panoptic segmentation results on
the COCO benchmark. For 3D object detection, pose es-
timation, and object tracking, we directly choose the re-
cent approaches including PETRv2 [39, 40], PETR [59],
TransTrack [61] as our baseline and verifies that our hybrid
matching consistently improves their performance.

Label assignment. We can categorize the existing label
assignment approaches, following the previous work [65,
88], into two different paths: (i) one-to-many label assign-
ment, i.e., assigning multiple predictions as positive sam-
ples for each ground-truth box [57, 62, 84], and (ii) one-to-
one label assignment, i.e., assigning only one prediction as
a positive sample for each ground-truth box. POTO [65]
propose to assign the anchor with either the maximum
IoU or closest to the object center as the positive sample,
which is modified from the strategies of RetinaNet [35] or
FCOS [62]. DETR [5] and its followups [4,24,37,50,68,89]
apply the Hungarian matching to compute one-to-one pos-
itive assignments based on the global minimum matching
cost values between all predictions and the ground-truth
boxes. Different from the most related work POTO [65] that
only uses one-to-many assignment, based on ATSS [84], to
help the classification branch, our approach chooses Hun-
garian matching to perform both one-to-one matching and
one-to-many matching following DETR and generalizes to
various DETR-based approaches across vision tasks.

Relationship to DN-DETR and DINO-DETR: Our approach
is also related to recent approaches that introduce noisy
augmentations of ground-truth objects as auxiliary queries,



Figure 2. Illustrating the pipeline of DETR.

i.e., DN-DETR [24] and DINO-DETR [82]. Similar to our
approach, they also introduce additional auxiliary queries.
However, the aims of these approaches and ours are dif-
ferent: while DN-DETR and DINO-DETR mainly aim to
address the instability issue of Hungarian assignment, we
mainly address the insufficient training problem of positive
samples in one-to-one matching.

The different aims may have led to their different de-
signs: DN-DETR and DINO-DETR involve a noising
scheme and take manual assignment between the noisy
queries and ground-truth objects, while our approach is
much simpler which uses an end-to-end assignment strategy
to match the auxiliary query set the and ground-truth set us-
ing the Hungarian method (each ground truth is repeated
multiple times). The end-to-end manner also allows
our approach to be more general than the methods based
on denoising query: while DN-DETR/DINO-DETR needs
to tune or redesign its noising scheme and query forms,
our approach can be easily extended various DETR vari-
ants for different vision problems with almost no additional
tuning.

3. Our Approach

3.1. Preliminary

General DETR pipeline. Given an input image I, DETR
first applies the backbone and the transformer encoder to
extract a sequence of enhanced pixel embeddings X =
{x0,x1, · · · ,xN}. Second, DETR sends the enhanced
pixel embeddings and a default group of object query
embeddings Q = {q0,q1, · · · ,qn} into the transformer
decoder. Third, DETR applies the task-specific predic-
tion heads on the updated object query embeddings after
each transformer decoder layer to generate a set of predic-
tions P = {p0,p1, · · · ,pn} independently. Last, DETR
performs one-to-one bipartite matching between the pre-
dictions and the ground-truth bounding boxes and labels
G = {g0,g1, · · · ,gm}. Specifically, DETR associates
each ground truth with the prediction that has the mini-
mal matching cost and apply the corresponding supervision
accordingly. Figure 2 also illustrates the overall pipeline
of the DETR approach. The follow-up works have refor-

mulated the object query to various variants for different
visual recognition tasks such as mask query [9, 31], pose
query [59], track query [49, 61], bins query [32], and so on.
We use “query” in the following discussions for simplicity
and consistency.

General Deformable-DETR pipeline. The Deformable-
DETR improves the pipeline of DETR from the following
three main aspects: (i) replace the original multi-head self-
attention or cross-attention with a multi-scale deformable
self-attention and multi-scale deformable cross-attention
scheme; (ii) replace the original independent layer-wise pre-
diction scheme with iterative refinement prediction scheme;
(iii) replace the original image content irrelevantly query
with a dynamic query generated by the output from the
transformer encoder. Besides, Deformable-DETR also per-
forms one-to-one bipartite matching following the DETR.
Readers could refer to [89] for more details.

3.2. Hybrid Matching

The key idea of our hybrid matching approach is to com-
bine the advantages of one-to-one matching scheme with
those of the one-to-many matching scheme, where the one-
to-one matching is necessary for removing NMS and the
one-to-many matching enriches the number of queries that
are matched with ground truth for higher training efficacy.
We first illustrate detailed implementations of the hybrid
branch scheme, and then briefly introduce the implemen-
tations of another two simple variants, including the hybrid
epoch scheme and hybrid layer scheme. We summarize the
pipelines of these hybrid matching schemes in Figure 3.

3.2.1 Hybrid Branch Scheme

We maintain two groups of queries Q={q1,q2, · · · ,qn}
and Q̂={q̂1, q̂2, · · · , q̂T }, where we apply one-to-one
matching or one-to-many matching on the predictions based
on Q or Q̂ respectively.

One-to-one matching branch. We process the first group
of queries Q with L transformer decoder layers and per-
form predictions on the output of each decoder layer respec-
tively. Then, we perform the bipartite matching between the
{predictions, ground-truth} pair over each layer, e.g., esti-
mating Lmatch(P

l,G), and compute the loss as follows:

Lone2one =

L∑
l=1

LHungarian(P
l,G), (1)

where Pl represents the predictions outputted by the
l-th transformer decoder layer. We choose Lmatch(·)
and LHungarian(·) following DETR [5] and Deformable-
DETR [89], which consist of a classification loss, a L1 re-
gression loss, and a GIoU loss.
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Figure 3. Illustrating the pipeline of our Hybrid Matching scheme. We use the colored regions of the same color to mark their
parameters are shared. We use ρ to represent the percentage of training epochs. We have L=L1 + L2 in hybrid layer scheme.

One-to-many matching branch. Then, we process the
second group of queries Q̂ with the same L transformer
decoder layers and get L groups of predictions. In or-
der to perform one-to-many matching, we simply repeat
the ground truth for K times and get an augmented target
Ĝ={G1,G2, · · · ,GK}, where G1=G2= · · ·=GK=G.
We also perform the bipartite matching between the
{predictions, augmented ground truth} pair over each layer,
e.g., estimating Lmatch(P̂

l, Ĝ), and compute the corre-
sponding loss as follows:

Lone2many =

L∑
l=1

LHungarian(P̂
l, Ĝ), (2)

where P̂l represents the predictions output by the l-th trans-
former decoder layer.

In summary, we use the combination of the above two
losses, i.e., λLone2many+Lone2one, through the whole train-
ing process. To accelerate the training speed and process
both Q or Q̂ in parallel, we further apply a masked multi-
head self-attention to avoid their interactions. Therefore,
we do not observe significant extra training costs in exper-
iments. We provide detailed comparison results in the fol-
lowing Table 6 within the experiment section. Last, we only
keep the one-to-one matching branch, i.e., Q, during evalu-
ation. We present the overall pipeline on the left of Figure 3.

3.2.2 More Variants of Hybrid Matching

Hybrid epoch scheme. Different from the hybrid branch
scheme, we only maintain a single group of queries
Q̃={q̃1, q̃2, · · · , q̃M}, where we apply both one-to-one
matching and one-to-many matching on the predictions
based on Q̃ during different training epochs. We illustrate
more details as follows.

- One-to-many matching training epochs: During the first
ρ training epochs, we perform one-to-many matching to
process Q̃ with L transformer decoder layers and get L
groups of predictions. We also get the augmented ground
truth G̃={G1,G2, · · · ,GK̃} following the similar man-
ner adopted by the one-to-many matching branch. Then we
perform the bipartite matching between Lmatch(P̃

l, G̃) and

compute the loss as follows:

Lone2many =

L∑
l=1

LHungarian(P̃
l, G̃). (3)

- One-to-one matching training epochs: We change one-to-
many matching to one-to-one matching for the remaining
(1−ρ) training epochs. The only difference is that we match
the predictions with the original ground truth and illustrate
the formulation as follows:

Lone2one =

L∑
l=1

LHungarian(P̃
l,G). (4)

Last, we directly apply Q̂ during evaluations without
using NMS. In summary, we apply only Lone2many or
Lone2one in the first ρ training epochs or last (1−ρ) training
epochs respectively. We also illustrate the overall pipeline
of the hybrid epoch scheme in the middle of Figure 3.

Hybrid layer scheme. Similar to the hybrid epoch
scheme, we also maintain a single group of queries
Q={q1,q2, · · · ,qN}. Instead of performing different
matching strategies across different training epochs, we ap-
ply one-to-many matching on the prediction output by the
first L1 transformer decoder layers and one-to-one match-
ing on the prediction output by the remaining L2 trans-
former decoder layers.

- One-to-many matching decoder layers: We choose to ap-
ply a one-to-many matching scheme for the first L1 trans-
former decoder layers, where we supervise the predictions,
output by each one of the firstL1 layers, with the augmented
ground truth G={G1,G2, · · · ,GK} following:

Lone2many =

L∑
l=1

LHungarian(P
l
,G), (5)

where we also need to perform the bipartite matching be-
tween Lmatch(P

l
,G) before computing the above loss.

- One-to-one matching decoder layers: For the following
L2 transformer decoder layers, we perform a one-to-one



matching scheme on their predictions as follows:

Lone2one =

L1+L2∑
l=L1

LHungarian(P
l
,G). (6)

In summary, we apply the combination of both
Lone2many and Lone2one through the whole training proce-
dure. The right of Figure 3 presents the overall pipeline.

4. Experiment

4.1. Improving DETR-based Approaches

2D object detection results. Table 1 reports the compari-
son results on the COCO object detection val set. Our H-
Deformable-DETR achieves consistent gains over the base-
line with backbones of different scales (including ResNet-
50, Swin-T and Swin-L) trained under 12 epochs or 36
epochs. For example, when choosing Swin-T under 12
and 36 training epochs, ourH-Deformable-DETR improves
Deformable-DETR from 51.8% to 53.2% and 49.3% to
50.6%, respectively.

Besides, we report the comparison results on LVIS ob-
ject detection in Table 2. Our approach also achieves con-
sistent gains over the baseline Deformable-DETR across
various backbones, e.g., with Swin-L as the backbone, H-
Deformable-DETR improves the AP score by +0.9%.

3D object detection results. We choose the very recent
representative DETR-based approach, i.e., PETRv2 [40], to
verify the generalization ability of our approach for 3D de-
tection based on multi-view images. Table 3 summarizes
the detailed comparison results. We can see that our H-
PETRv2 significantly improves the NDS scores of baseline
PETRv2 from 50.68% to 52.38% on nuScenes val, thus
showing that our hybrid matching improves the localization
accuracy of 3D object detection predictions. We observe
the GPU memory consumption increases from 7235M to
11175M, where 78% of the increased GPU memory locates
at the cross-attention. A preliminary optimization by se-
quential self/cross attention [41] has reduced the memory
consumption from 11175M to 8733M while maintaining
the performance.

Multi-person pose estimation results. We extend our hy-
brid matching strategy to the very recent PETR (Pose Es-
timation with TRansformers) [59] and summarize the de-
tailed results in Table 4. We can see that our approach
achieves consistent gains over the baselines. For example,
with Swin-L as the backbone, our H-PETR improves the
AP score of PETR from 73.3% to 74.9% on the COCO val
under even 100 training epochs.

Multi-object tracking results. We apply our hybrid match-
ing scheme to a powerful multi-object tracking approach,

Table 1. Object detection results on COCO.

method backbone #epochs AP APS APM APL

Results under 1× training schedule

Deformable-DETR R50 12 47.0 29.1 50.0 61.6

H-Deformable-DETR R50 12 48.7+1.7 31.2 51.5 63.5

Deformable-DETR Swin-T 12 49.3 31.6 52.4 64.6

H-Deformable-DETR Swin-T 12 50.6+1.3 33.4 53.7 65.9

Deformable-DETR Swin-L 12 54.5 37.0 58.6 71.0

H-Deformable-DETR Swin-L 12 55.9+1.4 39.1 59.9 72.2

Results under 3× training schedule

Deformable-DETR R50 36 49.0 32.6 52.3 63.3

H-Deformable-DETR R50 36 50.0+1.0 32.9 52.7 65.3

Deformable-DETR Swin-T 36 51.8 34.8 55.1 67.8

H-Deformable-DETR Swin-T 36 53.2+1.4 35.9 56.4 68.2

Deformable-DETR Swin-L 36 56.3 39.2 60.4 71.8

H-Deformable-DETR Swin-L 36 57.1+0.8 39.7 61.4 73.4

Table 2. Object detection results on LVIS v1.0.

method backbone #epochs AP APS APM APL

Deformable-DETR R50 24 32.2 23.2 41.6 49.3

H-Deformable-DETR R50 24 33.5+1.3 24.1 42.4 50.2

Deformable-DETR Swin-L 48 47.0 35.9 57.8 66.9

H-Deformable-DETR Swin-L 48 47.9+0.9 36.3 58.6 67.9

e.g., TransTrack [61]. Table 5 summarizes the detailed com-
parison results. We find the results on MOT17 suffer from
relatively large variance, thus we report the mean perfor-
mance with∼3 runs. Accordingly, our approach also shows
strong potential on the multi-object tracking tasks, and our
H-TransTrack improves the MOTA score of TransTrack
from 67.1% to 68.7% on MOT17 val, where we also ob-
serve that the gains are related to much lower false negative
rates (FN).

Panoptic segmentation results. We also report the detailed
COCO panoptic segmentation results in the supplementary
to verify the generalization ability of our approach.

4.2. Ablation Study

Comparing different hybrid matching schemes. We first
choose a two-stage Deformable-DETR (with increased FFN
dimension) as the baseline and compare the results based on
our three different hybrid matching approaches. To ensure
fairness, we choose their settings as follows:

- Baseline settings: We use 300 or 1800 queries and apply
the conventional one-to-one matching following the origi-
nal Deformable-DETR [89]. To ensure more fair compar-
isons with our hybrid branch scheme, we further report the
baseline results under 1.3× and 1.15× training epochs to



Table 3. Multi-view 3D detection results on nuScenes.

method backbone #epochs mAP NDS

PETRv2 [40] VoVNet-99 24 41.04 50.25

PETRv2 (Our repro.) VoVNet-99 24 40.41 49.69

H-PETRv2 VoVNet-99 24 41.93+1.52 51.23

PETRv2 (Our repro.) VoVNet-99 36 41.07 50.68

H-PETRv2 VoVNet-99 36 42.59+1.52 52.38

Table 4. Multi-person pose estimation results on COCO.

method backbone #epochs AP APM APL

PETR [59] R50 100 68.8 62.7 77.7

PETR (Our repro.) R50 100 69.3 63.3 78.4

H-PETR R50 100 70.9+1.6 64.4 80.3

PETR [59] R101 100 70.0 63.6 79.4

PETR (Our repro.) R101 100 69.9 63.4 79.4

H-PETR R101 100 71.0+1.1 64.7 80.2

PETR [59] Swin-L 100 73.1 67.2 81.7

PETR (Our repro.) Swin-L 100 73.3 67.7 81.6

H-PETR Swin-L 100 74.9+1.6 69.3 83.3

Table 5. Multi-object tracking results on MOT.

method #epochs MOTA (↑) IDF1 (↑) FN (↓)
MOT17 val

TransTrack [61] 20 67.1 70.3 15820

TransTrack (Our repro.) 20 67.1 68.1 15680

H-TransTrack 20 68.7+1.6 68.3 13657

MOT17 test

TransTrack [61] 20 74.5 63.9 112137

TransTrack (Our repro.) 20 74.6 63.2 111105

H-TransTrack 20 75.7+1.1 64.4 91155

ensure even more total training time than our hybrid branch
scheme. We empirically find that the increased time mainly
comes from two aspects including more queries (1800 vs.
300) and the extra Hungarian matching operation and loss
computation of one-to-many matching branch. By sim-
ply merging the matching cost computation and loss com-
putation of one-to-one matching branch and one-to-many
matching branch, our hybrid-branch scheme only bring
around +7% extra training time compared to the baseline
with 1800 queries. The extra time could be further de-
creased by implementing the Hungarian matching on GPU
instead of CPU, which is not the focus of this work.

- Hybrid branch settings: We use 300 queries (n=300)
and 1500 queries (T=1500) for one-to-one matching and
one-to-many matching branch, respectively. We set K as 6
for the augmented ground truth Ĝ. Thus we will generate
6× additional positive queries with the one-to-many match-
ing branch, e.g., we have (1+6)×12×6 under 12 training
epochs if the benchmark is the number of positive queries
within one training epoch for each decoder layer.

Table 6. Comparisons of different hybrid matching approach. We
ensure that three different hybrid approaches all (i) introduce 6×
more positive samples than the baseline, and (ii) use 1800 query
in total. The upper script † marks the methods using 1800 query
during both training and evaluation. The time is averaged over
all training epochs as a hybrid epoch scheme consists of different
training stages. The FPS is tested on the same V100 GPU. The
upper script \ marks the time measured with the optimized imple-
mentation and we provide more details in the supplementary.

method inference
GFLOPs

train time
(average)

inference
FPS

#epochs

12 24 36

Deformable-DETR 268G 65min 6.7 43.7 46.4 46.8

Deformable-DETR1.3× 268G 65min 6.7 44.6 46.3 46.7

Deformable-DETR† 282G 75min 6.3 44.1 46.6 47.1

Deformable-DETR†1.15× 282G 75min 6.3 44.5 46.7 46.9

Deformable-DETR + Hybrid-Branch 268G 80min\ 6.7 45.9 47.6 48.0

Deformable-DETR + Hybrid-Epoch† 282G 95min 6.3 45.5 47.0 47.9

Deformable-DETR + Hybrid-Layer† 282G 100min 6.3 45.6 47.9 48.0
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Figure 4. Illustrating the improvements of hybrid matching over
Deformable-DETR. We report both average precision (AP) and op-
timal localization recall precision (oLRP [54]) scores, where the
higher the better for AP and the lower the better for oLRP. Our ap-
proach significantly decreases oLRPLoc and oLRPFN , which rep-
resent the localization error of matched detections (true positives)
and the number of unmatched ground truth (false negatives).

- Hybrid epoch settings: We use 1800 queries through
the whole training process, i.e., M=1800. To gen-
erate 6× additional positive queries than the base-
line, we set K̃=10 and ρ= 2

3 . Therefore, we have
10× 2

3×12×6+ 1
3×12×6=(1+6)×12×6 holds under 12

training epochs.

- Hybrid layer settings: We also use 1800 queries
through the whole training process, i.e., N=1800. To
generate 6× additional positive queries than the base-
line, we set K=10, L1=4, and L2=2 considering that
10×12×4+12×2=(1+6)×12×6 holds.

Table 6 summarizes the detailed comparison results. Ac-
cordingly, we find that hybrid matching approaches con-
sistently outperform the baseline under different training
epochs (including 1.3× and 1.15× training epochs). We
also report the GPU memory of hybrid-branch/hybrid-
layer/hybrid epoch (for ResNet50): 7728M/7722M/7711M.
We can see that the hybrid branch scheme is the best choice
if we consider the trade-off of training time, inference



Table 7. GFLOPs/training time/GPU memory vs. # query based on our hybrid
branch scheme. The numbers within () are based on Swin-L.

backbone method # query [hyper-parameter] GFLOPs training time (min) GPU memory (M)

ResNet50
(Swin-L)

Baseline 300 [n=300,T=0,K=0] 268.19 (912.29) 65 (202) 5480 (8955)

Ours

600 [n=300,T=300,K=6] 271.24 (915.34) 71 (205) 5719 (9190)

900 [n=300,T=600,K=6] 274.03 (918.12) 72 (208) 6045 (9530)

1200 [n=300,T=900,K=6] 276.82 (920.91) 75 (210) 6528 (10006)

1500 [n=300,T=1200,K=6] 279.60 (923.69) 78 (213) 7071 (10558)

1800 [n=300,T=1500,K=6] 282.39 (926.48) 80 (215) 7728 (11203)

GFLOPs/FPS, and accuracy. Therefore, we choose the hy-
brid branch scheme (for its faster training and inference)
by default if not specified in the following ablation experi-
ments.

About computation/training time/GPU memory cost.
Although H-Deformable-DETR uses 6× number of
queries, it has small training overhead on the original
Deformable-DETR framework: 1.6%/5.4% on GFLOPs
and 6.4%/23.1% on training times for Swin-L/ResNet50,
respectively (see Table 7). This is because only a portion
of the decoder computation is affected by the number of
queries, which takes about 0.3%/1.1% of the entire network
FLOPs for Swin-L/ResNet50. Also note that the more in-
creases in training time is caused by the Hungarian match-
ing (implemented on CPU) and the cost/loss computation
steps, which are inessential, and we leave its optimization
as our future work.

Most of the GPU memory consumption overhead by
our method comes from the naive self/cross-attention mod-
ules. The large memory complexity is not intrinsic, and
it can be significantly reduced by advanced implementa-
tion, e.g., Flash Attention [12] can decrease the memory
to linear complexity, and the sequential attention technique
in SwinV2 can also greatly reduce the memory consump-
tion for both self/cross attention. Both implementations are
equivalent to the original one, thus not compromising ac-
curacy. With these optimized implementation, the memory
consumption increases by more queries are mild.

Effect of each component based on Deformable-DETR.
We choose two-stage Deformable-DETR as our baseline
and report the detailed improvements of each component
in Table 8. Notably, we do not observe the obvious benefits
of applying drop-out rate as zero, mixed query selection,
and looking forward twice1 in other tasks. Therefore, we
only apply this combination of tricks on 2D object detection
tasks by default if not specified. We further analyze the de-
tailed improvements of our approach based on the metrics
of optimal localization recall precision in Figure 4, where
the lower the better. In summary, we can see that our ap-
proach mainly improves the performance from two aspects,
including more accurate localization and fewer false nega-
tives.

1We implement both mixed query selection and looking forward twice
following DINO [82].

Table 8. Comparison results based on two-stage Deformable-
DETR on COCO 2017 val under 12 training epochs. 2×FFN:
increase FFN dimension from 1, 024 to 2, 048. DP0: setting the
drop out rate within transformer as 0. MQS: mixed query selec-
tion. LFT: look forward twice. HM: our hybrid matching.

2×FFN DP0 MQS LFT HM AP

7 7 7 7 7 43.3

3 7 7 7 7 43.7

3 3 7 7 7 44.3

3 3 3 7 7 46.3

3 3 3 3 7 47.0

3 3 3 3 3 48.7

Table 9. Influence of K of our approach on COCO 2017 val
under 12 training epochs. We set T = 300×K.

K 0 1 2 3 4 5 6 7 8

AP 47.0 46.4 46.7 48.1 48.4 48.3 48.6 48.5 48.6

Table 10. Influence of T of our approach on COCO 2017 val
under 12 training epochs. We set K = 6.

T 300 600 900 1200 1500 1800

AP 47.8 48.3 48.4 48.4 48.7 48.6

Choice of K within the one-to-many matching branch.
We study the influence of the choice of K in Table 9. Ac-
cordingly, we find our approach achieves consistent gains
only when choosing K larger than 3. We choose K as 6
on COCO by default. We guess the reasons for the per-
formance drops with smaller K and increases with larger
K are: low-quality queries harm accuracy while larger K
benefit auxiliary loss which helps accuracy. We verify the
quality of different groups of queries between 300-1800 by
training a new detector that replaces the original proposals
of query 0-300. The APs of queries 300-600,600-900,900-
1200,1200-1500,1500-1800 are 42.7/42.8/43.0/43.1/42.5,
suggesting that different groups have similar qualities, al-
though lower than the default of 0-300 (AP=47.0). This
indicates the low-quality issue will not get more serious
when increasing K, while the auxiliary loss can benefit
more from larger K. We also show that designing a careful
selection mechanism for the one-to-many matching branch
can achieve consistent gains even when using K=1 but do
not observe any further benefits when using large K values.
More details are summarized in the supplementary.

Choice of T within the one-to-many matching branch.
We study the influence of the total number of queries T
within the one-to-many matching branch by fixing K as 6
in Table 10. We choose T=1500 on the COCO object de-
tection task as it achieves the best results.

Effect of sharing parameters. We study the influence
of the sharing parameters across the one-to-one matching
branch and one-to-many matching branch in Table 12. We
can observe that (i) using independent classification heads



Table 11. System-level comparisons with the leading single-scale evaluation results on COCO val.

method framework backbone input size #epochs AP AP50 AP75 APS APM APL

Swin [42] HTC Swin-L 1600× 1200 36 57.1 75.6 62.5 42.4 60.7 71.1

CBNetV2 [33] HTC 2× Swin-L 1600× 1400 12 59.1 - - - -

ConvNeXt [43] Cascade Mask R-CNN ConvNeXt-XL 1333× 800 36 55.2 74.2 59.9 - - -

MViTv2 [27] Cascade Mask R-CNN MViTv2-L 1333× 800 50 55.8 74.3 64.3 - - -

MOAT [73] Cascade Mask R-CNN MOAT-3 1344× 1344 36 59.2 77.8 60.9 - - -

Group-DETR [6] DETR Swin-L 1333× 800 36 58.4 - - 41.0 62.5 73.9

DINO-DETR [82] DETR Swin-L 1333× 800 36 58.5 77.0 64.1 41.5 62.3 74.0

H-Deformable-DETR DETR Swin-L 1333× 800 36 59.4 77.8 65.4 43.1 63.1 74.2

Table 12. Influence of sharing parameters on COCO 2017 val
under 12 training epochs.

trans. encoder trans. decoder box head cls head AP

3 3 3 3 48.7

3 3 3 7 48.6

3 3 7 7 48.5

3 7 7 7 48.3

7 7 7 7 47.3

Table 13. Comparison to only using one-to-many matching.

method NMS train time
(average)

inference
FPS

#epochs

12 24 36

Only one-to-many matching 3 95min 5.3 49.4 50.2 48.8

Ours (one-to-one branch) 7

80min

6.7 48.7 49.9 50.0

Ours (one-to-one branch) 3 5.6 48.7 50.0 50.0

Ours (one-to-many branch) 7 6.5 13.5 13.1 12.9

Ours (one-to-many branch) 3 5.4 48.6 49.8 49.9

or bounding box heads does not hurt the performance,
(ii) further using independent transformer decoder layers
slightly drops, and (iii) further using independent trans-
former encoder layers results in significant performance
drops considering the baseline performance is 47.0%. Ac-
cordingly, we can see that the better optimization of trans-
former encoder instead of decoder is the key to the perfor-
mance improvements.

To verify whether this observation still holds on DINO-
DETR, we also report the detailed ablation results in the
supplementary to verify that most of the gains of (contrast)
query denoising essentially come from the better optimiza-
tion of transformer encoder. For example, using indepen-
dent transformer decoders and independent box & classi-
fication heads only suffers from 0.1% ↓ drop while further
using an independent transformer encoder contributes to an-
other 0.5% ↓ drop.
Comparison to only using one-to-many matching. Ta-
ble 13 compares our approach to a strong variant that ap-
plies only one-to-many matching through the whole train-
ing process and NMS during evaluation. We also ablate the
predictions based only on the one-to-one matching branch

or one-to-many matching branch in Table 13. Accord-
ingly, we see that (i) the one-to-many branch evaluated with
NMS achieves comparable performance with the one-to-
one matching branch; (ii) only using one-to-many matching
evaluated with NMS achieves slightly better performance
than ours; (ii) the one-to-one matching branch within our
hybrid matching scheme is the best choice when consider-
ing the training time and inference speed (FPS).

We further conduct more ablation experiments includ-
ing: analyzing the training/validation loss curves of the
one-to-one matching branch, the influence of loss-weight
on one-to-many matching branch, effect of a careful query
selection scheme, precision-recall curves, and so on.

4.3. Comparison with State-of-the-art

Table 11 reports the system-level comparisons to some
representative state-of-the-art methods that use single-scale
evaluation on COCO val and choose backbones of sim-
ilar capacity with Swin-L. By introducing additional en-
hancement techniques in [82], our H-Deformable-DETR
achieves 59.4% on COCO val set, which surpasses the
very recent DINO-DETR method, as well as other top-
performing methods.

5. Conclusion

This paper presents a very simple yet surprisingly effec-
tive hybrid matching scheme to address the low training ef-
ficacy of DETR-based approaches on multiple vision tasks.
Our approach explicitly combines the advantages of a one-
to-one matching scheme, i.e., avoiding NMS, and those of
a one-to-many matching scheme, i.e., increasing the num-
ber of positive queries and training efficacy. We hope our
initial efforts can accelerate the advancement of DETR ap-
proaches on various vision tasks.
Acknowledgement Ding Jia and Chao Zhang are supported
by the National Nature Science Foundation of China un-
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Supplementary
A. Datasets

COCO [36]. The COCO object detection dataset consists
of 123K images with 896K annotated bounding boxes be-
longing to 80 thing classes and 53 stuff classes, where the
train set contains 118K images and the val set contains
5K images. We report the 2D object detection performance
on the val set. The COCO pose estimation benchmark
consists of more than 200K images and 250K person in-
stances labeled with 17 keypoints, where train set con-
sists of 57K images and 150K person instances, val set
consists of 5K images, and test-dev set consists of 20K
images, respectively.

LVIS [19]. This dataset consists of 100K images annotated
with both object detection bounding boxes and instance seg-
mentation masks for 1203 classes. We follow the very re-
cent work Detic [87] to only use the bounding box supervi-
sion for training.

nuScenes [3]. This is a large-scale autonomous driving
dataset consisting of 1000 driving sequences with each one
about 20s long, where the multimodel dataset is collected
from 6 cameras, 1 lidar, and 5 radars. We partition the
1000 driving sequences to 700, 150, and 150 sequences for
train, val, and test respectively. We report both the
numbers of nuScenes Detection Score (NDS) and mean Av-
erage Precision (mAP) to measure the 3D object detection
performance.

ScanNetV2 [10]. This dataset consists of 1513 indoor
scenes labeled with per-point instance ids, semantic cate-
gories and 3D bounding boxes for around 18 categories. We
use 1201 and 312 scenes for train and val, respectively.
We mainly report the mAP scores under two different IoU
thresholds, i.e., 0.25 and 0.5.

MOT17 [51]. This dataset consists of 14 pedestrian track-
ing videos annotated with rich bounding boxes and their
corresponding track ids. We use 7 videos for train and
the other 7 videos for test. Following TransTrack [61],
we split the second half of each train video to form a
val set. We report the multi-object tracking performance
on both val and test.

B. More Hyper-parameter Details

We illustrate the detailed hyper-parameter settings when
applying our hybrid branch approach to different DETR-
based approaches and different benchmarks in Table 14.

C. Panoptic Segmentation Results

To verify the effectiveness of our approach to the panop-
tic segmentation task, we first construct a simple baseline,
i.e., Mask-Deformable-DETR, by adding a mask prediction

Table 14. Illustrating the hyper-parameter settings. 2×FFN: in-
crease FFN dimension from 1, 024 to 2, 048. DP0: setting the
drop out rate within transformer as 0. MQS: mixed query selec-
tion. LFT: look forward twice.

Method 2×FFN DP0 MQS LFT Dataset n T K λ

H-Deformable-DETR 3 3 3 3
COCO 300 1500 6 1.0

LVIS 300 900 5 1.0

H-PETR 3 3 7 7 COCO 300 900 5 1.0

H-PETRv2 7 7 7 7 nuScenes 900 1800 4 1.0

H-TransTrack 7 7 7 7 MOT17 500 1000 5 0.5

Table 15. Panoptic segmentation results on COCO val.

Model Backbone #epochs PQ

Mask-Deformable-DETR R50 12 47.0

H-Mask-Deformable-DETR R50 12 48.5+1.5

Mask-Deformable-DETR R50 50 51.5

H-Mask-Deformable-DETR R50 50 52.1+0.6

Mask-Deformable-DETR R50 100 52.2

H-Mask-Deformable-DETR R50 100 52.6+0.4

Mask-Deformable-DETR Swin-T 50 52.9

H-Mask-Deformable-DETR Swin-T 50 53.5+0.6

Mask-Deformable-DETR Swin-T 100 53.8

H-Mask-Deformable-DETR Swin-T 100 54.2+0.4

Mask-Deformable-DETR Swin-L 50 56.7

H-Mask-Deformable-DETR Swin-L 50 57.0+0.3

Mask-Deformable-DETR Swin-L 100 56.9

H-Mask-Deformable-DETR Swin-L 100 57.2+0.3

head to the Deformable-DETR. Then, we apply our hy-
brid branch scheme to the Mask-Deformable-DETR follow-
ing the H-Deformable-DETR, thus resulting in H-Mask-
Deformable-DETR. We summarize the detailed comparison
results in Table 15. Accordingly, we can see that our hybrid
matching scheme consistently improves ResNet50, Swin-T,
and Swin-L under various training epochs.

For example, H-Mask-Deformable-DETR gains +0.3%
over Mask-Deformable-DETR equipped with Swin-L when
trained for 50 epochs.We guess the relatively limited gains
when compared to object detection tasks, are due to that
the transformer encoder receives much more dense and in-
formative training signals from the extra introduced mask
branch, which consists of the dense interactions between
the query embeddings and the high-resolution feature maps
output by the transformer encoder. We also have verified
that better training of the transformer encoder is the key fac-
tor to the performance improvements.

D. More Ablation Results

- First, we illustrate the curves of training losses and vali-
dation losses based on Deformable-DETR in Figure 5. We
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Figure 5. Illustrating the loss curves of Deformable-DETR on train and val. We can see that, with longer training epochs, e.g., from
50 epochs to 75 epochs, the training loss consistently decreases while the validation loss saturates on COCO object detection benchmark.
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Figure 6. Illustrating the AP scores of Deformable-DETR on
train and val under longer training epochs. We can see that,
with longer training epochs, e.g., from 50 epochs to 75 epochs, the
AP scores on train set consistently improves while the AP scores
on val set saturates on COCO object detection benchmark.

Table 16. Influence of λ of our approach on COCO 2017 val
under 12× epochs training schedule. We set K = 6 and T =
1500.

λ 0.1 0.2 0.5 1 2 5

AP 47.8 48.0 48.4 48.7 48.5 48.3

Table 17. Influence of sharing parameters for DINO framework.

trans. encoder trans. decoder box head cls head AP

3 3 3 3 49.1

3 3 3 7 48.9-0.2

3 3 7 7 49.2+0.1

3 7 7 7 49.0-0.1

7 7 7 7 48.5-0.6

also report the detection performance of Deformable-DETR
under various training schedules from 12× epochs to 75×
epochs in Figure 6. Accordingly, we observe that (i) simply
increasing the number of training epochs fails to improve
the performance, and (ii) Deformable-DETR can not bene-
fit from exploring more positive queries that are matched
with ground truth during the additional training epochs,
which further verifies the advantage of our hybrid match-
ing scheme.
- Second, we study the influence of the loss weight λ as-
sociated with the one-to-many matching loss Lone2many in
Table 16. We can see that our approach is not sensitive to
the choice of λ and we simply choose λ=1 for all experi-
ments by default.
- Third, to investigate why hybrid matching fails to im-
prove the performance when choosing K = 1. We em-
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Figure 7. Illustrating the Precision-Recall curves. We can see that
our approach consistently improves the recall of the baseline under
two different IoU thresholds

pirically find that the bounding boxes located at the top
300 ∼ 600 are of poor localization quality, where simply
replacing the top 0 ∼ 300 bounding box predictions with
top 300 ∼ 600 bounding box predictions during training
and evaluation causes a significant performance drop (47%
vs. 42.5%). To address this problem, we study the influ-
ence of a more advanced selection scheme within one-to-
many matching branch: (i) use two independent classifica-
tion heads on the output of the transformer encoder to per-
form one-to-one/one-to-many (here we use K + 1 groups
of ground truth in one-to-many branch) matching and select
top 300/300×(K + 1) predictions respectively, (ii) use the
remaining 300×(K) predictions in the one-to-many match-
ing branch by filtering out the duplicated ones presented in
the top 300 predictions of the one-to-one matching branch.
Based on the above-improved selection scheme, we achieve
47.9% when choosing K = 1 and observe no advantages
when choosing K = 6 compared to the original selection
strategy.

- Fourth, to verify whether this observation still holds on
DINO-DETR, Table 17 reports the detailed ablation results
on DINO-DETR. We can see that the gains of (contrast)
query denoising also mainly comes from the better opti-
mization of the transformer encoder instead of the decoder.
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Figure 8. Illustrating the loss curves on train and val. Our approach helps the optimization of Deformable-DETR, thus decreasing the
loss values on both train and val of COCO object detection benchmark.

Algorithm 1 Hybrid Matching Loss Function.

1 def naive hybrid loss(
2 outputs one2one,
3 outputs one2many,
4 targets,
5 k repeated targets):
6 loss dict one2one = criterion(
7 outputs one2one, targets)
8 loss dict one2many = criterion(
9 outputs one2many, k repeated targets)

10 def criterion(
11 prediction,
12 target):
13 cost matrix = compute cost()
14 indices = hungarian matching(cost matrix)
15 loss(prediction, target, indices)
16
17
18 def optimized hybrid loss(
19 outputs one2one,
20 outputs one2many,
21 targets,
22 k repeated targets):
23 cost matrix one2one, cost matrix one2many =
24 compute cost(
25 concatenate(outputs one2one, outputs one2many),
26 concatenate(targets, k repeated targets)
27 )
28 indices one2one = hungarian matching(
29 cost matrix one2one)
30 indices one2many = hungarian matching(
31 cost matrix one2many)
32 loss(
33 concatenate(outputs one2one, outputs one2many),
34 concatenate(target, k repeated targets),
35 concatenate(indices one2one, indices one2many))

For example, using independent transformer decoders and
independent box & classification heads only suffers from
0.1% ↓ drop (49.1%→ 49.0%) while further using an inde-
pendent transformer encoder contributes to another 0.5% ↓
drop (49.1%→ 48.5%).
- Fifth, we illustrate the loss curves of our H-Deformable-
DETR and the baseline Deformable-DETR in Figure 8. To
ensure fairness, we only consider the Lone2one through the
whole training procedure. Accordingly, we can see our ap-
proach achieves both lower training loss values and lower
validation loss values, which shows that the additional one-
to-many matching branch could ease the optimization of the
one-to-one matching branch.
- Sixth, we compare the precision-recall curves of the base-

line and our hybrid matching scheme in Figure 7. It can
be seen that our approach mainly improves the recall rate
of the baseline method, thus also ensuring the lower false
negative rates.

E. Accelerate Hybrid Matching

In the original implementation, we simply perform the
one-to-one/one-to-many matching and loss computation
with two independent functions, thus increasing the over-
all training time of each epoch from 75min to 85min when
compared to the baseline that uses the same total number
of queries. To decrease the additional latency, we merge
the computation of their cost matrices and loss functions in
Algorithm 1. Based on the accelerated implementation, we
decrease the original training time from 85min to 80min.
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