
DeepLSD: Line Segment Detection and Refinement with Deep Image Gradients

Rémi Pautrat1 Daniel Barath1 Viktor Larsson2 Martin R. Oswald1,3 Marc Pollefeys1,4
1 Department of Computer Science, ETH Zurich 2 Lund University 3 University of Amsterdam

4 Microsoft Mixed Reality and AI Zurich Lab

Abstract

Line segments are ubiquitous in our human-made world
and are increasingly used in vision tasks. They are com-
plementary to feature points thanks to their spatial extent
and the structural information they provide. Traditional line
detectors based on the image gradient are extremely fast
and accurate, but lack robustness in noisy images and chal-
lenging conditions. Their learned counterparts are more
repeatable and can handle challenging images, but at the
cost of a lower accuracy and a bias towards wireframe lines.
We propose to combine traditional and learned approaches
to get the best of both worlds: an accurate and robust line
detector that can be trained in the wild without ground truth
lines. Our new line segment detector, DeepLSD, processes
images with a deep network to generate a line attraction field,
before converting it to a surrogate image gradient magni-
tude and angle, which is then fed to any existing handcrafted
line detector. Additionally, we propose a new optimization
tool to refine line segments based on the attraction field and
vanishing points. This refinement improves the accuracy of
current deep detectors by a large margin. We demonstrate
the performance of our method on low-level line detection
metrics, as well as on several downstream tasks using multi-
ple challenging datasets. The source code and models are
available at https://github.com/cvg/DeepLSD.

1. Introduction
Line segments are ubiquitous in human-made environ-

ments and encode the underlying scene structure in a com-
pact way. As such, line features have been used in mul-
tiple vision tasks: 3D reconstruction and Structure-from-
Motion (SfM) [18, 34, 36], Simultaneous Localization and
Mapping [14, 16, 27, 40, 66], visual localization [15], track-
ing [41], vanishing point estimation [52], etc. Thanks to
their spatial extent and presence even in textureless areas,
they offer a good complement to feature points [15, 16, 40].

All these applications require a robust and accurate de-
tector to extract line features from images. Traditionally,
line segments are extracted from the image gradient using

LSD [54] HAWP [57]

Line distance field Ours

Figure 1. Line detection in the wild. Top row: on challenging
images, handcrafted methods such as LSD [54] suffer from noisy
image gradients, while current learned methods like HAWP [57]
were trained on wireframe images and generalize poorly. Bottom
row: we combine deep learning to regress a line attraction field
and a handcrafted detector to get both accurate and robust lines.

handcrafted heuristics, such as in the Line Segment Detector
(LSD) [54]. These methods are fast and very accurate since
they rely on low-level details of the image. However, they
can suffer from a lack of robustness in challenging condi-
tions such as in low illumination, where the image gradient
is noisy. They also miss global knowledge from the scene
and will detect any set of pixels with the same gradient
orientation, including uninteresting and noisy lines.

Recently, deep networks offer new possibilities to tackle
these drawbacks. This resurgence of line detection methods
was initiated by the deep wireframe methods aiming at in-
ferring the line structure of indoor scenes [20, 32, 56, 57, 65].
Since then, more generic deep line segment detectors have
been proposed [10, 17, 21, 30, 53], including joint line detec-
tors and descriptors [1,39,59]. These methods can, in theory,
be trained on challenging images and, thus, gain robustness
where classical methods fail. As they require a large recep-
tive field to be able to handle the extent of line segments in

1

ar
X

iv
:2

21
2.

07
76

6v
3

 [
cs

.C
V

]
 2

8
M

ar
 2

02
3

https://github.com/cvg/DeepLSD

an image, they can also encode some image context and can
distinguish between noisy and relevant lines. On the other
hand, most of these methods are fully supervised and there
exists currently only a single dataset with ground truth lines,
the Wireframe dataset [20]. Initially designed for wireframe
parsing, this dataset is biased towards structural lines and
is limited to indoor scenes. Therefore, it is not a suitable
training set for generic line detectors, as illustrated in Fig-
ure 1. Additionally, similarly as with feature points [33, 48],
current deep detectors are lacking accuracy and are still out-
performed by handcrafted methods on easy images. The
exact localization of line endpoints is often hard to obtain,
as lines can be fragmented and suffer from partial occlusion.
Many applications using lines consequently consider infinite
lines and ignore the endpoints [36].

Based on this assessment, we propose in this work to keep
the best of both worlds: use deep learning to process the
image and discard unnecessary details, then use handcrafted
methods to detect the line segments. We thus retain the
benefits of deep learning, namely, to abstract the image and
gain more robustness to illumination and noise, while at the
same time retaining the accuracy of classical methods. We
achieve this goal by following the tracks of two previous
methods that used a dual representation of line segments
with attraction fields [56, 57]. The latter are continuous
representations that are well-suited for deep learning, and
we show how to leverage them as input to the traditional line
detectors. Contrary to these two previous methods, we do
not rely on ground truth lines to train our line attraction field,
but propose instead to bootstrap existing methods to create
a high-quality pseudo ground truth. Thus, our network can
be trained on any dataset and be specialized towards specific
applications, which we show in our experiments.

We additionally propose a novel optimization procedure
to refine the detected line segments. This refinement is based
on the attraction field output by the proposed network, as
well as on vanishing points, optimized together with the seg-
ments. Not only can this optimization be used to effectively
improve the accuracy of our prediction, but it can also be
applied to other deep line detectors.
In summary, we propose the following contributions:

• We propose a method bootstrapping current detectors
to create ground truth line attraction fields on any im-
age.

• We introduce an optimization procedure that can simulta-
neously refine line segments and vanishing points. This
optimization can be used as a stand-alone refinement to
improve the accuracy of any existing deep line detector.

• We set a new record in several downstream tasks requir-
ing line segments by combining the robustness of deep
learning approaches with the precision of handcrafted
methods in a single pipeline.

2. Related Work

Handcrafted Line Detectors. Detecting line segments in
images is traditionally performed based on the image gra-
dient. Early methods threshold the gradient magnitude to
keep only strong edges and search for aligned sets of pixels
sharing the same gradient angle. LSD [54] grows line re-
gions, fits a rectangle to the resulting set of pixels, and finally
extract a line segment. EDLines [4] grows the line regions in
one direction only, orthogonal to the image gradient. Several
extensions of these methods have been proposed, such as the
multi-scale version of LSD, MLSD [44], and ELSED [51],
a faster version of EDLines which avoids breaking lines in
case of small discontinuities. AG3Line [61] proposes to
actively group the seed points and adds line geometry con-
straints. Another approach consists in detecting full lines
with the Hough transform [19] in a first step, then finding seg-
ments within these lines [13]. Since all these methods rely
on low-level details of the image, they are highly accurate
and fast, but lack robustness to noise and low illumination.

Learned Line Detectors. Deep line detection was first
introduced through the task of wireframe parsing, i.e. es-
timating the structural lines of a scene [20]. Several ap-
proaches have been proposed to parameterize and repre-
sent the line segments, e.g., with two endpoints [65], attrac-
tion fields [56, 57], center and offset to the endpoints [21],
graphs [35, 62], and transformers [55]. Wireframes can be
further improved through a Deep Hough transform [32]. All
these methods are trained on a single dataset, the Wireframe
dataset [20], and they are not necessarily suitable for other
tasks such as visual localization and SfM. Generic deep line
segment detectors have also been proposed, with a focus on
efficiency [10, 17], and can improve visual localization with
points and lines [15]. However, these methods are again
trained solely on the Wireframe dataset and their predicted
lines are biased towards structural lines and indoor scenes.

Some works also perform a joint detection and description
of line segments. SOLD2 [39] introduced a self-supervised
training, using the homography adaptation technique initially
described in SuperPoint [12]. ELSD [59] and L2D2 [1] both
propose similar networks, but ELSD is again trained on
the Wireframe dataset, while L2D2 uses a novel process
to extract a line ground truth from LiDAR scans. Though
these approaches are a first step towards unsupervised line
detection, they still lack accuracy.

Attraction Fields. This work proposes to combine deep
learning methods with classical line extractors. The key com-
ponent for this is to use a dual representation of lines through
an attraction field. This representation was first introduced
by Xue et al. [56] for the wireframe task, and later improved
with HAWP [57, 58]. They represent the set of discrete lines
of an image with a continuous 2D vector field, suitable for
deep networks. We adopt a similar approach, with small

2

Warp
+

LSD
Warp back

Convert to
distance/angle

fields

Aggregate

1. Ground truth generation

LSD

2. Attraction field prediction

3. Line segments extraction 4. Line refinement

Supervise

Convert to deep image gradient

Figure 2. Overview of the method. (1) We generate ground truth line distance and angle fields (DF/AF) by bootstrapping LSD [54]. (2) A
deep network is trained to predict the DF/AF, which is then converted to a surrogate image gradient. (3) Line segments are extracted with
LSD and (4) refined based on the DF/AF.

modifications to make the prediction more accurate. While
not exactly an attraction field, Teplyakov et al. [53] also
proposed to predict a line mask and line angle field with
a network, then used LSD [54] to get line segments. Our
method obtains better accuracy by predicting a distance field
instead of a simple binary mask. Attraction fields have also
been leveraged for keypoint detection [22], where 2D vec-
tors are voting for the closest keypoint in the image. These
detections-by-voting offer a convenient way to represent dis-
crete quantities through continuous ones, and are also a key
aspect of our approach when it comes to generating a reliable
ground truth for line detection.

3. Hybrid Line Detector

We demonstrate how to combine the robustness of deep
networks together with the accuracy of handcrafted line
detectors. We train a deep network to predict a line attraction
field, convert it to a surrogate image gradient, and feed it to
a handcrafted line detector to obtain the segments. Finally,
an optimization based on the attraction field is used to refine
the lines, as depicted in Figure 2.

3.1. Line Attraction Field

Representing line segments through an attraction field
was first proposed by Xue et al. [56]. They initially proposed
to regress a 2D vector field for each pixel of an image, in-
dicating the relative position of the closest point on a line.
This approach allows to represent discrete quantities (the line
segments) as a smooth 2-channel image well suited for deep
learning. In [57], the authors enriched the attraction field by

adding two angles pointing at the endpoints of the closest
line. Recovering the original segments from the attraction
field is then straightforward.

However, this representation is not optimal to obtain ac-
curate line segments, as illustrated in Figure 3. Directly pre-
dicting the position of the endpoints as done in HAWP [57]
requires a larger receptive field to be able to get information
from far-away endpoints, so that the network will focus on
higher-level details instead of low-level ones. Additionally,
deep networks are still struggling to yield accurate keypoint
detections [33,48], which holds even more for line endpoints,
which are notoriously noisy and unstable. On the contrary,
handcrafted methods such as LSD [54] are very low-level
and gradually grow a line, so that endpoints are recovered
only at the end of the region growing process. In this work,
we propose to restrict our network to a smaller receptive field
and to let the traditional heuristics determine the endpoints.

We adopt a similar attraction field representation as
HAWP [57] but without the additional two angles point-
ing at endpoints, yielding only a line distance field (DF)
and a line angle field (AF). For every pixel in these two
images, the line distance field D gives the distance from the
current pixel to the closest point on a line, and the line angle
field A returns the orientation of the closest line. These two
quantities can be easily obtained from the 2D offset field
(x,y) ∈ RH×W × RH×W pointing at the closest point on a
line, where (H,W) are the dimension of the image:

D =
√

x2 + y2, A = arctan
y

x
+ π/2 mod π .

(1)
We define here the line angle modulo π so that a pixel above

3

(a) AFM [56] (b) HAWP [57] (c) Distance field (d) Angle field

Figure 3. Attraction field parametrizations. (a) Parametrizing
with 2D vectors may produce noisy angles for small vector norms.
(b) Adding offsets to the endpoints requires long-range information
and is not robust to noisy endpoints. We propose to decouple the
distance field (c) and line orientation field (d).

or below a line would have the same angle. Adopting this
parametrization has the advantage of separating the norm
from the angle of the 2D offset. Traditional detectors are
leveraging the image gradient magnitude and angle, so we
adopt a similar representation. Furthermore, both quantities
are continuous close to line segments, and the line angle is
even constant close enough to a line.

3.2. Ground Truth Generation

To learn the attraction field, a ground truth is needed.
Both AFM [56] and HAWP [57] are supervised with the
ground truth lines of the Wireframe dataset [20]. We explore
a novel method to acquire our ground truth, by bootstrapping
previous line detectors. Inspired by SuperPoint [12] and
SOLD2 [39], we propose to generate the ground truth attrac-
tion field through homography adaptation. Given a single
input image I , we warp it with N random homographies Hi,
detect line segments in all the warped images Ii using any
existing line detector, and then warp back the segments into
I to get a set Li of lines. We use LSD [54] to extract lines as
it is currently among the most accurate existing line detec-
tor. The next step is to aggregate all the detections together,
however, aggregating discrete quantities such as lines is non
trivial. SOLD2 [39] proposed to aggregate the endpoints and
line heatmaps, and recover the segments afterwards. Instead,
we propose to convert the sets of lines Li into a distance
field Di and angle field Ai, and to aggregate them by taking
the median value of each pixel (u, v) across all images:{

D(u, v) = mediani∈[1,N]Di(u, v)
A(u, v) = mediani∈[1,N]Ai(u, v)

. (2)

By taking the median, we remove the noisy lines that were
detected in only a few images, as shown in Figure 4.

3.3. Learning the Line Attraction Field

To regress our line distance and angle fields, we leverage
a UNet-like neural network architecture [43]. The input
image of size (H,W) is processed by several convolutional
layers and gradually downsampled up to a factor of 8 through
3 successive average pooling operations. The features are
then upscaled back to the original resolution through another
series of convolutional layers and bilinear interpolation. The

Input image Distance field Angle field

Figure 4. Pseudo GT visualization. Given an input image, we
generate a line distance and angle fields (color coded [5]) and use
them to supervise a deep network. Noisy lines, such as the ones in
the bush at the bottom, are averaged out and ignored.

resulting deep features are then split into two branches, one
outputting the distance field D̂ ∈ RH×W and the other one
the angle field Â ∈ RH×W . Refer to Figure 2 and supp.
material for the detailed architecture.

While all convolutions are followed by ReLU [2] and
Batch Normalization [23], the last two outputs have different
activations. The angle field is obtained through a sigmoid
activation and is multiplied by π to get an angle within]0, π[.
Since the distance field can get very small values close to
lines, where we also want the highest accuracy, we adopt
a special normalization. The distance field branch ends
with a ReLU activation and outputs a normalized distance
field D̂n ∈ (R+)H×W . The final distance field is obtained
through the following denormalization:

D̂ = r · e−D̂n , (3)

where r is a parameter in pixels that defines a region around
each line. Since handcrafted methods mainly need gradient
information close to line segments, we supervise our network
only on pixels at a distance of less than r pixels from a
line. By selecting a small value for r, large portions of the
image may not have any supervision, including areas where
the pseudo ground truth was not able to detect real lines,
e.g. lines with small contrast. Enforcing these lines to be
in the background during training, i.e. with high distance
field, provides a detrimental training signal and decreases
the recall of the prediction. On the contrary, with our loose
supervision, these low contrast lines are not penalized during
training and our trained model can detect them, thus yielding
a more complete prediction than the ground truth.

We compute the training loss by comparing with a nor-
malized version of the ground truth: Dn = − log

(D
r

)
. Note

that since we only supervise pixels with a distance field be-
low r, Dr ∈ [0, 1] and so Dn ∈ R+. We compute the total
loss as the sum of the losses for the distance field and the
angular field:

L = LD + LA , (4)

where LD is an L1 loss between the normalized distance
fields and LA is an L2 angular loss that takes the circularity
of the angles into account for the given predicted and ground

4

(a) A double edge

(b) HAWP [57] (c) Ours

Figure 5. Distinguishing double edges. (a) An example of a
bright-dark-bright edge and the oriented angle field. (b) Wireframe
methods treat it as a single line. (c) We detect it as two lines for
better accuracy.

truth angle fields Â,A ∈ [0, π]H×W :

LD = ||D̂n −Dn||1 ,
LA = min(||Â − A||2, ||π − |Â − A|||2) .

(5)

3.4. Extracting Line Segments

Since handcrafted detectors are based on the image gradi-
ent, we propose to convert our distance and angle fields into
a surrogate image gradient magnitude M and angle θ:{

M = r − D̂
θ = Â − π

2

. (6)

Our predicted angle follows the directions of the lines
and is perpendicular to the image gradient, so we rotate it by
π
2 . The maximal magnitude of a pixel on a line is r.

An important difference between the approaches of AFM
and LSD is the gradient orientation. For an edge separating
a dark from a bright area, LSD keeps track of the dark-
to-bright gradient direction, while AFM does not. This
becomes important when several parallel lines occur next
to each other in a dark-bright-dark or bright-dark-bright
pattern, as illustrated in Figure 5. For better accuracy and
scale-invariance, we advocate to detect these double edges
and make our predicted angle oriented, based on the sign of
the image gradient angle θI :

θo =

{
θ if d(θ, θI) < d(θ − π, θI)
θ − π otherwise

, (7)

where d(·, ·) is a circular distance between two angles. Now
equipped with an oriented angle θo and magnitude M, we
can directly apply any existing classical line segment detec-
tor. Unless stated otherwise, we always use the LSD [54]

approach in the following, due to its high accuracy. In sum-
mary, the purpose of the deep net is to suppress image noise
and detect low-contrast lines, while the line segments are
accurately extracted by LSD afterwards.

We also add a filtering step, leveraging the DF and AF. We
sample nf points along each line, and compute the fraction p
of samples whose distance function is below ηDF and angle is
close enough to the line orientation with tolerance ηθ. Only
the segments with enough inliers are kept.

3.5. Line Segment Refinement with Optimization

To make lines even more accurate, we propose an opti-
mization step to refine them by leveraging the predicted DF
and AF. This refinement can also be used to enhance the
lines of any other detector, and we show in Section 4.4 how
it can make current deep detectors much more precise.

While lines are detected independently, they usually ap-
pear in highly structured configurations in the image. In
particular, lines that are parallel in 3D will share vanishing
points. We propose to integrate this as soft constraints into
our refinement, effectively reducing the degrees of freedom.

We first compute a set of vanishing points (VPs) associ-
ated with the predicted line segments, using the multi-model
fitting algorithm Progressive-X [7]. We use a strict inlier
threshold to be sure to associate only relevant lines to a VP.
The optimization is then performed independently for each
line and is a weighted unconstrained least square minimiza-
tion of three different costs:

C = λACA + λDCD + λV CV . (8)

Given a set P of nopt points uniformly sampled along a line
segment l, we denote each point by pi, the orientation angle
of the line as θl, and the VP associated with the line as vl.
We use the following three costs:

CA =
1

nopt

∑
pi∈P

(
1−

(
cos(Â(pi)− θl)

))
,

CD =
1

nopt

∑
pi∈P

D̂(pi) , CV = dVP(l,vl) ,

(9)

where dVP is a distance measure between a line and a VP.
We adopt the perpendicular distance of the line endpoints,
projected onto the infinite line passing through the center
of the line and the VP, as in [52]. These objectives are thus
minimizing the difference between the sampled angle Â(pi)
and the line orientation angle, minimizing the average dis-
tance field value over the line, and minimizing the distance
between the line and its VP. In case the closest VP is farther
away from the line than a threshold tVP, we drop the VP
constraint as it would push the line towards a wrong VP. To
avoid lines drifting or collapsing to a single point, we keep
the length of the line fixed, and we only optimize the lines

5

LSD [54] HAWP [57] TP-LSD [21] SOLD2 [39] DeepLSD (Ours)

Figure 6. Line detection examples. Wireframe methods [21,57] only detect structural lines, while DeepLSD offers more generic detections.

over two degrees of freedom: the orientation angle of the line
θl, and a translation of the middle point in the perpendicular
direction of the line.

Since the VPs are already computed, we can even op-
timize the VPs as well, as a by-product of our approach.
Jointly optimizing lines and VPs empirically led to inferior
results, mainly because some lines require more refinement
than others, so that a global refinement performs worse than
independently optimizing the lines. We alternate, instead,
between refining the lines and refining the VPs, for a fixed
number of iterations k. The VP refinement is performed
through a least square minimization of the distance dVP
between the VP and all associated lines, and the line-VP
association is recomputed after each iteration.

3.6. Implementation Details

We train two versions of our network, one indoors on the
Wireframe dataset [20], but without using the ground truth
lines, and one outdoors on MegaDepth [31]. Given the large
size of MegaDepth, we keep 150 scenes for training and 17
for validation, and only sample 50 images from each scene.
We use the Adam optimizer [24] and an initial learning rate
of 1e−3, which is divided by 10 each time the validation loss
reaches a plateau. The training takes roughly 12 hours on a
single NVIDIA RTX 2080 GPU. For the line detection, we
set the line region r to 5 pixels and ignore magnitudes in M
below 3 when applying LSD. We use nf = 50 samples in
the filtering step, ηDF = 1.5, ηθ = π

9 and accept lines with
more than 50% inliers. The parameters for VP estimation
are tuned for each method on a validation set, but the usual
threshold tV P ranges from 1 to 2 pixels. The optimization
weights are empirically chosen as λD = 1, λA = 1, and
λV = 0.2. We adopt nopt = 10 samples, perform a fixed set
of k = 5 alternating iterations, and optimize with Ceres [3].

4. Experiments

To evaluate the performance of our method, we cannot
use labeled lines as the existing ones are usually biased
towards wireframes. We are more interested in evaluating
the potential to use these lines for downstream applications,
such as homography estimation, 3D line reconstruction, and
visual localization. We also provide a visual comparison of
various line detectors in Figure 6.

4.1. Evaluation on Low-Level Metrics

We first evaluate our line detection on two challenging
datasets to test the robustness of the methods. First, the
HPatches dataset [6], consisting of 580 pairs of images with
ground truth homographies relating them and varying il-
lumination and viewpoint changes. Second, the RDNIM
dataset [38], also with image pairs related by a homography
and with challenging day-night variations. We use the night
reference in our experiments to get more challenging pairs.

Similarly as in [39], we assess the repeatability and lo-
calization error metrics. For both metrics, we compute a
one-to-one matching of the detected line segments between
the two images of a pair using the ground truth homography.
For each match, one can then compute the distance between
the line in the reference image and the line of the warped
image reprojected into the reference frame. We consider two
line distance measures: the structural distance evaluating the
average distance between the endpoints, and the orthogonal
distance measuring the average distance of each endpoint
of one line to their orthogonal projection to the other line.
Repeatability (Rep) measures the ratio of lines whose match
has an error below 3 pixels, and the localization error (LE)
returns the average distance of the 50 most accurate matches.

We also compute a homography estimation score, simi-
larly as in [12]. We first match line segments between the
two images, using the Line Band Descriptor (LBD) [60]. To
estimate the homography, we sample minimal sets of 4 line
matches and run LO-RANSAC [29] for up to 1M iterations,
using the orthogonal line distance as reprojection error.

We compare in Table 1 our method to two classical de-
tectors: LSD [54] and ELSED [51]; the best methods using
attraction fields: HAWP [57], its recent update HAWPv3
trained in a self-supervised way [58], and LSDNet [53]: a
similar approach as ours combining LSD and a deep net-
work; and two generic deep line detectors: TP-LSD [21] and
SOLD2 [39]. We use the implementation of the authors with
the biggest model available and default parameters, except
for HAWP where we use a threshold of 0.9, as it was not
detecting enough lines otherwise. HAWPv3 was trained on
ImageNet. For LSD, we use the implementation of Rafael
Grompone1 instead of the OpenCV one as it gets much better
results. Our method is given without the final optimization
in the following, unless otherwise specified.

1http://www.ipol.im/pub/art/2012/gjmr-lsd/

6

http://www.ipol.im/pub/art/2012/gjmr-lsd/

Traditional Learned Hybrid Traditional Learned Hybrid

LSD
[54]

ELSED
[51]

HAWP
[57]

HAWPv3
[58]

TP-LSD
[21]

SOLD2
[39]

LSDNet
[53]

DeepLSD
(Ours)

LSD
[54]

ELSED
[51]

HAWP
[57]

HAWPv3
[58]

TP-LSD
[21]

SOLD2
[39]

LSDNet
[53]

DeepLSD
(Ours)

H
Pa

tc
he

s
[6

]

Struct Rep ↑ 0.314 0.240 0.330 0.272 0.413 0.308 0.108 0.367

R
D

N
IM

[3
8]

0.283 0.209 0.284 0.320 0.344 0.307 0.047 0.285
LE ↓ 1.309 1.551 2.019 2.132 1.500 1.741 2.860 1.235 2.039 2.303 2.206 1.939 1.779 1.879 3.331 1.733

Orth Rep ↑ 0.468 0.465 0.337 0.309 0.444 0.395 0.200 0.485 0.403 0.392 0.284 0.354 0.377 0.386 0.130 0.394
LE ↓ 0.793 0.845 1.905 1.937 1.305 1.362 2.285 0.818 1.369 1.248 2.215 1.704 1.625 1.449 2.752 1.098

H estimation ↑ 0.697 0.617 0.260 0.231 0.388 0.421 0.316 0.705 0.468 0.200 0.006 0.026 0.030 0.182 0.027 0.591

lines / img 492.6 425.4 53.6 82.0 88.6 122.9 172.1 486.2 191.4 112.0 31.6 23.8 24.1 138.2 109.1 400.0
Time [ms] ↓ 104 10 61 51 179 334 48 271 34 3 42 47 75 199 44 96

Table 1. Line detection evaluation on the HPatches [6] and RDNIM [38] datasets. We compare repeatability (Rep) and localization
error (LE) in structural and orthogonal distances, together with homography estimation. We get the best score on homography estimation
and a good trade-off between classical and learned methods for the all metrics. The best score is in bold and the second best is underlined.

From the results, the learned methods, led by TP-
LSD [21], offer good repeatability, but suffer from a low
localization error and inaccurate homography estimation.
Handcrafted methods and our method are much more ac-
curate, due to the fact that they do not directly regress the
endpoints, but gradually grow the line segments using very
low-level details. DeepLSD displays the best improvement
over LSD when the changes become the most challenging,
i.e. on RDNIM with strong day-night changes. It can sig-
nificantly improve the localization error and homography
estimation score. In spite of having a similar approach as
ours, LSDNet [53] performs poorly for multiple reasons:
they lose accuracy by rescaling images to a fixed low reso-
lution, their line mask is less precise than our distance field,
and their training is limited to the Wireframe dataset, while
ours can be trained on more diverse images. Overall, our
method offers the best trade-off between handcrafted and
learned methods and consistently ranks first in the down-
stream task of homography estimation.

4.2. 3D Line Reconstruction

The aim of this work is to provide general-purpose lines
and as such, the lines generated by DeepLSD should be suit-
able for 3D reconstruction. We leverage Line3D++ [18] that
takes a collection of images with known poses and the asso-
ciated 2D line segments, and outputs a 3D reconstruction of
lines. We propose to compare our method with a few base-
lines on the first 4 scenes of the Hypersim dataset [42]. This
synthetic - but highly realistic - dataset has the advantage
of offering a ground truth mesh and 3D model, making it
suitable for a quantitative evaluation. Given the ground truth
mesh of the scene, we can compute the recall and precision
of the 3D lines. Recall is the length in meters of all the
portions of lines that are within 5 millimeters from the mesh.
High values mean that many lines have been reconstructed.
Precision is the percentage of predicted lines that are within
5 millimeters from the mesh. High values indicate that most
of the predicted lines are on a real 3D surface.

The results can be seen in Table 2. DeepLSD obtains
the best recall overall, and second best precision. While

ai 001 001 ai 001 002 ai 001 003 ai 001 004 Average

R P R P R P R P R P

LSD [54] 183.6 95.8 61.8 95.3 385.0 88.9 225.3 91.5 213.9 92.9
SOLD2 [39] 109.9 94.7 89.3 92.8 62.0 89.0 58.6 89.1 80.0 91.4
HAWPv3 [58] 15.8 79.9 15.6 81.0 24.4 68.4 18.5 77.3 18.6 76.7
TP-LSD [21] 68.8 95.3 38.9 94.7 50.7 98.2 102.7 94.3 65.3 95.6
DeepLSD 204.8 96.5 89.5 98.1 378.8 88.0 231.1 91.9 226.1 93.6

Table 2. Line 3D reconstruction evaluation. We reconstruct lines
in 3D with Line3D++ [18] and evaluate the line length recall in m
(R ↑) and precision (P ↑) on the first 4 scenes of Hypersim [42].

TP-LSD [21] ranks first in precision, it is able to recover
very few lines, as shows its average recall, which is 71%
smaller than the one of DeepLSD. We provide qualitative
examples of the reconstructions in the supp. material. Note
that DeepLSD is able to reconstruct more lines and with a
higher precision than LSD [54], the detector that is the most
commonly used for line reconstruction [18].

4.3. Visual Localization

The 7Scenes dataset [50] is a well-known RGB-D dataset
for visual localization, displaying 7 indoor scenes with GT
poses and depth. While most scenes are already saturated
for point-based localization, the Stairs scene remains very
challenging for feature points. Due to the lack of texture and
repeated patterns of the stairs, current point-based methods
are still struggling on this scene [8]. We thus propose to
evaluate our method and previous works on this particular
scene, by following the pipeline of hloc [45, 46], enriched
with line features. As points remain important features, we
still detect SuperPoint features [12] and match them with
SuperGlue [47]. We detect lines with different detectors, and
match them between database and query images with the
SOLD2 descriptor [39]. Since depth is available on 7Scenes,
we can directly back-project lines in 3D and do not rely on
line mapping. In practice, we sample points along each line,
un-project them to 3D, and re-fit a line in 3D to these un-
projected points. We use the solvers of [26,28,64] to generate
poses from a minimal set of 3 features (3 points, 2 points and
1 line, 1 point and 2 lines, or 3 lines), then combine them in a
hybrid RANSAC implementation [9, 49] to robustly recover
the query camera poses. We report the median translation

7

1 / 1 2 / 2 3 / 3 5 / 5 25 / 5
Trans / rot error (cm / deg)

0

20

40

60

80

Po
se

 a
cc

ur
ac

y
(%

)

Point-only
LSD
SOLD2
HAWPv3
TP-LSD
DeepLSD

T / R err ↓ Acc ↑

Point-only 4.7 / 1.25 53.4
LSD [54] 3.4 / 0.94 73.2
SOLD2 [39] 3.5 / 0.96 71.5
HAWPv3 [58] 3.4 / 0.93 72.1
TP-LSD [21] 3.4 / 0.98 74.2
DeepLSD 3.1 / 0.85 76.6

Figure 7. Visual localization on 7Scenes stairs [50]. We evaluate
the median translation and rotation errors (cm / deg), the pose
accuracy at a 5 cm / 5 deg threshold, and plot the pose accuracy
curve for various thresholds.

Struct Orth H
estim

lines
/ img

Time
[ms] ↓

Rep ↑ LE ↓ Rep ↑ LE ↓

HAWP
[57]

Baseline 0.253 1.34 0.253 1.43 0.701
95.2

40
Opt w/o VP 0.300 1.293 0.399 1.067 0.864 142
Opt w/ VP 0.318 1.245 0.431 0.967 0.892 300

TP-LSD
[21]

Baseline 0.273 1.379 0.342 1.269 0.658
90.8

46
Opt w/o VP 0.314 1.326 0.470 0.949 0.898 145
Opt w/ VP 0.331 1.277 0.512 0.861 0.913 297

SOLD2
[39]

Baseline 0.197 1.277 0.333 0.894 0.848
166.7

297
Opt w/o VP 0.172 1.388 0.339 0.814 0.935 426
Opt w/ VP 0.185 1.330 0.368 0.753 0.920 697

DeepLSD
(Ours)

Baseline 0.318 0.941 0.489 0.574 0.991
168.8

68
Opt w/o VP 0.314 0.938 0.482 0.575 0.994 154
Opt w/ VP 0.319 0.927 0.501 0.544 0.981 542

Table 3. Line refinement on the Wireframe dataset [20]. We
use an error threshold of 1 pixel for the repeatability metrics. The
refinement can significantly improve the localization error and
homography score of inaccurate methods.

and rotation error, as well as the percentage of successfully
recovered poses under various thresholds.

Figure 7 shows that DeepLSD obtains the best perfor-
mance on this challenging dataset. One can highlight the
large boost of performance brought by line features com-
pared to using points only. Lines are indeed still present and
well localized in indoor environments such as in this scene,
and can be matched even when in low-textured scenes.

4.4. Impact of the Line Refinement

We evaluate applying our proposed line refinement as a
post-processing step for several learned detection methods.
Classical detectors are usually already accurate enough, so
that our refinement would not enhance them much. For each
method, we compare the raw lines with the lines and VPs
optimized by our line optimization. Table 3 shows results
of line detectors on the 462 images of the test set of the
Wireframe dataset [20]. The second image is obtained using
a synthetic homographic warp of the first image. We use
the Wireframe dataset as it has a lot of well-defined vanish-
ing points, which can be leveraged during the optimization.
We include results for our proposed optimization with and
without the VP constraint to show the increased accuracy
with VPs. As we want to highlight the gain in accuracy, we
compute repeatability with an error threshold of only 1 pixel.

Struct Orth H
estim

lines
/ img

Rep ↑ LE ↓ Rep ↑ LE ↓

Single edge 0.241 2.121 0.328 1.686 0.434 130.8
No DF normalization 0.344 1.343 0.475 0.879 0.674 439.6
HAWP with our lines 0.209 2.138 0.239 1.840 0.245 98.0
DeepLSD (Ours) 0.367 1.235 0.485 0.818 0.705 486.2

Table 4. Ablation study on the HPatches dataset [6]. We com-
pare DeepLSD to alternatives detecting single edges, without DF
normalization and with HAWP re-trained on our line GT.

Results show that the refinement can significantly im-
prove all metrics evaluating the accuracy of the lines, i.e.
the localization error and homography estimation. This is
particularly true for HAWP [57] and TP-LSD [21], with a
decrease in localization error with orthogonal distance of up
to 32% for both, and an improvement of homography score
of 27% and 39%. The benefits brought by the refinement are
lower for our method, as its raw predicted lines are already
sub-pixel accurate and the optimization is limited by the
resolution of the DF and AF. Nonetheless, it can slightly
improve most metrics. A limitation of this refinement is the
execution time, which grows linearly with the number of
lines, and requires running two networks.

4.5. Ablation Study

We validate our design choices on the HPatches
dataset [6] with low-level detector metrics. We compare
our proposed approach with the same model detecting single
edges instead of double ones, our network trained without the
DF normalization, and a version of the HAWP [57] backbone
re-trained on our line GT on the MegaDepth dataset [31].
The results of Table 4 emphasize the importance of each
component. Note that re-training HAWP [57] on our lines
yields poor results due to the high number of GT lines, and
the fact that generic lines have often noisy endpoints, so that
predicting an angle to the two endpoints is noisy as well.

5. Conclusion
We presented a hybrid line segment detector combining

the robustness of deep learning and the accuracy of hand-
crafted detectors, using a learned surrogate image gradient
as intermediate representation. Without the requirement of
ground truth lines, our method can be trained on any dataset
and is suitable for most tasks including line segments. Fi-
nally, we proposed a line refinement able to improve the
accuracy of our method and to bridge the gap in line local-
ization between deep line detectors and handcrafted ones.
We believe that our general-purpose lines will open new
possibilities to use line segments in the wild.

Acknowledgments. We would like to warmly thank Iago Suarez for re-
viewing this paper and for the insightful discussions, as well as Yifan Yu
for sharing his code for visual localization. Daniel Barath was supported by
the ETH Postdoc Fellowship and Viktor larsson by ELLIIT.

8

Supplementary Material

In the following we provide additional results, insights
and visualizations for DeepLSD. Section A describes in
details our network architecture, Section B introduces ad-
ditional ablation studies and insights about our approach,
Section C provides an evaluation of visual localization with
points and lines on the full 7Scenes dataset, Section D gives
additional results about vanishing point estimation from the
detected line segments, Section E displays visualizations of
the 3D reconstruction, Section F highlights some limitations
of our method, and finally Section G offers examples of the
line detections.

A. Network Architecture

We provide more details about the network architecture
that we used to predict attraction fields. We use a simple
U-Net-like architecture [43] with several blocks of convolu-
tions, downsampling the initial image by a factor of 8 and
then upsampling it again to the initial resolution. Down-
sampling is performed through 3 successive 2× 2 average
poolings and upsampling is done with bilinear interpolation.
A skip connection is added before each downsampling layer
and is concatenated with the output of the corresponding
upsampling layer. Please refer to Figure 8 for the detailed
architecture. Each convolution layer is followed by ReLU
activation [2] and Batch Normalization [23], except the fi-
nal layer of each branch. The activations of the two output
branches are ReLU for the distance field and Sigmoid for
the angle field, without batch normalization.

B. Additional Ablation Studies

B.1. Generalization to Other Traditional Detectors

While DeepLSD is using LSD [54] as its base line de-
tector, our approach can be applied to any other traditional
detector leveraging the image gradient. We show here the
results of our method using ELSED [51] as base detector
(coined DeepELSED) and compare it to the original ELSED
in Table 5. We give the results for the raw lines without
any refinement on low-level line detection metrics on the
HPatches [6] and RDNIM [38] datasets. For both traditional
detectors LSD and ELSED, our deep version can improve
most metrics, thanks to the additional robustness brought by
the learned processing of the image.

B.2. Line Refinement on Traditional Methods

The proposed line refinement is mainly aiming at im-
proving the accuracy of previous deep line detectors and
DeepLSD, but one can wonder how it performs with tradi-
tional methods. When refining the lines output by LSD [54]

LSD [54] ELSED [51]

Traditional DeepLSD Traditional DeepELSED

H
Pa

tc
he

s
[6

]

Struct Rep ↑ 0.314 0.367 0.240 0.263
LE ↓ 1.309 1.235 1.551 1.585

Orth Rep ↑ 0.468 0.485 0.465 0.478
LE ↓ 0.793 0.818 0.845 0.839

H estimation ↑ 0.697 0.705 0.617 0.624

lines / img 492.6 486.2 425.4 419.4
Time [ms] ↓ 104 271 10 144

R
D

N
IM

[3
8]

Struct Rep ↑ 0.283 0.285 0.209 0.230
LE ↓ 2.039 1.733 2.303 2.258

Orth Rep ↑ 0.403 0.394 0.392 0.407
LE ↓ 1.369 1.098 1.248 1.361

H estimation ↑ 0.468 0.591 0.200 0.221

lines / img 191.4 400.0 112.0 162
Time [ms] ↓ 34 96 3 88

Table 5. Generalization to other traditional detectors. Our
method is not limited to LSD [54], but can also be applied to
the ELSED [51] line detector for example. We show the com-
parison between our approach and the original detectors on the
HPatches [6] and RDNIM [38] datasets. The first three columns
are identical to Table 1 in the main paper and our results are given
without the final line refinement.

Struct Orth H
estimation

lines
/ img

Time
[ms] ↓

Rep ↑ LE ↓ Rep ↑ LE ↓

LSD
[54]

Baseline 0.386 0.456 0.647 0.12 0.998
352.1

23
Opt w/o VP 0.332 0.593 0.485 0.35 0.994 217
Opt w/ VP 0.332 0.589 0.494 0.325 0.994 545

ELSED
[51]

Baseline 0.185 1.238 0.564 0.36 0.926
178.2

3
Opt w/o VP 0.165 1.315 0.462 0.529 0.989 130
Opt w/ VP 0.164 1.313 0.474 0.502 0.989 397

Table 6. Line refinement of traditional methods on the Wire-
frame dataset [20]. The line refinement can be detrimental for
some outlier lines outside of the distance field, but it is still able
to improve the accuracy of most lines, as shown by the boost of
performance of ELSED in homography estimation.

and ELSED [51] on the Wireframe dataset, we did not ob-
serve any improvement in low-level metrics, except for a
boost of performance in homography estimation for ELSED
(see Table 6). Traditional detectors are indeed already sub-
pixel accurate, so that the limited resolution of the distance
field is not high enough to refine the lines further. The drop
in performance in most metrics can be explained by the fact
that some lines detected by these methods are in areas with
high distance field values, so that these lines will rather drift
than being optimized correctly. However, relevant lines for
downstream tasks still seem to benefit from the refinement
as shown by the large boost in homography estimation for
ELSED.

9

3x3 Conv

1x1 Conv

2x2 Avg pooling

Bilinear upsampling

64
128

512

256

256

256

128
64

64

64

1

1

Skip connection

Figure 8. Network architecture. We use a standard UNet [43] architecture to predict the distance and angle fields.

B.3. Training Learned Baselines with our Supervi-
sion Strategy

In the main paper, we proposed an ablation study by re-
training the HAWP [57] detector with our ground truth (GT)
supervision. We provide here additional details and visu-
alizations of this ablation. Instead of taking our DeepLSD
approach of predicting the distance and angle fields and then
applying LSD on top of it, one could also extract lines from
the ground truth distance and angle fields, and then use these
lines to supervise any existing deep line detector. Figure 9
shows two examples of lines detected by the original HAWP,
the re-trained version using our GT lines, and DeepLSD. The
latter remains the most satisfactory one, and thus justifies our
approach of leveraging traditional line detectors instead of
end-to-end line detection. One reason for the lower quality
of the re-trained HAWP is that predicting the position of
endpoints with an additional attraction field is not suitable
for generic lines, as there are often too many of them in most
images. This approach works better for wireframe lines,
which are sparser and require less accuracy.

C. Additional Visual Localization Results

While the main paper focuses on the most challenging
scene of the 7Scenes dataset [50], Stairs, we provide here
the results of visual localization on the full dataset. As
described in the main paper, we detect keypoints with Super-
Point [12], match them with SuperGlue [47], and build on
top of hloc [45, 46] by adding line features and using them
in the pose estimation. The lines are again matched with the
SOLD2 [39] line detector. Table 7 displays the results of
several state-of-the-art line detectors in terms of translation
and rotation errors, as well as pose accuracy at a 5 cm / 5

degree threshold. DeepLSD obtains the best translation error
on all scenes, as well as the best metrics on the full dataset.
It can be noted that the improvement with respect to previ-
ous methods is rather small, due to the fact that 7Scenes is
already very saturated for visual localization.

D. Vanishing Point Estimation
Another common application for line segments is the

vanishing point (VP) estimation task. Given the line seg-
ments extracted by all the baselines and our method, we
apply multi-model fitting with Progressive-X [7] to find an
unconstrained number of (not necessarily orthogonal) VPs.
A minimal set of 2 lines provides a VP candidate, and its
consistency with the other lines is evaluated under the dVP
metric [52]. This distance is computed as the average or-
thogonal distance between the endpoints of a line segment
and the infinite line going from the VP to the midpoint of
the segment. Based on the inlier lines, we do a weighted
least squares of the distance of all inliers to the VP, using the
line length as weight. We tune the parameters of the model
fitting algorithm for each method on a validation set.

We consider two benchmarks for vanishing point esti-
mation. YorkUrbanDB [11] pictures 102 images (51 for
validation and 51 for test) of urban scenes. It offers 2 or
3 ground truth VPs per image, ground truth lines, and the
association between VPs and lines. Additionally, we con-
sider the extended set of VPs proposed in YUD+ [25], which
labels up to 8 VPs per image. The second dataset is adapted
from the NYU Depth dataset V2 [37] by [25], consisting of
1449 images (we keep the last 49 for parameter tuning), each
labelled with 1 to 8 VPs.

We consider three metrics. VP consistency counts the per-
centage of ground truth lines that are within a given threshold

10

HAWP [57] Re-trained HAWP DeepLSD (Ours)

Figure 9. Re-training the HAWP detector [57] with the proposed pseudo ground truth lines. It yields unsatisfactory lines compared to
the DeepLSD approach, mainly because detecting line endpoints with a network prediction is challenging for high densities of line segments.

Point-only
SP [12] + SG [47] LSD [54] SOLD2 [39] TP-LSD [21] HAWPv3 [58] DeepLSD

Chess 2.4 / 0.81 / 94.5 2.4 / 0.82 / 94.4 2.4 / 0.81 / 94.0 2.4 / 0.80 / 94.4 2.4 / 0.80 / 94.5 2.4 / 0.82 / 94.5
Fire 1.9 / 0.76 / 96.4 1.7 / 0.73 / 96.5 1.8 / 0.76 / 95.9 1.8 / 0.76 / 95.8 1.9 / 0.77 / 97.1 1.7 / 0.70 / 96.7

Heads 1.1 / 0.74 / 99.0 1.1 / 0.74 / 99.4 1.1 / 0.76 / 99.3 1.1 / 0.73 / 99.5 1.1 / 0.80 / 99.2 1.0 / 0.73 / 99.5
Office 2.7 / 0.83 / 83.9 2.6 / 0.79 / 84.7 2.7 / 0.82 / 83.8 2.6 / 0.81 / 84.1 2.7 / 0.82 / 83.8 2.6 / 0.80 / 85.0

Pumpkin 4.0 / 1.05 / 62.0 4.0 / 1.04 / 62.1 4.1 / 1.07 / 60.7 4.0 / 1.04 / 62.6 4.0 / 1.04 / 62.3 3.9 / 1.02 / 62.2
Redkitchen 3.3 / 1.12 / 72.5 3.2 / 1.14 / 73.2 3.2 / 1.12 / 73.5 3.2 / 1.12 / 73.2 3.3 / 1.13 / 73.0 3.2 / 1.13 / 73.4

Stairs 4.7 / 1.25 / 53.4 3.4 / 0.94 / 73.2 3.5 / 0.96 / 71.5 3.4 / 0.93 / 72.1 3.4 / 0.98 / 74.2 3.1 / 0.85 / 76.6

Total 2.9 / 0.94 / 80.2 2.6 / 0.89 / 83.4 2.7 / 0.90 / 82.7 2.6 / 0.88 / 83.1 2.7 / 0.91 / 83.4 2.6 / 0.86 / 84.0

Table 7. Visual localization on the 7Scenes dataset. We report the translation error (in cm) / rotation error (in deg) / pose accuracy at a 5
cm / 5 deg threshold (in %) for the 7 scenes and the average score across all scenes.

of the predicted VPs [52]. Each set of ground truth lines
is associated to a single predicted VP and each VP can be
associated with at most one set of lines. We only show this
metric for YorkUrbanDB as NYU does not have manually
labelled lines. VP error measures how precise the estimated
VPs are in 3D. It is the angular error between the directions
in 3D of the ground truth VPs and the predicted ones. We
perform again a 1:1 matching to optimally assign the pre-
dicted VPs to the ground truth ones. For each experiment,
we run the VP detection algorithm 20 times and report the

median results. AUC represents the Area Under the Curve
(AUC) of the recall curve of the VPs, as described in [25].
We show the average AUC and its standard deviation over 5
runs.

Results are shown in Figure 10 and Table 8. The wire-
frame methods TP-LSD [21] and HAWP [57] are particularly
good for vanishing point estimation, as they only detect struc-
tural lines, which are usually the only relevant ones for VP
estimation. However, when evaluated on the more challeng-
ing and non-Manhattan scenes of NYU-VP, the handcrafted

11

1 2 3 4 5 6 7 8
Error threshold (in px)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
VP

 c
on

sis
te

nc
y

(in
 %

)

GT VPs
LSD
ELSED
SOLD2

TP-LSD
HAWP
Ours

Figure 10. VP consistency on the York Urban dataset [11].
DeepLSD ranks first on the 1 pixel threshold of VP consistency,
meaning that it leads to the largest number of highly accurate VPs.

YUD+ [11] NYU-VP [25, 37]

VP error ↓ AUC ↑ VP error ↓ AUC ↑

LSD [54] 2.05 82.9 (5.3) 3.29 68.6 (6.3)
ELSED [51] 1.88 81.9 (6.0) 3.24 68.3 (6.6)
HAWP [57] 1.76 84.2 (4.2) 3.35 68.0 (5.7)
TP-LSD [21] 1.73 85.1 (5.0) 3.35 68.0 (4.5)
SOLD2 [39] 2.59 75.4 (6.4) 4.46 56.9 (7.6)
DeepLSD (Ours) 1.63 85.6 (3.6) 3.24 69.1 (6.2)

Table 8. VP estimation on York Urban [11] and NYU-VP [25,
37]. We compare DeepLSD with other baselines in terms of me-
dian VP error and average recall AUC (and standard deviation).
DeepLSD obtains the best performance overall.

1 2 3 4 5 6 7 8
Error threshold (in px)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

VP
 c

on
sis

te
nc

y
(in

 %
)

SOLD2
TP-LSD
HAWP
Ours

SOLD2 - Opt
TP-LSD - Opt
HAWP - Opt
Ours - Opt

VP error ↓

HAWP [57] 1.76
HAWP [57] - Opt 1.78

TP-LSD [21] 1.73
TP-LSD [21] - Opt 1.59

SOLD2 [39] 2.59
SOLD2 [39] - Opt 2.28

DeepLSD (Ours) 1.63
DeepLSD (Ours) - Opt 1.59

Figure 11. Effect of the line refinement on VP estimation on
YorkUrbanDB [11, 25]. The line optimization improves the VP
consistency and error of most deep methods.

line detectors provide the best accuracy since they can detect
all types of lines. Our proposed DeepLSD outperforms all
baselines in terms of VP error and AUC, and obtains the
most consistent lines with the GT VPs at small thresholds in
Figure 10.

We additionally study the effect of refinement on the VP
estimation task in Figure 11. We show again the difference
in VP consistency on the YorkUrbanDB dataset [11] and
VP error on YUD+ [25], with the optimization objective
including VPs. Except for HAWP, all methods benefit from
the refinement, showing that our refinement can improve the
lines as much as their associated VPs.

E. Line 3D Reconstruction
We show here in Figure 12 a qualitative comparison of the

3D line reconstructions of our lines and some baselines for
the first 4 scenes of the Hypersim dataset [42]. TP-LSD [21]
can reconstruct fewer lines as it is trained on wireframe
lines only and cannot recover subtle details of the scene.
While LSD [54] is usually the traditional detector being used
for 3D reconstruction [18], the reconstructions produced
by DeepLSD are overall more complete and the lines are
cleaner compared to the LSD reconstruction. In addition,
LSD has a tendency to break segments on higher resolution
images, while DeepLSD will detect longer and cleaner lines.
Thus, it is easy to merge all lines of a track into a nice long
3D line for DeepLSD, while LSD will generate a collection
of dissociated small segments along the 3D line.

F. Limitations
Even though DeepLSD can produce repeatable and accu-

rate lines by taking advantage of the benefits of both tradi-
tional and learned methods, it still suffers from a few limita-
tions:

• The current approach of running a deep network, fol-
lowed by handcrafted heuristics and line optimization is
not fully differentiable. Making the full pipeline differ-
entiable would mean making LSD differentiable, which
is unclear how to do it. We plan to investigate this
further in the future, as an end-to-end pipeline would
certainly provide better training signals to the deep net-
work processing the image.

• The generation of the pseudo ground truth lines is still
limited by the performance of LSD [54]. If a line is
almost never detected by LSD during homography adap-
tation, it will most likely not be detected in the ground
truth attraction field. Similarly, a noisy but repeatable
line will be kept in the pseudo ground truth. One way
to overcome this issue could be to leverage the trained
DeepLSD to re-generate a new pseudo ground truth
with less noise, as was done in SuperPoint [12].

• In spite of our efforts to make the pseudo ground truth
as clean as possible, there is always a trade-off between
detecting all low-contrast lines and avoiding to detect
noisy lines in the background. For example, DeepLSD
misses some good lines at the bottom right of the image
in the 5th row of Figure 13 and is also detecting some
noisy lines in the sky of the image in the 7th row. We
can influence this trade-off in two ways. First, by tuning
the aggregation of the attraction field when generating
the ground truth. We currently take the median value
of the distance and angle fields, but one could also take
a given percentile, to allow more or less outlier values.

12

ai 001 001

LSD [54] SOLD2 [39] TP-LSD [21] DeepLSD (Ours)

ai 001 002

LSD [54] SOLD2 [39] TP-LSD [21] DeepLSD (Ours)

ai 001 003

LSD [54] SOLD2 [39] TP-LSD [21] DeepLSD (Ours)

ai 001 004

LSD [54] SOLD2 [39] TP-LSD [21] DeepLSD (Ours)

Figure 12. Line 3D reconstruction on Hypersim [42]. We leverage the line 3D mapping software Line3D++ [18] on the first 4 scenes of
Hypersim [42]. DeepLSD produces more complete and accurate reconstructions than all baselines.

Second, one can enforce more or less constraints to
the distance field for background areas. Enforcing a
high distance field for pixels far away from the ground
truth lines will reduce the number of noisy lines in
the background, but will also ignore the lines with low
contrast. The parameters proposed in this paper are the
ones visually yielding the best trade-off between the
two.

• Though the input image is processed through a deep
network, there is still no proper semantic understanding
of the detected lines, so that DeepLSD will detect any
kind of lines. Depending on the application, one could
imagine adding some semantic filtering in the ground
truth generation to keep only a specific kind of lines

(e.g. avoiding lines in the sky or on dynamic objects
such as humans).

• The proposed line refinement is for now rather slow, es-
pecially when it is applied to other deep line detectors,
as it requires running two networks. However, we be-
lieve that it is still valuable for applications that can run
offline and that require high precision, such as for 3D
reconstruction. Our current implementation can also
certainly be optimized, and our network compressed to
run on embedded devices, without sacrificing too much
performance.

13

G. Additional Visualizations
We provide a visual comparison of our method and the

other baselines for line detection in Figure 13. We first show
line detection examples from the YorkUrbanDB dataset [11],
picturing indoor and outdoor urban scenes. DeepLSD offers
more complete and accurate lines than its competitors. We
also compare our method to the other line detectors on some
images of the Day-Night Image Matching dataset [63], where
DeepLSD provides more lines than the other baselines in
challenging scenarios such as night time, over-exposition
and low image quality.

References
[1] Hichem Abdellali, Robert Frohlich, Viktor Vilagos, and

Zoltan Kato. L2D2: Learnable line detector and descrip-
tor. In International Conference on 3D Vision (3DV), 2021.
1, 2

[2] Abien Fred Agarap. Deep learning using rectified linear units
(ReLU). In arXiv, 2018. 4, 9

[3] Sameer Agarwal and Keir Mierle. Ceres solver. http:
//ceres-solver.org. 6

[4] C. Akinlar and C. Topal. EDLines: Real-time line segment
detection by edge drawing. In International Conference on
Image Processing (ICIP), 2011. 2

[5] Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth,
Michael J. Black, and Richard Szeliski. A database and
evaluation methodology for optical flow. In International
Conference on Computer Vision (ICCV), 2007. 4

[6] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krystian
Mikolajczyk. Hpatches: A benchmark and evaluation of
handcrafted and learned local descriptors. In Computer Vision
and Pattern Recognition (CVPR), 2017. 6, 7, 8, 9

[7] Daniel Barath and Jiri Matas. Progressive-X: Efficient, any-
time, multi-model fitting algorithm. In International Confer-
ence on Computer Vision (ICCV), 2019. 5, 10

[8] Eric Brachmann and Carsten Rother. Visual camera re-
localization from rgb and rgb-d images using dsac. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 44, 2022. 7

[9] Federico Camposeco, Andrea Cohen, Marc Pollefeys, and
Torsten Sattler. Hybrid Camera Pose Estimation. In Computer
Vision and Pattern Recognition (CVPR), 2018. 7

[10] Xili Dai, Xiaojun Yuan, Haigang Gong, and Yi Ma. Fully
convolutional line parsing. In arXiv, 2021. 1, 2

[11] Patrick Denis, James H Elder, and Francisco J Estrada. Effi-
cient edge-based methods for estimating manhattan frames in
urban imagery. In European Conference on Computer Vision
(ECCV), 2008. 10, 12, 14, 17

[12] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. SuperPoint: Self-supervised interest point detection
and description. In Computer Vision and Pattern Recognition
Workshops (CVPRW), 2018. 2, 4, 6, 7, 10, 11, 12

[13] James H. Elder, Emilio J. Almazán, Yiming Qian, and Ron
Tal. MCMLSD: A probabilistic algorithm and evaluation
framework for line segment detection. In arXiv, 2020. 2

[14] Qiang Fu, Jialong Wang, Hongshan Yu, Islam Ali, Feng Guo,
Yijia He, and Hong Zhang. PL-VINS: Real-time monocular
visual-inertial SLAM with point and line features. In arXiv,
2020. 1

[15] Shuang Gao, Jixiang Wan, Yishan Ping, Xudong Zhang,
Shuzhou Dong, Jijunnan Li, and Yandong Guo. Pose re-
finement with joint optimization of visual points and lines. In
arXiv, 2021. 1, 2

[16] Ruben Gomez-Ojeda, Francisco-Angel Moreno, David
Zuñiga-Noël, Davide Scaramuzza, and Javier Gonzalez-
Jimenez. PL-SLAM: A stereo SLAM system through the
combination of points and line segments. IEEE Transactions
on Robotics, 35, 2019. 1

[17] Geonmo Gu, Byungsoo Ko, SeoungHyun Go, Sung-Hyun
Lee, Jingeun Lee, and Minchul Shin. Towards real-time
and light-weight line segment detection. In Conference on
Artificial Intelligence (AAAI), 2022. 1, 2

[18] Manuel Hofer, Michael Maurer, and Horst Bischof. Efficient
3d scene abstraction using line segments. Computer Vision
and Image Understanding (CVIU), 157, 2017. 1, 7, 12, 13

[19] Paul VC Hough. Method and means for recognizing complex
patterns, 1962. US Patent 3,069,654. 2

[20] Kun Huang, Yifan Wang, Zihan Zhou, Tianjiao Ding,
Shenghua Gao, and Yi Ma. Learning to parse wireframes in
images of man-made environments. In Computer Vision and
Pattern Recognition (CVPR), 2018. 1, 2, 4, 6, 8, 9

[21] Siyu Huang, Fangbo Qin, Pengfei Xiong, Ning Ding, Yijia He,
and Xiao Liu. TP-LSD: Tri-points based line segment detector.
In European Conference on Computer Vision (ECCV), 2020.
1, 2, 6, 7, 8, 11, 12, 13, 17

[22] Zhaoyang Huang, Han Zhou, Yijin Li, Bangbang Yang, Yan
Xu, Xiaowei Zhou, Hujun Bao, Guofeng Zhang, and Hong-
sheng Li. VS-Net: Voting with segmentation for visual local-
ization. In Computer Vision and Pattern Recognition (CVPR),
2021. 3

[23] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift. In International Conference on Machine Learning
(ICML), 2015. 4, 9

[24] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations (ICLR), 2014. 6

[25] Florian Kluger, Eric Brachmann, Hanno Ackermann, Carsten
Rother, Michael Ying Yang, and Bodo Rosenhahn. CONSAC:
Robust multi-model fitting by conditional sample consensus.
In Computer Vision and Pattern Recognition (CVPR), 2020.
10, 11, 12

[26] Zuzana Kukelova, Jan Heller, and Andrew Fitzgibbon. Effi-
cient intersection of three quadrics and applications in com-
puter vision. In Computer Vision and Pattern Recognition
(CVPR), 2016. 7

[27] Manuel Lange, Claudio Raisch, and Andreas Schilling. LVO:
Line only stereo visual odometry. In 2019 International
Conference on Indoor Positioning and Indoor Navigation
(IPIN), 2019. 1

[28] Viktor Larsson. PoseLib - Minimal Solvers for Camera Pose
Estimation, 2020. 7

14

http://ceres-solver.org
http://ceres-solver.org

[29] Karel Lebeda, Jiri Matas, and Ondrej Chum. Fixing the
Locally Optimized RANSAC. In British Machine Vision
Conference (BMVC), 2012. 6

[30] Hao Li, Huai Yu, Jinwang Wang, Wen Yang, Lei Yu, and
Sebastian Scherer. ULSD: Unified line segment detection
across pinhole, fisheye, and spherical cameras. Journal of
Photogrammetry and Remote Sensing (ISPRS), 178, 2021. 1

[31] Zhengqi Li and Noah Snavely. MegaDepth: Learning single-
view depth prediction from internet photos. In Computer
Vision and Pattern Recognition (CVPR), 2018. 6, 8

[32] Yancong Lin, Silvia L Pintea, and Jan C van Gemert. Deep
hough-transform line priors. In European Conference on
Computer Vision (ECCV), 2020. 1, 2

[33] Philipp Lindenberger, Paul-Edouard Sarlin, Viktor Larsson,
and Marc Pollefeys. Pixel-Perfect Structure-from-Motion
with Featuremetric Refinement. In International Conference
on Computer Vision (ICCV), 2021. 2, 3

[34] André Mateus, Omar Tahri, A. Pedro Aguiar, Pedro U. Lima,
and Pedro Miraldo. On incremental structure from motion
using lines. IEEE Transactions on Robotics, 38, 2022. 1

[35] Quan Meng, Jiakai Zhang, Qiang Hu, Xuming He, and Jingyi
Yu. LGNN: A context-aware line segment detector. In ACM
International Conference on Multimedia, 2020. 2

[36] Branislav Micusik and Horst Wildenauer. Structure from
motion with line segments under relaxed endpoint constraints.
International Journal of Computer Vision (IJCV), 124, 2017.
1, 2

[37] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In European Conference on Computer Vision
(ECCV), 2012. 10, 12

[38] Rémi Pautrat, Viktor Larsson, Martin R. Oswald, and Marc
Pollefeys. Online invariance selection for local feature de-
scriptors. In European Conference on Computer Vision
(ECCV), 2020. 6, 7, 9

[39] Rémi Pautrat, Juan-Ting Lin, Viktor Larsson, Martin R. Os-
wald, and Marc Pollefeys. SOLD2: Self-supervised occlusion-
aware line description and detection. In Computer Vision and
Pattern Recognition (CVPR), 2021. 1, 2, 4, 6, 7, 8, 10, 11, 12,
13, 17

[40] Albert Pumarola, Alexander Vakhitov, Antonio Agudo, Al-
berto Sanfeliu, and Francese Moreno-Noguer. PL-SLAM:
Real-time monocular visual SLAM with points and lines.
In International Conference on Robotics and Automation
(ICRA), 2017. 1

[41] Meixiang Quan, Zheng Chai, and Xiao Liu. LOF: Structure-
aware line tracking based on optical flow. In arXiv, 2021.
1

[42] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Ku-
mar, Miguel Angel Bautista, Nathan Paczan, Russ Webb, and
Joshua M. Susskind. Hypersim: A photorealistic synthetic
dataset for holistic indoor scene understanding. In Interna-
tional Conference on Computer Vision (ICCV), 2021. 7, 12,
13

[43] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net:
Convolutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI), 2015. 4, 9, 10

[44] Yohann Salaün, Renaud Marlet, and Pascal Monasse. Mul-
tiscale line segment detector for robust and accurate SfM.
In International Conference on Pattern Recognition (ICPR),
2016. 2

[45] Paul-Edouard Sarlin. Visual localization made easy with
hloc. https://github.com/cvg/Hierarchical-
Localization/. 7, 10

[46] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and
Marcin Dymczyk. From coarse to fine: Robust hierarchical
localization at large scale. In Computer Vision and Pattern
Recognition (CVPR), 2019. 7, 10

[47] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. SuperGlue: Learning feature match-
ing with graph neural networks. In Computer Vision and
Pattern Recognition (CVPR), June 2020. 7, 10, 11

[48] Paul-Edouard Sarlin, Ajaykumar Unagar, Måns Larsson,
Hugo Germain, Carl Toft, Victor Larsson, Marc Pollefeys,
Vincent Lepetit, Lars Hammarstrand, Fredrik Kahl, and
Torsten Sattler. Back to the Feature: Learning Robust Camera
Localization from Pixels to Pose. In Computer Vision and
Pattern Recognition (CVPR), 2021. 2, 3

[49] Torsten Sattler et al. RansacLib - A Template-based *SAC
Implementation, 2019. 7

[50] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram
Izadi, Antonio Criminisi, and Andrew Fitzgibbon. Scene co-
ordinate regression forests for camera relocalization in rgb-d
images. In Computer Vision and Pattern Recognition (CVPR),
2013. 7, 8, 10

[51] Iago Suárez, José M. Buenaposada, and Luis Baumela.
ELSED: Enhanced line segment drawing. Pattern Recog-
nition, 2022. 2, 6, 7, 9, 12

[52] Jean-Philippe Tardif. Non-iterative approach for fast and ac-
curate vanishing point detection. In International Conference
on Computer Vision (ICCV), 2009. 1, 5, 10, 11

[53] Lev Teplyakov, Leonid Erlygin, and Evgeny Shvets. Lsdnet:
Trainable modification of lsd algorithm for real-time line
segment detection. IEEE Access, 10, 2022. 1, 3, 6, 7

[54] Rafael Grompone Von Gioi, Jeremie Jakubowicz, Jean-
Michel Morel, and Gregory Randall. LSD: A fast line segment
detector with a false detection control. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 32(4):722–
732, 2008. 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 17

[55] Yifan Xu, Weijian Xu, David Cheung, and Zhuowen Tu. Line
segment detection using transformers without edges. In Com-
puter Vision and Pattern Recognition (CVPR), 2021. 2

[56] Nan Xue, Song Bai, Fudong Wang, Gui-Song Xia, Tianfu Wu,
and Liangpei Zhang. Learning attraction field representation
for robust line segment detection. In Computer Vision and
Pattern Recognition (CVPR), 2019. 1, 2, 3, 4

[57] Nan Xue, Tianfu Wu, Song Bai, Fudong Wang, Gui-Song Xia,
Liangpei Zhang, and Philip HS Torr. Holistically-attracted
wireframe parsing. In Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 17

[58] Nan Xue, Tianfu Wu, Song Bai, Fu-Dong Wang, Gui-Song
Xia, Liangpei Zhang, and Philip H.S. Torr. Holistically-
attracted wireframe parsing: From supervised to self-
supervised learning. arXiv, 2022. 2, 6, 7, 8, 11

15

https://github.com/cvg/Hierarchical-Localization/
https://github.com/cvg/Hierarchical-Localization/

[59] Haotian Zhang, Yicheng Luo, Fangbo Qin, Yijia He, and Xiao
Liu. Elsd: Efficient line segment detector and descriptor. In
International Conference on Computer Vision (ICCV), 2021.
1, 2

[60] Lilian Zhang and Reinhard Koch. An efficient and robust
line segment matching approach based on lbd descriptor and
pairwise geometric consistency. Journal of Visual Communi-
cation and Image Representation, 24, 2013. 6

[61] Yongjun Zhang, Dong Wei, and Yansheng Li. AG3line: Ac-
tive grouping and geometry-gradient combined validation for
fast line segment extraction. Pattern Recognition, 113, 2021.
2

[62] Ziheng Zhang, Zhengxin Li, Ning Bi, Jia Zheng, Jinlei Wang,
Kun Huang, Weixin Luo, Yanyu Xu, and Shenghua Gao.
Ppgnet: Learning point-pair graph for line segment detection.
In Computer Vision and Pattern Recognition (CVPR), 2019.
2

[63] Hao Zhou, Torsten Sattler, and David W. Jacobs. Evaluating
local features for day-night matching. In European Confer-
ence on Computer Vision Workshops (ECCVW), 2016. 14,
17

[64] Lipu Zhou, Jiamin Ye, and Michael Kaess. A stable algebraic
camera pose estimation for minimal configurations of 2d/3d
point and line correspondences. In Asian Conference on
Computer Vision (ACCV), 2018. 7

[65] Yichao Zhou, Haozhi Qi, and Yi Ma. End-to-end wireframe
parsing. In International Conference on Computer Vision
(ICCV), 2019. 1, 2

[66] Xingxing Zuo, Xiaojia Xie, Yong Liu, and Guoquan Huang.
Robust visual SLAM with point and line features. In Interna-
tional Conference on Intelligent Robots and Systems (IROS),
2017. 1

16

HAWP [57] TP-LSD [21] SOLD2 [39] LSD [54] DeepLSD (Ours)

Figure 13. Visual comparison of line detectors. First five rows: the lines of DeepLSD (here, without line refinement) are more complete
and accurate in urban scenarios (images from the YorkUrbanDB dataset [11]). Last three rows: when employed in challenging scenarios
such as by night, over-exposition and low image quality, DeepLSD can detect more relevant lines than the other baselines (images from the
Day-Night Image Matching (DNIM) dataset [63]).

17

	1 . Introduction
	2 . Related Work
	3 . Hybrid Line Detector
	3.1 . Line Attraction Field
	3.2 . Ground Truth Generation
	3.3 . Learning the Line Attraction Field
	3.4 . Extracting Line Segments
	3.5 . Line Segment Refinement with Optimization
	3.6 . Implementation Details

	4 . Experiments
	4.1 . Evaluation on Low-Level Metrics
	4.2 . 3D Line Reconstruction
	4.3 . Visual Localization
	4.4 . Impact of the Line Refinement
	4.5 . Ablation Study

	5 . Conclusion
	A . Network Architecture
	B . Additional Ablation Studies
	B.1 . Generalization to Other Traditional Detectors
	B.2 . Line Refinement on Traditional Methods
	B.3 . Training Learned Baselines with our Supervision Strategy

	C . Additional Visual Localization Results
	D . Vanishing Point Estimation
	E . Line 3D Reconstruction
	F . Limitations
	G . Additional Visualizations

