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Motivating example

[1,2,3,2,4] -> [1,3,4]
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Motivating example

[1,2,3,2,4] -> [1,3,4]

assert all(i in return_list for i in numbers if numbers.count(i) == 1)



Problem formulation
• Given

• NL description nl for a method m

• Generate a postcondition S of m from nl 

Research Questions:
1. Benchmark and metrics

1. How do we characterize if a specification S captures the intent in nl?
2. How good are LLMs at user-intent-formalization?

2. What are good real-world application of user-intent-formalization?
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Contributions

1. Semantics-based metrics for evaluating user-intent-
formalization (similar to code generation)

2. Empirical evaluation of LLMs for the task of user-intent-
formalization

3. Application: Finding historical real-world bugs
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Problem formulation (ideal)
• Given

• NL description nl for a method m
• (hidden) reference implementation I

• Generate a postcondition S of m from nl 
• Evaluation metrics (intuition)

• Soundness: I satisfies S
• Completeness: S discriminates I from any buggy implementations 
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Problem formulation (based on tests)
• Given

• NL description nl for a method m
• (hidden) reference implementation I + a set of input/output tests T

• Generate a postcondition S of m from nl 
• Evaluation metrics (intuition)

• Test-set Soundness: S is consistent with I for each test t in T
• Test-set Completeness: S discriminates I from any buggy implementations on some 

test t in T
     
      0     if unsound
• Score =    
     |buggy mutants discriminated|/|mutants|
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Buggy mutant generation
Leverage LLMs!
1. Prompt GPT-3.5 to enumerate 200 solutions to nl prompt
2. Group mutants by the subset of tests in T they pass [natural bugs]
3. If too few distinct mutants,

1. Prompt GPT-3.5 to enumerate 200 “buggy” solutions to nl prompt
2. Group mutants by the subset of tests in T they pass [artificial bugs]
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Buggy mutant generation
Leverage LLMs!
1. Prompt GPT-3.5 to enumerate 200 solutions to nl prompt
2. Group mutants by the subset of tests in T they pass [natural bugs]
3. If too few distinct mutants,

1. Prompt GPT-3.5 to enumerate 200 “buggy” solutions to nl prompt
2. Group mutants by the subset of tests in T they pass [artificial bugs]

Hypothesis
• More space of mutations (compared to traditional mutant generation 

through mutating program elements)
• More natural and subtly incorrect mutants? 

18



RQ1: How good are LLMs at generating specs 
from Natural Language?
Evaluation Methodology: EvalPlus
[Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code 
Generation. Liu et al. NeurIPS’23]

For each problem in HumanEvall, we used LLMs to generate a set of 
postconditions. We consider the following ablations1:
1. Model (GPT 3.5 and GPT 4 and StarCoder)
2. Prompting with NL only vs. NL + reference solution 
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RQ1: Postcondition Soundness
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RQ1: Postcondition Completeness

GPT-4 
subsbtantially 

better at 
complete 

specs



Common postcondition categories on 
HumanEval
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Evaluate on Defects4J dataset of real-world bugs 
and fixes in mature Java projects

Our postconditions leverage functional Java syntax introduced in 
Java 8. Not all bugs in Defects4J are Java 8 syntax compatible. 

Our NL2Spec Defects4J subset contains 525 bugs from 11 
projects. These bugs implicate 840 buggy Java methods.
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RQ2: Can GPT-4 generated specifications find 
real-world bugs? 

[Defects4J: a database of existing faults to enable controlled testing studies for Java programs. 2014. Rene Just, Darioush Jalali, Michael Ernst]



We use GPT-4 to generate 10 postconditions and 10 
preconditions for each buggy function. 

We consider two ablations (33,600 total GPT-4 calls)
• NL + Buggy Method Code + Relevant File Context 
• NL + Relevant File Context

For each, we measure:
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Correctness

Does the spec pass the 
tests on correct code?

Bug-discriminating

If it is correct, does the 
spec fail any of the tests 
on buggy code?

RQ2: Bug Finding: Experiments
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Defects4J results

Across ablations, 65 bugs (12.5% of all bugs) are plausibly caught 
by generated specifications

• We manually verify a subset of bug catching conditions



26

Defects4J results

Across ablations, 65 bugs (12.5% of all bugs) are plausibly caught by 
generated specifications

• We manually verify a subset of bug catching conditions

Complementary to prior assertion generation approaches TOGA [Dinella, Ryan, 
Mytkowicz, Lahiri, ICSE’22] and Daikon [Ernst et al. ICSE’99]

• TOGA mostly finds expected exceptional bugs. TOGA can only tolerate bugs during 
testing, and cannot prevent bugs in production. 

• Daikon specs overfit the regression tests and bug-discriminating specs are unsound



TODO Chart Example

https://issues.apache.org/jira/browse/CLI-151
27

RQ2:  Example triggered bug from Defects4J

https://issues.apache.org/jira/browse/CLI-151


Ongoing works around user-intent-formalization

Evaluating user-intent-formalization for verification-aware 
languages (Verus, Dafny, F*) [Lahiri FMCAD’24]

TiCoder: Improving code-generation via user-intent-formalization 
with tests [LLM-based Test-driven Interactive Code Generation: User Study and Empirical 

Evaluation, Fakhoury, Naik, Sakkas, Chakraborty, Lahiri, TSE’24]

Real-world application on generating verified parsers through 
user-intent-formalization of RFC documents 
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  Questions 
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