
Can Large Language Models Transform Natural
Language Intent into Formal Method Postconditions?

Madeline Endres (University of Michigan)
Sarah Fakhoury, Saikat Chakraborty, Shuvendu Lahiri (Microsoft Research)

1

Natural Language

RFCAPI Ref.Docstring

Program

Informal + Ambiguous

Consume/define
requirements

Software requirements are often specified informally

2

Write an
implementation

Formal (yet operational)

Natural Language

RFCAPI Ref.Docstring

Program

Informal + Ambiguous

Consume/define
requirements

Software requirements are often specified informally

3

Write an
implementation

Formal (yet operational)

Significant gap (“what” vs. “how”)

Natural Language

RFCAPI Ref.Docstring

Program

Informal + Ambiguous

Consume/define
requirements

Further compounded
by AI use

Software requirements are often specified informally

4

Write an
implementation

Formal (yet operational)

Significant gap (“what” vs. “how”)

Natural Language

RFCAPI Ref.Docstring

Program

Informal + Ambiguous

Proposal: Formal specifications can reduce the gap

5

Write an
implementation

Formal (yet operational)

Specifications Formal (declarative)

Consume/define
requirements

Natural Language

RFCAPI Ref.Docstring

Program

Informal + Ambiguous

Proposal: Formal specifications can reduce the gap

6

Write an
implementation

Formal (yet operational)

Specifications

Enforceable by PL methods
(tests, formal verification, refinement)

Formal (declarative)

Smaller gap (both capture “what”)

Consume/define
requirements

Natural Language

RFCAPI Ref.Docstring

Program

Informal + Ambiguous

Proposal: Formal specifications can reduce the gap

7

Write an
implementation

Formal (yet operational)

Specifications

Enforceable by PL methods
(tests, formal verification, refinement)

Formal (declarative)

Smaller gap (both capture “what”)

Consume/define
requirements

8

Motivating example

[1,2,3,2,4] -> [1,3,4]

Formal Specifications in Python

9

Motivating example

[1,2,3,2,4] -> [1,3,4]

Formal Specifications in Python

10

Motivating example

[1,2,3,2,4] -> [1,3,4]

Formal Specifications in Python

11

Motivating example

[1,2,3,2,4] -> [1,3,4]

Formal Specifications in Python

12

Motivating example

[1,2,3,2,4] -> [1,3,4]

assert all(i in return_list for i in numbers if numbers.count(i) == 1)

Problem formulation
• Given

• NL description nl for a method m

• Generate a postcondition S of m from nl

Research Questions:
1. Benchmark and metrics

1. How do we characterize if a specification S captures the intent in nl?
2. How good are LLMs at user-intent-formalization?

2. What are good real-world application of user-intent-formalization?

13

Contributions

1. Semantics-based metrics for evaluating user-intent-
formalization (similar to code generation)

2. Empirical evaluation of LLMs for the task of user-intent-
formalization

3. Application: Finding historical real-world bugs

14

Problem formulation (ideal)
• Given

• NL description nl for a method m
• (hidden) reference implementation I

• Generate a postcondition S of m from nl
• Evaluation metrics (intuition)

• Soundness: I satisfies S
• Completeness: S discriminates I from any buggy implementations

15

Problem formulation (based on tests)
• Given

• NL description nl for a method m
• (hidden) reference implementation I + a set of input/output tests T

• Generate a postcondition S of m from nl
• Evaluation metrics (intuition)

• Test-set Soundness: S is consistent with I for each test t in T
• Test-set Completeness: S discriminates I from any buggy implementations on some

test t in T

 0 if unsound
• Score =
 |buggy mutants discriminated|/|mutants|

16

Buggy mutant generation
Leverage LLMs!
1. Prompt GPT-3.5 to enumerate 200 solutions to nl prompt
2. Group mutants by the subset of tests in T they pass [natural bugs]
3. If too few distinct mutants,

1. Prompt GPT-3.5 to enumerate 200 “buggy” solutions to nl prompt
2. Group mutants by the subset of tests in T they pass [artificial bugs]

17

Buggy mutant generation
Leverage LLMs!
1. Prompt GPT-3.5 to enumerate 200 solutions to nl prompt
2. Group mutants by the subset of tests in T they pass [natural bugs]
3. If too few distinct mutants,

1. Prompt GPT-3.5 to enumerate 200 “buggy” solutions to nl prompt
2. Group mutants by the subset of tests in T they pass [artificial bugs]

Hypothesis
• More space of mutations (compared to traditional mutant generation

through mutating program elements)
• More natural and subtly incorrect mutants?

18

RQ1: How good are LLMs at generating specs
from Natural Language?
Evaluation Methodology: EvalPlus
[Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code
Generation. Liu et al. NeurIPS’23]

For each problem in HumanEvall, we used LLMs to generate a set of
postconditions. We consider the following ablations1:
1. Model (GPT 3.5 and GPT 4 and StarCoder)
2. Prompting with NL only vs. NL + reference solution

19

Docstring Postconditions Reference
Implementation

Set of
Test Inputs

Evaluation

LLM

20

RQ1: Postcondition Soundness

Docstring Postconditions

Evaluation

Buggy
Implementations

Set of
Test Inputs

LLM

21

RQ1: Postcondition Completeness

GPT-4
subsbtantially

better at
complete

specs

Common postcondition categories on
HumanEval

22

Evaluate on Defects4J dataset of real-world bugs
and fixes in mature Java projects

Our postconditions leverage functional Java syntax introduced in
Java 8. Not all bugs in Defects4J are Java 8 syntax compatible.

Our NL2Spec Defects4J subset contains 525 bugs from 11
projects. These bugs implicate 840 buggy Java methods.

23

RQ2: Can GPT-4 generated specifications find
real-world bugs?

[Defects4J: a database of existing faults to enable controlled testing studies for Java programs. 2014. Rene Just, Darioush Jalali, Michael Ernst]

We use GPT-4 to generate 10 postconditions and 10
preconditions for each buggy function.

We consider two ablations (33,600 total GPT-4 calls)
• NL + Buggy Method Code + Relevant File Context
• NL + Relevant File Context

For each, we measure:

24

Correctness

Does the spec pass the
tests on correct code?

Bug-discriminating

If it is correct, does the
spec fail any of the tests
on buggy code?

RQ2: Bug Finding: Experiments

25

Defects4J results

Across ablations, 65 bugs (12.5% of all bugs) are plausibly caught
by generated specifications

• We manually verify a subset of bug catching conditions

26

Defects4J results

Across ablations, 65 bugs (12.5% of all bugs) are plausibly caught by
generated specifications

• We manually verify a subset of bug catching conditions

Complementary to prior assertion generation approaches TOGA [Dinella, Ryan,
Mytkowicz, Lahiri, ICSE’22] and Daikon [Ernst et al. ICSE’99]

• TOGA mostly finds expected exceptional bugs. TOGA can only tolerate bugs during
testing, and cannot prevent bugs in production.

• Daikon specs overfit the regression tests and bug-discriminating specs are unsound

TODO Chart Example

https://issues.apache.org/jira/browse/CLI-151
27

RQ2: Example triggered bug from Defects4J

https://issues.apache.org/jira/browse/CLI-151

Ongoing works around user-intent-formalization

Evaluating user-intent-formalization for verification-aware
languages (Verus, Dafny, F*) [Lahiri FMCAD’24]

TiCoder: Improving code-generation via user-intent-formalization
with tests [LLM-based Test-driven Interactive Code Generation: User Study and Empirical

Evaluation, Fakhoury, Naik, Sakkas, Chakraborty, Lahiri, TSE’24]

Real-world application on generating verified parsers through
user-intent-formalization of RFC documents

28

 Questions

29
Trusted AI-assisted Programming projectPaper page

	Default Section
	Slide 1: Can Large Language Models Transform Natural Language Intent into Formal Method Postconditions?
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Problem formulation
	Slide 14: Contributions
	Slide 15: Problem formulation (ideal)
	Slide 16: Problem formulation (based on tests)
	Slide 17: Buggy mutant generation
	Slide 18: Buggy mutant generation
	Slide 19: RQ1: How good are LLMs at generating specs from Natural Language?
	Slide 20: RQ1: Postcondition Soundness
	Slide 21: RQ1: Postcondition Completeness
	Slide 22: Common postcondition categories on HumanEval
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Ongoing works around user-intent-formalization
	Slide 29: Questions

