
JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXX XXX 1

Towards Contextual Spelling Correction for
Customization of End-to-end Speech

Recognition Systems
Xiaoqiang Wang, Yanqing Liu, Jinyu Li, Veljko Miljanic, Sheng Zhao, Hosam Khalil

Abstract—Contextual biasing is an important and challenging
task for end-to-end automatic speech recognition (ASR) systems,
which aims to achieve better recognition performance by biasing
the ASR system to particular context phrases such as person
names, music list, proper nouns, etc. Existing methods mainly
include contextual LM biasing and adding bias encoder into
end-to-end ASR models. In this work, we introduce a novel
approach to do contextual biasing by adding a contextual spelling
correction model on top of the end-to-end ASR system. We
incorporate contextual information into a sequence-to-sequence
spelling correction model with a shared context encoder. The pro-
posed model includes two different mechanisms: autoregressive
(AR) and non-autoregressive (NAR). We also propose filtering
algorithms to handle large-size context lists, and performance
balancing mechanisms to control the biasing degree of the model.
The proposed model is a general biasing solution which is
domain-insensitive and can be adopted in different scenarios.
Experiments show that the proposed method achieves as much
as 51% relative word error rate (WER) reduction over ASR
system and outperforms traditional biasing methods. Compared
to the AR solution, the NAR model reduces model size by 43.2%
and speeds up inference by 2.1 times.

Index Terms—speech recognition, contextual spelling correc-
tion, contextual biasing, non-autoregressive.

I. INTRODUCTION

IN recent years, end-to-end (E2E) ASR systems [1] have ob-
tained significant improvements and achieved performance

comparable to traditional hybrid systems [2, 3]. Some rep-
resentative works include Attention-based Encoder-Decoder
(AED) [4–6], recurrent neural network Transducer (RNN-T)
[7–10] and transformer transducer (T-T) [11–13]. However,
it’s still challenging for E2E models to incorporate contex-
tual information which is dynamic and domain related. Such
information may be person names in a personal assistant,
commonly used terms in a specific domain, proper nouns
and so on. E2E ASR systems may perform poorly when this
context information is not covered by the training set or it is
pronounced similarly to other terms.

Prior works to customize E2E ASR systems with contextual
knowledge can be broadly classified into two categories. The
first one is incorporating an external contextual language
model (LM) into the E2E decoding framework to bias the

Xiaoqiang Wang, Yanqing Liu, and Sheng Zhao are with Microsoft, China
(e-mail: {xiaoqwa, yanqliu, szhao}@microsoft.com).

Jinyu Li, Veljko Miljanic and Hosam Khalil are with Microsoft, US (e-mail:
{jinyli, veljkom, hosamk}@microsoft.com).

Manuscript received xxx xxx, xxx; revised xxx xxx, xxx.

recognition results towards context phrase list, which is gener-
ally implemented by adopting shallow fusion with a contextual
finite state transducer (FST) [14–18]. The second category
is adding a context encoder which incorporates contextual
information into E2E ASR systems [16, 19, 20]. This method
conducts contextual biasing in an E2E manner. However,
it changes the source ASR model and [16] also reported
scalability issues with large biasing phrase list.

Different from traditional methods, we propose to do con-
textual biasing on the ASR output with a contextual spelling
correction model. We aim to make it an efficient, robust and
general solution as a post processing “plug-in” module for
E2E ASR customization. To achieve this, an autoregressive
(AR) and a non-autoregressive (NAR) contextual spelling
correction model [21] are proposed. The AR design, denoted
as Contextual Spelling Correction (CSC), adds an additional
context encoder into an AR E2E spelling correction model,
which contains a text encoder, a context encoder, and a
decoder. The contextual information is incorporated into the
decoder by attending to the hidden representations from the
context encoder with an attention mechanism [22]. For the
NAR model, denoted as Fast Contextual Spelling Correction
(FCSC), we directly feed the output of text encoder into
the decoder. The decoder attends to the context encoder and
identifies locations that should be corrected and the candidate
context index at each position. One of the advantages is that
we can generate results in parallel and don’t need to conduct
label-by-label prediction in AR, and the decoding speed is
also increased. It should be noted that by FCSC we change
this problem from a generation task to a classification task.
CSC has the potential to correct any error made by the ASR
system while FCSC focuses on biasing phrases, which is also
a main difference between CSC and FCSC. During inference,
filter mechanisms for the context list are proposed to improve
inference efficiency and deal with the scalability issues for
large context lists. Performance balancing mechanisms are
also proposed to adjust biasing degree and control possible
WER regressions on general utterances that we do not want
to bias. In addition, we demonstrate that the model is a
general contextual biasing solution which is effective among
different domains. Across several experiments, we find that
the proposed method significantly outperforms the baseline
contextual FST biasing method, and additional improvements
can be achieved by further combining the proposed method
on top of FST biasing, leading to the best performance.
Additionally, compared to the AR model, the NAR solution

JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXX XXX 2

reduces model size by 43.2% and speeds up the inference by
2.1 times while achieving WER improvement.

II. RELATED WORK

A. Contextual LM Biasing

A straightforward way to do contextual biasing is combining
a contextual LM into the ASR system by shallow fusion, this
language model is generally constructed by context phrases
as an FST. For the E2E ASR system, it’s implemented by
interpolating the model posterior probabilities P with the
scores Pc from an external contextual LM during beam-search
decoding:

y∗ = argmax
y

logP (y|x) + λlogPc(y), (1)

where λ is a tunable parameter which decides the weight of
contextual LM. The contextual LM is constructed by compil-
ing the list of biasing phrases into FST. This method is denoted
as FST biasing below. In this research line, several techniques
have been explored to improve the biasing performance for
the E2E ASR system. [14] proposed to bias the E2E model by
applying the contextual LM score boosts at word boundaries.
This method cannot deal with proper nouns well because the
E2E model uses graphemes or wordpieces during beam search
and works at subword unit level. To deal with this problem,
[16] proposed to push the weights of the subword FST to
each subword unit, which is found to be more effective in
E2E ASR biasing. Techniques including adding failure arcs,
biasing before beam pruning, biasing at the wordpiece level
rather than grapheme level, and adding activation prefix to
avoid regression on utterances that do not contain any biasing
phrase (anti-context) are also explored to further improve the
model performance [16, 17].

B. Bias Encoder

Contextual biasing through shallow fusion is not jointly
optimized with the training of the ASR model, which goes
against the benefits of direct objective optimization of E2E
models. To address this problem, the methods that incorporate
contextual information by introducing an additional bias en-
coder into the E2E framework were proposed, such as CLAS
[16], contextual RNN-T [19] and Phoebe [20]. This kind of
method trains the E2E ASR model together with a bias encoder
which encodes a context list created from the transcripts
associated to the utterances in the training batch, and the
decoder attends to both the audio encoder and bias encoder
to bias output distribution during decoding. In inference,
the context phrase list is incorporated as the input of bias
encoder. However, this method is more expensive in training
and inference [16] and changes the structure of raw ASR
models. Some other works, such as trie-based deep biasing
[23], two-step memory enhanced model [24], tree-constrained
pointer generator component [25] are also investigated to
further improve the model performance.

C. Spelling Correction and deliberation

The current research on spelling correction and deliberation
approaches mainly try to improve the general ASR accuracy
without contextual information. Spelling correction models
correct errors in ASR outputs in an E2E manner. In this
research line, [26] first proposed an LSTM-based seq-to-seq
model which was trained on synthesized speech generated
from text-only data. The results showed reasonable improve-
ments compared to simple LM rescoring methods. After that,
more structures and training strategies have been proposed,
such as a transformer-based model [27] for a Mandarin speech
recognition task, models initialized from a pre-trained BERT
model [28] or RoBERTa model [3], and so on. Different from
spelling correction model, deliberation model [29–31] attends
to both first-pass decoding hypothesis and acoustic features
to further improve recognition accuracy. One disadvantage of
spelling correction or deliberation approaches is that it’s hard
to do streaming, and there is possible extra model size and
latency impact for E2E ASR system due to additional decoding
pass. To mitigate the latency issue, [32] proposed an NAR
spelling correction model FastCorrect which adds a length
predictor to predict the target token number for each source
token and generate target sequence input. Though the latency
is largely reduced, there is still some regression compared to
the AR model.

III. METHODOLOGY

A. Autoregressive Contextual Spelling Correction

1) Model structure: As shown in Figure 1, this model is a
seq2seq [33] model with a text encoder, a context encoder, and
a decoder, which takes the ASR hypothesis as the text encoder
input and the context phrase list as the context encoder input.
The context encoder encodes each context phrase as hidden
states, these hidden states are averaged by context embedding
generator to get context embedding. The decoder takes the
output of the previous step as input autoregressively, and
attends to the outputs of both encoders. These attentions are
then added up to generate the final attention, from which the
decoder obtains information from ASR hypothesis and context
phrase embeddings to correct contextual misspelling errors.
All the components are transformer-based [34] and composed
by pre-LayerNorm [35, 36], self-attention, encoder-decoder
attention and feed-forward layer (FFN). Because the inputs of
text encoder and context encoder are both transcriptions, it’s
natural to share the parameters of these two encoders, which
reduces the model size and also helps context encoder training.
The final loss is the cross entropy of output probabilities and
ground truth label.

B. Non-autoregressive Contextual Spelling Correction

1) Model structure: As shown in Figure 2, similar to AR
CSC model, the proposed NAR model (FCSC) contains a text
(ASR hypothesis) encoder, a context encoder and a decoder,
where the text encoder takes ASR decoding results as input
and the context encoder takes biasing phrase list as input.
The parameters of the two encoders are shared. The decoder

JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXX XXX 3

Self attention

Feed Forward
N ×

Self attention

Feed Forward
Share

params

Context embed

generator

Text Encoder Context Encoder

Self attention

Src attention

Feed Forward

Output probabilities

Outputs

(shifted right)

ASR hyp Context list

N ×

Decoder

Embedding Embedding
Share

params

Self attention

Feed Forward
N ×

Self attention

Feed Forward
Share

params

Context embed

generator

Text Encoder Context Encoder

Self attention

Src attention

Feed Forward

Output probabilities

Outputs

(shifted right)

ASR hyp Context list

N ×

Decoder

Embedding Embedding
Share

params

Fig. 1. Autoregressive contextual spelling correction (CSC) model, which
contains a text encoder, a context encoder and a decoder, the two encoders
share parameters.

directly takes the output of text encoder as input and attends to
the context encoder to decide where to correct and select which
context phrase to correct. The encoder and decoder are both
transformer-based, the output hidden states of each context
phrase are averaged to obtain the context phrase embedding by
context embedding generator. The similarity layer calculates
the similarity of decoder output hidden states with context
embeddings by an inner product operation:

sij = softmax(
QiW

Q(KjW
K)T√

dk
), (2)

where Qi is the decoder hidden state at i-th position, Kj is
the j-th context phrase embedding, and dk is the dimension
of K.

2) Contextual biasing mechanism: The decoder has two
outputs:

CLS tag cls. The position-wise classification (CLS) tag
cls has the same sequence length as input ASR hypothesis,
which determines whether to correct the token at this position
or not. It uses “BILO” representation where “B”, “I” and “L”
represent the beginning, inside and last position of a context
phrase, “O” represents a general position outside of a context
phrase.

Context index cind. Context index is the output of sim-
ilarity layer, which is the expected index of the ground-truth
context phrase in the bias list for this position. We add an
empty context at the beginning of the bias list, hence the
context index for general tokens that should not be corrected
is 0. As shown in Equation 2, the output hidden dimension of
similarity layer at each position i is the same as the input bias
list size, and the context phrase corresponding to the largest
value in si is selected during decoding for this position:

cindi = argmax si. (3)

Self attention

Feed Forward
N ×

Self attention

Feed Forward
Share

params

Context embed

generator

Text Encoder Context Encoder

Self attention

Src attention

Feed Forward

CLS tag

ASR hyp Context list

N ×

Similarity layer

Context index

Decoder

Embedding Embedding
Share

params

Self attention

Feed Forward
N ×

Self attention

Feed Forward
Share

params

Context embed

generator

Text Encoder Context Encoder

Self attention

Src attention

Feed Forward

CLS tag

ASR hyp Context list

N ×

Similarity layer

Context index

Decoder

Embedding Embedding
Share

params

Fig. 2. Non-autoregressive contextual spelling correction (FCSC) model, the
decoder directly takes the text encoder output as input, and has two outputs:
CLS tag and Context index.

According to the output CLS tag and context index, the final
correction results can be determined by replacing the words
tagged by CLS tag cls with the context phrase selected by
context index cind. Here is an input/output example:

biasing phrases c {“”, “Jack”, “Joe Biden”, ..., “Tom Jones”}
ASR hyp x [“ who”, “ is”, “ john”, “ b”, “ide”]
CLS tag cls [O, O, B, I, L]
Context index cind [0, 0, 2, 2, 2]
Final output [“ who”, “ is”, “ joe”, “ b”, “id”, “en”]

In this example, the context phrase “Joe Biden” is rec-
ognized as “John Bide” by the ASR system, and the index
of target context phrase “Joe Biden” is 2 in the bias list.
By design, the wordpieces of “John Bide” should be labeled
as [B,I,L] for CLS tag, and the corresponding context index
output should be the same to where “Joe Biden” is in context
list. It should be noted that the final output sequence length
can be different from the input due to the replace operation.

The final loss function is the sum of CLS tag loss and
context index loss:

L = H(ŷcls, ycls) +H(ŷcind, ycind). (4)

C. Data Processing and Training Strategy

For both CSC and FCSC, we first generate reference-
hypotheses pairs from a large set of phrases by using a TTS
system. Then the training data is generated during training
by combining these context reference-hypotheses pairs with
general scripts or sentence patterns. We also use teacher-
student learning and quantization to reduce the model size
and speed up inference.

1) Text to speech: To prepare the training data, we first
collect a large number of context phrases, then a multi-speaker
multi-locale (en-*, including en-us, en-gb, en-in, etc.) text

JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXX XXX 4

to speech (TTS) system [37] is adopted to generate TTS
audio for these phrases. The generated TTS data are then
fed into the ASR model to get recognition hypotheses. The
input context phrase and the generated hypotheses are paired to
get context reference-hypotheses pairs, examples like “John”–
[“Jane”, “Jon”, “June”]. It should be noted that most context
phrases are much shorter than training scripts, which leads to
a fast data preparation process both in TTS data generation
and ASR inference.

2) Training pairs construction: We also prepare a set of
sentence patterns and general scripts to generate training
scripts together with the prepared context reference-hypotheses
pairs during training. For sentence patterns, we fit the context
phrase and one of its hypotheses into the pattern. For general
scripts, we randomly replace words with context phrase and
its hypothesis. Here is an example:

Context ref-hyp pair “John” – [“Jane”, “Jon”, “June”]

Pattern Call <PersonName> at ten a.m.
Hyp x Call Jon at ten a.m.
Ref y Call John at ten a.m.

General script When do you come to me
Hyp x When do you come to Jane
Ref y When do you come to John

Where “Jon” and “Jane” are randomly selected hypothesis
of context phrase “John” for the sentence pattern and general
script, “me” is the randomly selected word to be replaced for
the general script.

To take care of utterances that do not contain any context
phrase but with a biasing phrase list (anti-context) and cases
that the target context phrase somehow doesn’t appear in the
biasing phrase list, we also leave part of the input general
scripts in the training set unchanged with probability Pcont.

3) Context setup: During training, we randomly sample Nc

biasing phrases for each utterance from the whole context
list which is pooled from biasing phrases of all utterances in
this batch. Nc is randomly sampled from uniform distribution
[1, Ncmax], where Ncmax is the max context list size defined
as a training hyper-parameter. To distinguish the sampled
context list for each utterance in the batch, a context mask
is adopted on top of the context embedding generator. What’s
more, to increase the diversity of possible error patterns, be-
sides using multi-speaker multi-locale TTS system to generate
TTS data, we also swap the reference context phrase and its
hypothesis randomly with probability Pm to extend the set of
context reference-hypotheses pairs.

4) Teacher-student learning: Teacher-student learning [38,
39] is an effective way to reduce model size and improve
inference efficiency. For both CSC and FCSC, we use teacher-
student learning to make it smaller and more efficient. The loss
function to train the student model contains a hard loss Lhard

and a soft loss Lsoft. The hard loss is the cross-entropy of
student model output yS and reference y, and the soft loss is
the KL-divergence of yS and teacher model output yT :

L = αLsoft + (1− α)Lhard (5)

Lhard = H(yS , y) (6)

Lsoft = DKL

(
softmax(

yS
T

), softmax(
yT
T

)
)
· T 2 (7)

where T is the temperature to adjust the smoothness of
output probabilities, α determines the proportion of hard loss
and soft loss. For FCSC, the final hard/soft loss is the sum of
the loss of CLS tag cls and Context index cind:

Lhard = Lcls
hard + Lcind

hard (8)

Lsoft = Lcls
soft + Lcind

soft (9)

D. Inference

1) Context pre-selection mechanism: For context phrase
list, we propose a relevance ranker (rRanker) and a preference
ranker (pRanker) to preselect context phrases from the raw
context list size and deal with the possible scalability issue.
The preference ranker represents the preliminary knowledge of
the context phrases in terms of preference weight, examples
like the call frequency of context phrases in the target domain.
The relevance ranker aims to measure the relevance between
the specific ASR hypothesis and the given context phrases.
To simplify the inference process and control latency, we
propose an edit distance-based method to obtain the weight
of relevance ranker:

W j
r = −mini(edit distance(cj , ei))

len(cj)
, (10)

where ei is the segment cut off from input ASR hypothesis
with the same length of the context phrase cj from the i-
th word. The final relevance ranker weight is the minimum
value of these edit distance normalized by the length of cj .
For edge cases where the length of remaining characters from
the i-th word is shorter than cj , we simply use the remaining
characters as ei. Here is an example:

e1 e3 e6
Please send a message to Ernest
cj : Earnest

where e1 and e3 are the first and third segments cut off from
the first and third word with the same length of cj . e6 is an
edge case which is shorter than cj . The minimum edit distance
should be obtained at e6. After that, the preference ranker
weight Wp and relevance ranker weight Wr are combined with
weight αp and 1−αp, respectively. The top Kf context phrases
are then selected out from the raw Kr bias phrases as the final
input for context encoder:

c1, c2, ..., cKf
= arg topK

j
(αpW

j
p + (1− αp)W

j
r). (11)

2) FCSC output format: For FCSC, the final output is
determined based on the model outputs CLS tag cls and
context index cind. However, during inference, the output
format is not always as standard as what training set looks
like, which is referred to as illegal output. Some examples are
listed in Table I. This happens when the model is not that
confident of the output, so we will give up correcting such
cases.

JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXX XXX 5

TABLE I
OUTPUT EXMAPLES OF cls AND cind FOR FCSC

Outputs Comments Legal or not

cls: [O, O, B, I, L, O] correct !
cind: [0, 0, 9, 9, 9, 0]

cls: [O, O, B, I, I, O] incomplete cls where the #
cind: [0, 0, 6, 6, 6, 0] end position tag L is lost

cls: [O, O, B, L, O] cls and cind inconsistency #
cind: [0, 4, 4, 0, 0]

cls: [O, B, I, L] tagged position corresponds
cind: [0, 4, 5, 4] to multiple context indexes #

3) Performance balancing: When the model is too “bi-
ased”, the model may suffer from regressions on anti-context
cases. FST biasing generally uses an interpolation weight λ to
balance the model performance among biasing sets and anti-
context cases. For the proposed method, a part of training
set are general scripts without context phrase, which teaches
the model to decide when to correct according to the given
context phrase list and the input ASR hypothesis, hence the
model can effectively control the regression on anti-context
cases by itself. However, regressions still exist for some cases
and there may be additional requirements on the regression
in real application. Here we propose to use NER detector
and controllable parameter so to control the regression of
CSC/FCSC. We will show the effectiveness of these methods
in the experiment section below.

NER detector.
The first solution is adopting an NER detector before

CSC/FCSC inference, which classifies whether the ASR hy-
pothesis contains terms to be biased and decides when to
activate CSC/FCSC. In general, this detector can be designed
as a classification model, specifically, a Named Entity Recog-
nition (NER) task [40, 41] which classifies entities in the given
ASR hypothesis. The training data for this classification model
can be obtained following the methods in NER tasks. For
narrow domains with representative sentence patterns, rule-
based detector is enough to achieve reasonable classification
precision and recall. The “bias prefixes” used by [16, 17] is
indeed a subset of rule-based detector. However, just prefix
information is limited, especially for cases that without prefix
(e.g., “Harry is my good friend”) and cases that with too
general prefix (e.g., “schedule a meeting for me and Jessa
on Tuesday” where “and” is the prefix). For the proposed
model, we can use prefixes, suffixes, and sentence patterns
to make a more reliable classification because we can see the
full ASR hypothesis. In our experiments, some of the baseline
ASR models are able to tag out entities with classification
tokens such as <name> and <entity>, which can be directly
adopted as NER detector, denoted as token filter (tfilter).
For baseline ASR models without such tokens, a rule-based
detector is used for convenience, denoted as pattern filter
(pfilter). What’s more, for multiple output candidates of an
ASR system, CSC/FCSC is activated as long as one of these
candidates passes through the detector.

Controllable threshold so.

Although the NER detector has effective regression control
ability for anti-context cases, it’s still time consuming and not
easy to extract the prefixes/suffixes/patterns from an outside
adaptation set, there are also many things to consider to
balance the classification precision and recall. Therefore, for
FCSC, we also propose another mechanism to easily control
the regression by just adjusting a controllable threshold param-
eter so, which measures the confidence of the model output
by adopting the output probabilities sij from similarity layer:

s∗i = mean
i

(max
j

(sij)), i ∈ [is, ie] (12)

cindi =

{
argmax si s∗i >= so

0 s∗i < so
(13)

Where [is, ie] is a continuous sequence labeled out by CLS
tag, for example, for output {cls: [O,O,B, I, L,O]}, is is 2
and ie is 4. s∗i represents the confidence of the model for
the current output, and so is a threshold value which ranges
from 0 to 1. This threshold can be tuned for each application
scenario to meet the regression requirements. When s∗i < so,
this position is left unchanged due to low confidence.

4) Score interpolation: ASR system may output multiple
candidates for each utterance, these candidates contain more
signals and help improve the model performance according
to our experiments. However, too many input candidates
will increase the latency, we select top Nasr candidates for
CSC/FCSC decoding, where Nasr is determined by the model
performance and latency requirements.

CSC conducts beam search process during decod-
ing, which generates the corresponding CSC hypotheses
{Hi1, Hi2, ...,HiNcsc} for each ASR hypothesis Hi. The final
decoding results are obtained by ranking these Nasr × Ncsc

hypotheses:

H∗ = argmax
H

λASRlogpi + λCSC logp
′
ij(14)

where λASR and λCSC are the weights for ASR and CSC
scores. pi is the utterance level probability of Hi, and p′ij is
the utterance level probability of the j-th CSC hypothesis for
Hi.

Unlike the AR method, there is no beam search process
for FCSC. The most possible hypothesis is obtained by the
following criteria:

H∗ = argmax
H

λASRlogpi + λFCSC logqi (15)

where logqi is the utterance level FCSC score which is the
sum of utterance level log probabilities of cls and cind:

logqi = logqclsi + logqcindi (16)

IV. EXPERIMENT

A. Data Sets

The training context list includes 1M names generated from
48k name words, and 6M proper nouns collected from two
open source datasets NELL [42] and Yago [43]. We use a
multi-speaker multi-locale(en-*) TTS [37] AM which contains

JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXX XXX 6

TABLE II
TEST SETS

Test set #utt. context type context list size context examples

Name set 11597 person name 1509 Jotham Parker
Personal assistant (PA) dev 830 person name 1507 Andrew
Personal assistant (PA) blind 1024 person name 1507 Xiaofang
Random8k set 8000 - - -
Text editor 797 commands 210 Uppercase the next paragraph
Medical set 516 medical health related 11638 Pause cardiac output monitoring

363 speakers to get TTS audio, the generated TTS data are
then fed into an RNN-T model to obtain ASR hypotheses.
A context phrase dictionary is then constructed from these
reference-hypotheses pairs, in which each reference context
phrase corresponds to a list of hypotheses. What’s more, 512
sentence patterns and 26M in-house general scripts are used to
construct training set with the generated context phrase dictio-
nary as the method mentioned before. We have open-sourced
the TTS synthetic data for the collected entities at https:
//pan.baidu.com/s/1UajBs6zlzE2P9k0cqJQxSg?pwd=9d7m.

We evaluate model performance on several test sets, detailed
in Table II. The Random8k set contains anti-context utterances,
the context list of this set is randomly selected from Name
set, which aims to ensure that the model doesn’t affect
recognition quality if all biasing phrases are irrelevant. To
evaluate the model performance on general context biasing
in other domains, there are also two test sets in which biasing
phrases are general phrases rather than person names or proper
nouns, the biasing phrases of these sets are frequently used
terms in its own domain but not related to training set.

B. Experimental Setup

During training, we set the batch size to 300, the max size of
context phrase list Ncmax of each utterance to 100, the ratio
of general utterances without context phrase Pcont to 20%,
and the ratio of swapping context reference-hypotheses pairs
Pm to 20%. We use teacher-student learning and quantization
to reduce model size. The student model was trained with
the same training set as teacher, and we set T to 1 and α to
0.9. The model parameters of teacher and student are listed in
Table III.

During inference, we set the size of filtered context list Kf

to 100 to be consistent with training. We decode with two
baseline ASR models: an RNN-T model and a T-T model,
trained with 64 thousand hours Microsoft anonymized data.
The RNN-T model is able to output <name> tokens which
classifies person names (tfilter), which can be directly used as
NER detector for both CSC and FCSC. A pattern filter (pfilter)
which is generated from an outside adaptation set is adopted
for T-T model. Similarly, the baseline FST biasing method uses
<name> tokens for RNN-T and prefix set extracted from the
same adaptation set for T-T as activation prefix. For RNN-
T, top 4 candidates are selected to correct, while for T-T, we
select top 1 because the T-T model we use just supports single
candidate output. We also test FCSC model performance when
with the proposed controllable threshold so rather than NER
detector.

TABLE III
MODEL PARAMETERS

Model layers d model heads d FFN Params(M)

CSC Teacher 6 512 8 2048 55.4
Student 3 192 4 768 5.2

FCSC Teacher 6 512 8 2048 47.4
Student 3 192 4 768 4.2

C. Performance

1) WER reduction: The results on the first three test sets
in name domain and the Random8k set are listed in Table
IV, where “Bias” represents the baseline FST biasing method.
Compared to baseline ASR models, the proposed model
achieves as much as 41.7% relative word error rate reduction
on RNN-T and 51.0% on T-T. Compared to the FST biasing
method, the proposed model achieves comparable or much
better performance among all these sets. We also test the model
performance based on RNN-T+Bias and T-T+Bias, and find
our method can still achieve significant gain based on FST
biasing as much as 32.6% on RNN-T and 38.5% on T-T, which
indicates that the proposed model can work on top of the FST
biasing method to achieve the best performance for E2E ASR
customization. Compared to AR CSC model, the NAR solution
still performs better among all the test sets, which is slightly
different from other NAR solutions. The reason, we believe,
is that different from other NAR architectures, our method
doesn’t need to align the encoder and decoder by adopting
a length or duration predictor, which avoids possible error
accumulation, the structure we use is also very suitable for
this task.

Table V lists the results on the two general biasing sets.
Compared to baseline RNN-T, the model achieves as much
as 50.7% relative WER improvement. When correct on top of
FST biasing, 24.6% relative WER improvement can also be
achieved. These results demonstrate that the proposed method
is a general contextual biasing solution which is domain-
insensitive and is effective among different scenarios.

2) Latency improvement: The model size and latency of
the proposed AR CSC model and the NAR FCSC model
are listed in Table VI. The latency is the decoding time of
CSC/FCSC model per utterance in the test set regardless
of baseline ASR model, which is tested on a machine with
2.60GHz CPU using single thread, each utterance corresponds
to 4 ASR output candidates. The NAR model reduces model
size by 43.2% and speeds up the inference by 2.1 times, which
shows huge advantages for the NAR model to be deployed on

https://pan.baidu.com/s/1UajBs6zlzE2P9k0cqJQxSg?pwd=9d7m
https://pan.baidu.com/s/1UajBs6zlzE2P9k0cqJQxSg?pwd=9d7m

JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXX XXX 7

TABLE IV
MODEL PERFORMANCE ON NAME DOMAIN

Method Name set PA dev PA blind Random8k set

WER WERR WER WERR WER WERR WER WERR

RNN-T 30.2 - 24.2 - 22.5 - 13.9 -
+CSC 18.1 40.1 17.4 28.1 15.3 32.0 14.4 −3.6
+FCSC 17.6 41.7 16.8 30.6 14.6 35.1 14.4 −3.6
+FCSC (so) 18.0 40.4 17.3 28.5 15.2 32.4 14.0 −0.7

RNN-T+Bias 23.9 20.8 19.5 19.4 17.1 24.0 14.0 −0.7
+CSC 16.9 44.0 16.7 31.0 14.1 37.3 14.6 −5.0
+FCSC 16.1 46.7 15.5 36.0 13.1 41.8 14.4 −3.6
+FCSC (so) 16.3 46.0 15.9 34.3 13.1 41.8 14.1 −1.4

T-T 24.1 - 17.5 - 16.6 - 8.8 -
+FCSC 11.8 51.0 12.7 27.4 11.2 32.5 8.8 −0.0
+FCSC (so) 11.9 50.6 11.9 32.0 11.3 31.9 9.0 −2.3

T-T+Bias 17.4 27.9 12.6 27.9 12.6 24.0 8.9 −1.1
+FCSC 10.7 55.6 10.4 40.6 10.3 38.0 9.0 −2.3
+FCSC (so) 10.7 55.6 9.9 43.4 10.2 38.6 9.0 −2.3

TABLE V
MODEL PERFORMANCE ON GENERAL BIASING SETS

Method Text editor Medical set

WER WERR WER WERR

RNN-T 14.6 - 14.0 -
+FCSC 7.2 50.7 8.6 38.6

RNN-T+Bias 10.3 29.3 6.9 50.8
+FCSC 7.9 45.9 5.2 62.9

TABLE VI
MODEL SIZE AND LATENCY

model teacher student

size(MB) CSC 223.0 9.5
FCSC 212.0 5.4

latency(ms/utt) CSC 793.6 132.3
FCSC 530.0 63.7

device compared to the AR solution. It should be noted that
this latency includes context phrase encoding, which can be
calculated in advance and loaded as cache in real application,
therefore, the latency can be further reduced and optimized in
runtime.

3) Influence of context list size: Figure 3 illustrates the
influence of filtered context list size Kf and raw context list
size Kr on Name set. Where Kr depends on the given context
phrase list, and Kf is a decoding parameter that can be directly
adjusted during inference. Here Kr is adjusted by randomly
sampling a subset of context phrases from the raw context
phrase list while keeping the target phrase in the set. We can
see WER increases with Kr in a concave curve shape for
both CSC and FCSC, which means raw context list size does
not influence the model performance much when it’s large
enough, the proposed method can deal with the scalability
problem well. The figure also shows the WER curve of FCSC
lies below CSC in most of time for both Kr and Kf , which
indicates FCSC achieves stable improvement over CSC with
decoding parameter change.

0 500 1000 1500
(a) Filtered context list size Kf

15

20

25

30

W
ER

 (%
)

CSC

FCSC

RNN-T
Contextual LM

Kr = 1500

0 500 1000 1500
(b) Raw context list size Kr

15

20

25

30

CSC

FCSC

RNN-T
Kf = 100, w/o pRanker

Fig. 3. Influence of filtered context list size Kf and raw context list size Kr

on moder performance. WER increases with Kr in a concave curve shape,
and FCSC achieves stable improvement over CSC.

4) Performance balancing of FCSC: As discussed before,
for FCSC, we propose a regression control mechanism which
adopts controllable threshold so to balance model performance
between biasing set and anti-context cases. The model per-
formance with so = 0.7 on name domain is listed in Table
IV, which shows similar performance with the method that
adds NER detector. Figure 4 illustrates the effect of so to
model performance on Name set and Random8k set in details.
so = 0 is the vanilla setting which means we don’t use this
mechanism while so = 1 means we totally give up correction.
With the increase of so, the WER increases on Name set while
decreases quickly on Random8k set, which demonstrates the
effectiveness of the proposed balance mechanism. We define
r as the relative WER gap narrowing ratio:

r =
W −W0

W1 −W0
, (17)

where W represents WER, W0 and W1 represent the WER
when so = 0 and so = 1. The variation of r with the change
of so is illustrated in Figure 5. We can see the WER on Name
set experiences a long flat period when so is small and then
encounters steep increase only when near to 1.0, which means
most of the cases in Name set are corrected with enough
confidence and guarantees enough safe space for us to conduct
performance balancing.

5) OOV performance: Table VII lists model performance
of out-of-vocabulary (OOV) terms and in-vocabulary (IV)

JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXX XXX 8

0.0 0.2 0.4 0.6 0.8 1.0
(a) Effect of so on Name set

10

15

20

25

W
ER

 (%
) T-T

0.0 0.2 0.4 0.6 0.8 1.0
(b) Effect of so on Random8k set

9.0

9.5

10.0

T-T

Fig. 4. Control model performance among different test sets with threshold
so. With the increase of so, the WER increases slowly on Name set while
decreases quickly on Random8k set (which contains anti-context cases).

0.00 0.25 0.50 0.75 1.00
so

0.0
0.2
0.4
0.6
0.8
1.0

r (
%

)

Name set

r = W W0
W1 W0

Ran
do

m8k
 se

t

Fig. 5. WER relative change with so. The WER on Name set experiences
a long flat period and then encounters steep increase only when near to 1.0,
which guarantees enough safe space to conduct performance balancing.

terms on different test sets, where OOV rate represents the
proportion of utterances with OOV biasing phrases not seen
in CSC/FCSC model training. It should be noted that most
of the bias phrases in Text editor set and Medical set are
not seen in training set. The results show good performance
on OOV terms, which indicates that the model learns error
patterns in wordpiece level rather than word level. We also
find that the performance on IV terms is generally worse,
we checked the results and the explanation is that for the
three sets with names, the raw WER of IV terms is relatively
low and contains less error for correction; for the Text editor
set and Medical set, there are only few samples in IV set
and not that representative. In general, OOV terms will easily
appear in domains which are not related to training, the OOV
performance also demonstrates the general contextual biasing
ability of the proposed method from another point of view.

TABLE VII
OOV PERFORMANCE (WER)

dataset OOV rate model OOV IV

Name set 54.0%
T-T 32.7 16.8
+FCSC 15.3 11.3

PA dev 42.4%
T-T 24.5 13.3
+FCSC 16.2 11.0

PA blind 32.3%
T-T 26.8 11.1
+FCSC 15.6 9.5

Text editor 82.6%
RNN-T 14.7 14.1
+FCSC 6.4 11.6

Medical set 93.8%
RNN-T 14.1 10.7
+FCSC 8.6 8.9

V. CONCLUSIONS

In this paper, we introduce a novel contextual biasing
method for customizing end-to-end ASR systems. Our method
integrates a context encoder into the spelling correction model
with carefully designed AR and NAR mechanisms. Novel
filtering algorithms are designed to deal with the large size
context list. Effective performance balancing mechanisms are
proposed to balance model performance on anti-context terms.
The method is also a general contextual biasing solution which
is domain-insensitive and can be adopted in different scenar-
ios. Empirical studies have demonstrated that the proposed
method significantly improves the ASR model performance
on contextual biasing tasks, which also shows competitive
or better performance over conventional methods. The NAR
architecture achieves smaller model size, lower latency, and
better performance than the AR design, which is more com-
petitive for on-device application. However, there are still
some limitations of the proposed method, including not being
acoustic-grounded and the extra complexity in being streaming
for the NAR solution. In future work, we would like to
explore integrating additional acoustic information into the
model to further improve the performance. We would also
explore methods to enable streaming for the NAR model to
further reduce latency.

REFERENCES

[1] J. Li, “Recent advances in end-to-end automatic speech
recognition,” APSIPA Transactions on Signal and Infor-
mation Processing, vol. 11, no. 1, 2022.

[2] T. N. Sainath, Y. He, B. Li, A. Narayanan, R. Pang,
A. Bruguier, S.-y. Chang, W. Li, R. Alvarez, Z. Chen
et al., “A streaming on-device end-to-end model surpass-
ing server-side conventional model quality and latency,”
in Proc. ICASSP. IEEE, 2020, pp. 6059–6063.

[3] J. Li, R. Zhao, Z. Meng, Y. Liu, W. Wei, S. Parthasarathy,
V. Mazalov, Z. Wang, L. He, S. Zhao, and Y. Gong, “De-
veloping RNN-T models surpassing high-performance
hybrid models with customization capability,” in Proc.
Interspeech, 2020.

[4] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio, “Learn-
ing phrase representations using RNN encoder-decoder
for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[5] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
arXiv preprint arXiv:1409.0473, 2014.

[6] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen,
attend and spell: A neural network for large vocabulary
conversational speech recognition,” in Proc. ICASSP.
IEEE, 2016, pp. 4960–4964.

[7] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw,
R. Alvarez, D. Zhao, D. Rybach, A. Kannan, Y. Wu,
and R. Pang, “Streaming end-to-end speech recognition
for mobile devices,” in Proc. ICASSP, 2019.

JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXX XXX 9

[8] J. Li, R. Zhao, H. Hu, and Y. Gong, “Improving RNN
transducer modeling for end-to-end speech recognition,”
in Proc. ASRU, 2019.

[9] G. Saon, Z. Tüske, and K. Audhkhasi, “Alignment-length
synchronous decoding for RNN transducer,” in Proc.
ICASSP, 2020, pp. 7804–7808.

[10] A. Zeyer, A. Merboldt, R. Schlüter, and H. Ney, “A new
training pipeline for an improved neural transducer,” in
Proc. Interspeech, 2020.

[11] C.-F. Yeh, J. Mahadeokar, K. Kalgaonkar, Y. Wang,
D. Le, M. Jain, K. Schubert, C. Fuegen, and
M. L. Seltzer, “Transformer-transducer: End-to-end
speech recognition with self-attention,” arXiv preprint
arXiv:1910.12977, 2019.

[12] Q. Zhang, H. Lu, H. Sak, A. Tripathi, E. McDermott,
S. Koo, and S. Kumar, “Transformer transducer: A
streamable speech recognition model with transformer
encoders and RNN-T loss,” in Proc. ICASSP, 2020, pp.
7829–7833.

[13] X. Chen, Y. Wu, Z. Wang, S. Liu, and J. Li, “De-
veloping real-time streaming transformer transducer for
speech recognition on large-scale dataset,” arXiv preprint
arXiv:2010.11395, 2020.

[14] I. Williams, A. Kannan, P. Aleksic, D. Rybach, and
T. Sainath, “Contextual speech recognition in end-to-end
neural network sys-tems using beam search,” in Proc.
Interspeech, 2018.

[15] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw,
R. Alvarez, D. Zhao, D. Rybach, A. Kannan, Y. Wu,
R. Pang et al., “Streaming end-to-end speech recognition
for mobile devices,” in Proc. ICASSP, 2019, pp. 6381–
6385.

[16] G. Pundak, T. N. Sainath, R. Prabhavalkar, A. Kan-
nan, and D. Zhao, “Deep context: end-to-end contextual
speech recognition,” in Proc. SLT, 2018, pp. 418–425.

[17] D. Zhao, T. N. Sainath, D. Rybach, D. Bhatia, B. Li, and
R. Pang, “Shallow-fusion end-to-end contextual biasing,”
in Proc. Interspeech, 2019.

[18] D. Le, G. Keren, J. Chan, J. Mahadeokar, C. Fuegen,
and M. L. Seltzer, “Deep shallow fusion for RNN-T
personalization,” in Proc. SLT, 2020.

[19] M. Jain, G. Keren, J. Mahadeokar, G. Zweig, F. Metze,
and Y. Saraf, “Contextual RNN-T for open domain
ASR,” in Proc. Interspeech, 2020.

[20] A. Bruguier, R. Prabhavalkar, G. Pundak, and T. N.
Sainath, “Phoebe: Pronunciation-aware contextualization
for end-to-end speech recognition,” in Proc. ICASSP,
2019, pp. 6171–6175.

[21] X. Wang, Y. Liu, S. Zhao, and J. Li, “A light-weight
contextual spelling correction model for customizing
transducer-based speech recognition systems,” in Proc.
Interspeech, 2021.

[22] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
arXiv preprint arXiv:1409.0473, 2014.

[23] D. Le, M. Jain, G. Keren, S. Kim, Y. Shi, J. Mahadeokar,
J. Chan, Y. Shangguan, C. Fuegen, O. Kalinli, Y. Saraf,
and M. L. Seltzer, “Contextualized streaming end-to-

end speech recognition with trie-based deep biasing and
shallow fusion,” in Proc. Interspeech, 2021.

[24] C. Huber, J. Hussain, S. Stüker, and A. Waibel, “In-
stant one-shot word-learning for context-specific neu-
ral sequence-to-sequence speech recognition,” arXiv
preprint arXiv:2107.02268, 2021.

[25] G. Sun, C. Zhang, and P. C. Woodland, “Tree-constrained
pointer generator for end-to-end contextual speech recog-
nition,” arXiv preprint arXiv:2109.00627, 2021.

[26] J. Guo, T. N. Sainath, and R. J. Weiss, “A spelling
correction model for end-to-end speech recognition,” in
Proc. ICASSP, 2019, pp. 5651–5655.

[27] S. Zhang, M. Lei, and Z. Yan, “Investigation of trans-
former based spelling correction model for CTC-based
end-to-end Mandarin speech recognition,” in Proc. In-
terspeech, 2019.

[28] O. Hrinchuk, M. Popova, and B. Ginsburg, “Correc-
tion of automatic speech recognition with transformer
sequence-to-sequence model,” in Proc. ICASSP, 2020,
pp. 7074–7078.

[29] K. Hu, T. N. Sainath, R. Pang, and R. Prabhavalkar,
“Deliberation model based two-pass end-to-end speech
recognition,” arXiv preprint arXiv:2003.07962, 2020.

[30] G. Ye, V. Mazalov, J. Li, and Y. Gong, “Have best of both
worlds: two-pass hybrid and e2e cascading framework
for speech recognition,” in Proc. ICASSP, 2022.

[31] W. Wang, K. Hu, and T. Sainath, “Deliberation of
streaming rnn-transducer by non-autoregressive decod-
ing,” arXiv preprint arXiv:2112.11442, 2021.

[32] Y. Leng, X. Tan, L. Zhu, J. Xu, R. Luo, L. Liu, T. Qin,
X.-Y. Li, E. Lin, and T.-Y. Liu, “Fastcorrect: Fast er-
ror correction with edit alignment for automatic speech
recognition,” in Proc. NeurIPS, 2021.

[33] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to
sequence learning with neural networks,” arXiv preprint
arXiv:1409.3215, 2014.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in Neural
Information Processing Systems, 2017, pp. 6000–6010.

[35] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normal-
ization,” arXiv preprint arXiv:1607.06450, 2016.

[36] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
and I. Sutskever, “Language models are unsupervised
multitask learners,” OpenAI blog 1.8, 2019.

[37] Y. Liu, Z. Xu, G. Wang, K. Chen, B. Li, X. Tan, J. Li,
L. He, and S. Zhao, “Delightfultts: The microsoft speech
synthesis system for blizzard challenge 2021,” arXiv
preprint arXiv:2110.12612, 2021.

[38] J. Li, R. Zhao, J.-T. Huang, and Y. Gong, “Learning
small-size DNN with output-distribution-based criteria.”
in Proc. Interspeech, 2014, pp. 1910–1914.

[39] G. Hinton, O. Vinyals, and J. Dean, “Distilling
the knowledge in a neural network,” arXiv preprint
arXiv:1503.02531, 2015.

[40] D. Nadeau and S. Sekine, “A survey of named entity
recognition and classification,” Lingvisticae Investiga-
tiones: 30.1, pp. 3–26, 2007.

JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXX XXX 10

[41] J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learn-
ing for named entity recognition,” IEEE Transactions on
Knowledge and Data Engineering, 2020.

[42] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Bet-
teridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel,
J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed,
N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Set-
tles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov,
M. Greaves, and J. Welling, “Never-ending learning,” in
Proc. AAAI, 2015.

[43] T. P. Tanon, G. Weikum, and F. Suchanek, “Yago 4: A
reason-able knowledge base,” in Extended Semantic Web
Conference, 2020.

	Introduction
	Related Work
	Contextual LM Biasing
	Bias Encoder
	Spelling Correction and deliberation

	Methodology
	Autoregressive Contextual Spelling Correction
	Model structure

	Non-autoregressive Contextual Spelling Correction
	Model structure
	Contextual biasing mechanism

	Data Processing and Training Strategy
	Text to speech
	Training pairs construction
	Context setup
	Teacher-student learning

	Inference
	Context pre-selection mechanism
	FCSC output format
	Performance balancing
	Score interpolation

	Experiment
	Data Sets
	Experimental Setup
	Performance
	WER reduction
	Latency improvement
	Influence of context list size
	Performance balancing of FCSC
	OOV performance

	Conclusions

