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ABSTRACT

Self-supervised learning (SSL), which utilizes the input data itself
for representation learning, has achieved state-of-the-art results for
various downstream speech tasks. However, most of the previous
studies focused on offline single-talker applications, with limited in-
vestigations in multi-talker cases, especially for streaming scenarios.
In this paper, we investigate SSL for streaming multi-talker speech
recognition, which generates transcriptions of overlapping speakers
in a streaming fashion. Firstly, we observe that conventional SSL
techniques do not work well on this task due to the poor represen-
tation of overlapping speech. We then propose a novel SSL training
objective, referred to as bi-label masked speech prediction, which
explicitly preserves representations of all speakers in overlapping
speech. We investigate various aspects of the proposed system, in-
cluding data configuration and quantizer selection. The proposed
SSL setup achieves substantially better word error rates on the Lib-
riSpeechMix dataset.

Index Terms— Self-supervised learning, multi-talker automatic
speech recognition

1. INTRODUCTION

Self-supervised learning (SSL), which extracts supervision signals
from data itself, is a fast-growing subcategory of unsupervised learn-
ing approaches [1]. In SSL pipeline, an upstream model is pre-
trained on massive unlabeled data with some pretext tasks derived
from the data itself. Then it is adapted for specific downstream tasks
with a small amount of labeled data by either using the upstream
model as a feature extractor [2, 3] or directly fine-tuning it together
with additional task-specific layers [4, 5].

SSL has been widely explored due to its great performance and
low adaptation cost. In speech applications, such SSL-based pre-
training has achieved remarkable performance for various down-
stream tasks including speech recognition [4, 5], speaker recogni-
tion [6, 7], emotion recognition [8], etc. Since the model learns
more generalizable task-agnostic representations in the pre-training
stage, it only requires a small amount of labeled data in the fine-
tuning stage. For example, wav2vec 2.0 [4] outperforms the previ-
ous state-of-the-art automatic speech recognition (ASR) results on
the LibriSpeech 100h benchmark with just 1h of labeled speech.

Despite the great achievements in various speech tasks, SSL re-
mains under-explored for streaming multi-talker audio processing
tasks. It is known that natural human conversations contain a con-
siderable amount of speech overlaps [9], thus handling overlapping
speech in real time is in great demand for many real applications.

†Work performed during an internship at Microsoft.

Nevertheless, most of the existing SSL techniques were explored
under single-talker speech conditions for both pre-training and fine-
tuning [10, 11, 12, 13, 14, 4, 5]. Recently, WavLM [3] was proposed
with the multi-talker data augmentation scheme, called “utterance
mixing”, which was proven to be effective for several multi-talker
tasks such as speech separation and speaker diarization [3]. How-
ever, WavLM was designed with an offline model architecture, lim-
iting its usage in streaming scenarios. Moreover, WavLM was pre-
trained with a conventional masked speech prediction (MSP) loss,
where the model predicts the masked tokens of the primary (i.e.
dominant) speaker for augmented multi-talker audios, which could
potentially hurt the representations of other speakers. Such a train-
ing scheme could be sub-optimal for tasks where every speaker is
equally important.

In this paper, we investigate SSL-based pre-training for the
streaming multi-talker ASR task, in which we perform real-time
speech recognition for all speakers in a conversation containing
overlapped speech. We propose a novel bi-label MSP objective that
forces the model to learn a representation of all speakers in over-
lapping speech instead of focusing on a single dominant speaker.
We also explore several aspects of the proposed bi-label SSL model
to further improve its performance, including the ratio of utterance
mixing and quantizer type. We conducted our experiment based
on the streaming multi-talker ASR with the token-level serialized
output training (t-SOT) [15]. Our experimental results on the Lib-
riSpeechMix [16] dataset reveal that, with the proposed bi-label
MSP objective, appropriate pre-training data configuration, and
quantizer, the streaming multi-talker ASR accuracy can be signifi-
cantly improved.

2. RELATED WORKS

2.1. HuBERT and WavLM
Our work is based on two SSL models: HuBERT [5] and WavLM [3].
Similar to BERT [17], HuBERT uses MSP as the pretext task: the
acoustic embeddings produced by the convolutional neural network
encoder are partially masked, and the transformer encoder is trained
to predict the pseudo labels of masked regions (Fig. 1 left). The
distribution over the pseudo labels is formulated as

p(c|ot) =
exp(cos(ot ·WP , ec)/γ)∑C

c′=1 exp(cos(ot ·WP , e′c)/γ)
, (1)

where WP is a projection matrix, ot is the output logit at the time
frame t, ec is the embedding of the pseudo label c ∈ {1, ..., C},
cos(a, b) is the cosine similarity between a and b, and γ is the scale
of the logit. The pseudo labels are generated by clustering either
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Fig. 1. Overview of SSL methods. (Left) MSP, (middle) MSP with utterance mixing, (right) proposed bi-label MSP

acoustic features (e.g., mel-frequeney cepstrum coefficient or mel-
filterbank (FBANK)) or hidden representations from a prior genera-
tion of the HuBERT model.

WavLM [3] introduced several modifications to HuBERT to en-
hance spoken content modeling and speaker identity preservation.
Firstly, it employed gated relative position bias for the Transformer
structure. Secondly, it introduced data augmentation by mixing the
input audio with noise or interfering speech (Fig. 1 middle). Thirdly,
it scaled up the training data size and variety to further improve the
robustness of learned representations. Among these modifications,
WavLM’s data augmentation scheme enforces the model to execute
a denoising task in addition to the original masked speech prediction
task. This significantly improved the performance on speaker-related
tasks such as speaker diarization and speech separation.

2.2. Streaming multi-talker ASR based on t-SOT
The token-level serialized output training (t-SOT) [15] is a frame-
work for training streaming multi-talker end-to-end (E2E) ASR
models [18] that can generate transcriptions of multiple overlapping
speakers with limited latency. The key to t-SOT lies in the serial-
ization of multi-talker transcriptions. Suppose we have time- and
speaker-annotated transcriptions of multiple speakers (e.g., “hello
how are you” from speaker A and “fine thank you” from speaker B).
We first create a single sequence of tokens by simply concatenating
the transcriptions of all speakers (e.g., “hello how are you fine thank
you”). Next, we reorder the tokens in that sequence based on the
end time of each token (e.g., “hello how fine are you thank you”).
Finally, we insert a special token 〈cc〉 when the adjacent tokens are
attributed to different speakers (e.g., “hello how 〈cc〉 fine 〈cc〉 are
you 〈cc〉 thank you”).

A conventional streaming E2E ASR model, such as transformer
transducer (TT) [19, 20], can be trained with overlapping speech an-
notated with such serialized transcriptions. During inference, the
ASR system generates transcriptions including 〈cc〉, which is then
“deserialized” into two streams of transcriptions based on the esti-
mation of 〈cc〉. It was shown that the t-SOT-based multi-talker ASR
model achieved better accuracy than prior multi-talker models while
keeping the model architecture and computational cost the same as
conventional single-talker models.

3. PRE-TRAINING OF STREAMING MULTI-TALKER ASR
WITH BI-LABEL MSP

In this section, we introduce our SSL-based pre-training framework
for streaming multi-talker E2E ASR. We first describe our proposed
bi-label MSP objective in Section 3.1, and then introduce our strat-
egy to pre-train streaming models in Section 3.2. Finally, we explain

data configurations for the pre-training in Section 3.3.

3.1. Bi-label MSP objective
The original MSP objective is designed to predict pseudo labels of
the masked speech region given the surrounding speech as a context.
When combined with utterance mixing, as proposed in WavLM,
MSP enforces the model to learn representations that best estimate
the masked speech of the primary (i.e. dominant) speaker while ig-
noring the speech of the secondary speaker. We speculate that this
formulation may prevent the model from learning a good represen-
tation of the speech from the secondary speaker.

Considering this, we propose a bi-label MSP objective for pre-
training, where the model predicts the pseudo labels of both the pri-
mary and the secondary speakers. The overview of the bi-label MSP
is shown on the right side of Fig. 1. As illustrated in the figure, the
transformer encoder has two output nodes, one predicts the pseudo
label of the primary speaker while the other predicts the pseudo la-
bel of the secondary speaker. If the secondary speaker is not present
in the masked regions, a special 〈blank〉 token is assigned to that
region. The loss function is formulated as

L =
∑
t∈M

− log(p(rprt |oprt ))− log(p(rsct |osct )), (2)

where rprt and rsct are the pseudo labels of the primary and the sec-
ondary speaker at time frame t, oprt and osct represent the output
logits for the primary and the secondary speakers at t. M denotes
the set of all masked time frames. Note that, in our implementation,
the output nodes for the primary and the secondary speakers are pre-
determined, rather than solving the permutation using permutation
invariant training [21, 22, 23]. This is because the utterance mix-
ing algorithm guarantees that the speech duration of the secondary
speaker is substantially shorter than that of the primary speaker.

3.2. Attention mask for streaming models
Prior SSL models based on MSP objective [5, 3] utilized a standard
self-attention mechanism, in which every computation is executed
by accessing the entire input sequence. This property restricts the
SSL model to offline scenarios only. In this work, we adopt a mask-
ing strategy originally proposed for streaming TT [20], where a spe-
cially designed attention mask is applied to constrain the model to
see only limited future information for each computation.

The attention mask is defined as a T × T matrix S, where T is
the embedding length, as exemplified in Fig. 2. S[i, j] = 1 indicates
that the input at the jth frame can be used to compute the output
at the ith frame. The matrix is segmented with fix-sized chunks for
both vertical and horizontal directions (the chunk size is three in Fig.
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Fig. 2. Attention mask matrix S for streaming models. If S[i, j] =
1, the jth-frame input can be used for computing ith-frame output.

Table 1. WER (%) on LibriSpeechMix for t-SOT TT-18 with dif-
ferent pre-training configurations. MSP stands for “masked speech
prediction”. All models have 160 msec of algorithmic latency.

Pre-training Dev WER (%) Test WER (%)

Objective Quantizer 1spk 2spk 1spk 2spk

- - 15.42 39.12 15.69 39.52
MSP FBANK 13.17 36.13 13.20 35.29

Bi-label MSP FBANK 13.29 25.68 13.90 25.78
MSP HuBERT 10.77 17.24 11.30 17.25

Bi-label MSP HuBERT 10.82 15.84 11.19 15.30
MSP Phoneme 9.80 15.45 9.96 15.13

Bi-label MSP Phoneme 9.47 13.89 9.84 13.74

2). Given the indices Il corresponding for l-th chunk, the matrix S is
defined such that S[i, j] = 1 if (i, j ∈ Il for any l) or (i ∈ Il and j ∈
Il′ for l − h < l′ < l), where h is a hyper-parameter to determine
how far the history information can be accessed (h = 2 in Fig. 2).
With this masking strategy, the left receptive field (history) grows
with the number of transformer layers, while the right receptive field
(future look-ahead) remains the same. The algorithm latency (or the
duration of the future look-ahead) of the model is determined by the
chunk size. In our work, we use the same masking matrix for SSL-
based pre-training and fine-tuning.

3.3. Data configurations for multi-talker ASR pre-training
There are several data configurations that are especially important
for multi-talker ASR pre-training. Firstly, data augmentation plays a
crucial role in determining the characteristics of extracted represen-
tation. In the case of WavLM, the training data was augmented such
that random noise was mixed into 10% of the training samples while
random secondary speech was mixed into another 10% of the train-
ing samples. Such a configuration effectively enforces the model to
extract representations of the primary (i.e. dominant) speaker, even
from the overlapping speech. However, it has not yet been investi-
gated if this configuration is optimal for multi-talker tasks where the
representations of all speakers are equally important. In this work,
we thus explore the possibility of drastically increasing the ratio of
the utterance mixing for multi-talker modeling.

Secondly, we also explore several quantizers for generating the
pseudo labels. The choice of quantizer is crucial in MSP-based pre-
training. For instance, it is known that a quantizer with a higher cor-
relation with phonemes generally benefits ASR accuracy [5]. In this
study, in addition to clustering on FBANK or HuBERT embedding,
we also investigate a phoneme-based quantizer proposed in [24], in
which a hybrid ASR system trained with a small amount of tran-
scribed data is used for generating pseudo phoneme labels. We con-
duct various experiments to investigate the impact of quantizers on
our results.
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Fig. 3. Pre-training pipeline for transformer transducer based t-SOT
model. Orange blocks are updated while grey blocks are frozen.

Table 2. WER (%) on LibriSpeechMix for t-SOT TT-18 with dif-
ferent data augmentation configuration for pre-training. We used
the original MSP objective with the HuBERT quantizer. All models
have 160 msec of algorithmic latency.

Data augmentation Dev WER (%) Test WER (%)

No aug. Noise Speech 1spk 2spk 1spk 2spk

1.0 - - 12.08 36.62 12.65 35.81
0.8 0.1 0.1 10.80 21.21 11.41 20.79
0.5 - 0.5 10.77 17.24 11.30 17.25

4. EXPERIMENTS

4.1. Experimental settings
4.1.1. Data
We evaluated our proposed framework on the LibriSpeechMix [16]
evaluation set. This dataset is simulated from LibriSpeech [25] by
randomly mixing utterances with random delays. In our experi-
ments, we used the single-speaker and two-speaker-mixed evalua-
tion sets. We adopt the same multi-talker ASR evaluation metric
as [15]. Specifically, we considered all possible speaker permuta-
tions between the hypotheses and references, and the permutation
with the minimum number of errors was chosen to compute the word
error rate (WER).

We trained our model using LibriSpeech 960h (LS-960), out of
which 100h of speech (train-clean-100, or LS-100) were used as la-
beled data, while the remaining 860h (consisting of train-clean-360
and train-other-500) were considered unlabeled.

4.1.2. Model configuration
In our experiment, we used TT with the chunk-wise mask [20] as
described in Section 3.2. We used the same configuration as “TT-18”
in [15]. Specifically, the input to the network was 80-dim FBANK
with a 10ms stride, normalized by the mean and variance computed
on the entire training data. The encoder consisted of 2 convolution
layers that downsampled the acoustic features by a factor of 4, and
18 layers of transformers with relative positional encoding. Each
transformer layer contained a 512-dim multi-head attention with 8
heads and a 2048-dim feed-forward layer. The prediction network
of TT is a 2-layer LSTM network with 1024 hidden units.

Our training pipeline is depicted in Fig. 3. For pre-training,
we optimized the bottom 15 layers of the encoder and three addi-
tional transformer layers using MSP or the proposed bi-label MSP



Table 3. WER (%) on LibriSpeechMix test set for t-SOT TT-18 with different algorithmic latency l.
Pre-training l = 160 msec l = 640 msec l = 2560 msec l = ∞ (offline)

Objective Quantizer 1spk 2spk 1spk 2spk 1spk 2spk 1spk 2spk

- - 15.69 39.52 13.71 34.71 12.21 29.56 11.00 24.03
Bi-label MSP HuBERT 11.19 15.30 8.99 12.41 8.15 10.94 6.78 10.45
Bi-label MSP Phoneme 9.84 13.74 8.39 11.24 7.20 9.55 6.46 8.51

objective on the LS-960. Once the model was pre-trained, we fur-
ther fine-tuned the TT with RNN-T loss on simulated mixtures cre-
ated from LS-100. The simulated mixtures for fine-tuning were
generated on-the-fly, ensuring that the ratio between single-speaker
and two-speaker mixed samples was 50%:50%. To create the two-
speaker mixed samples, we mixed two random utterances from LS-
100, adding a random delay ranging from 0 to the duration of the first
utterance to the second utterance to simulate partially overlapping
speech. We also applied speed and volume perturbation to further
increase the variety of the fine-tuning data.

We used the AdamW optimizer and a linear decay learning rate
scheduler for both pre-training and fine-tuning. During pre-training,
we trained the model on 16 NVIDIA V100 GPUs for 125k updates,
with a batch size of 480 seconds per GPU and a peak learning rate of
1.5e-3. During fine-tuning, we fine-tuned the model on 16 NVIDIA
V100 GPUs for 35k updates, with a batch size of 60 seconds per
GPU and a peak learning rate of 3e-4.

As mentioned in section 3.3, we experimented with three quan-
tizers: FBANK, HuBERT, and phonemes. For the FBANK quan-
tizer, we set the size of the codebook to 500. For the HuBERT quan-
tizer, we extracted hidden representations from the 9th layer of the
HuBERT base model 1, and clustered them into 500 groups using
the K-means algorithm. For the phoneme quantizer, we first trained
a hybrid ASR model on LS-100, and then decoded the LS-960 with it
and a 3-gram language model. The hypothesis lattices were rescored,
and the phoneme labels were inferred from the 1-best path. In total,
there were 347 distinct phonemes.

4.2. Main results
Our main experimental results are shown in Table 1. As a base-
line, we first trained a TT-18 model on the LS-100-based multi-talker
fine-tuning data without any pre-training. The results are shown in
the first row of Table 1. We found that, with such limited training
data, the WERs were very poor for both the single-speaker and two-
speaker-mixed evaluation sets.

We then performed the pre-training based on the MSP objective
with the FBANK quantizer, and presented the results in the second
row. During pre-training, we applied utterance mixing with a 50%
probability. We observed a large improvement in the single-speaker
test set, where the WER reduced by 15.9% relatively (15.69% to
13.20%). However, we only observed a relative WER improvement
of 10.7% (from 39.52% to 35.29%) for the two-speaker mixed test
set. These results suggest that the MSP objective with utterance mix-
ing was heavily biased towards the primary speaker, and did not per-
form well for tasks requiring the modeling of all speakers.

After that, we replaced MSP with the proposed bi-label MSP
objective, and the results are presented in the third row. Compared
to the MSP result, we observed a significant reduction in WER from
35.29% to 25.78% (26.9% relative) on the two-speaker-mixed test
set. However, there was a slight WER degradation on the single-
speaker test set, increasing from 13.20% to 13.90%.

1The HuBERT base model was pre-trained on LS-960.

We finally evaluated the HuBERT-based quantizer and phoneme-
based quantizer, with their results listed in the last four rows. In this
experiment, we consistently observed improvements in the two-
speaker-mixed test sets using the proposed bi-label MSP objective.
The phoneme-based quantizer achieved the best WER. With the
phoneme-based quantizer, the proposed bi-label MSP objective
showed no side effects in the single-speaker test set while remark-
ably improving the two-speaker-mixed test set.

4.3. Impact of the pre-training data configuration
We present the impact of pre-training data configuration in Table 2.
In this experiment, we used the conventional MSP with HuBERT
quantizer for pre-training. The first row in the paper shows the con-
figuration without any data augmentation (as used in the original Hu-
BERT), the second row shows the configuration used for WavLM,
and the third row shows the configuration used for our experiment
as described in the previous section. Pre-training without any data
augmentation resulted in a very poor WER, especially for the two-
speaker-mixed evaluation sets (first row). The ASR performance sig-
nificantly improved after adding a small ratio of noise and interfer-
ence speech (second row). Finally, our configuration, which applied
utterance mixing for 50% of the pre-training data, achieved the best
WER for both single-speaker and two-speaker-mixed speech.

4.4. Latency variation

We also evaluated the model performance for different latency con-
figurations, and the results are reported in Table 3. We controlled the
algorithmic latency by adjusting the chunk size in the self-attention
mask, as introduced in section 3.2. As shown in the first row, if
no pre-training is applied, the WER for the two-speaker-mixed test
set was over 20%, even for the offline model. Our best-performing
setup (bi-label MSP objective with the phoneme quantizer) dramat-
ically improved the WER for all latency configurations. The 160ms
latency model, pre-trained with the bi-label MSP objective and the
phoneme quantizer, achieved a better WER compared to the offline
model without pre-training.

5. CONCLUSION

In this paper, we investigated SSL-based pre-training for streaming
multi-talker ASR. We proposed the bi-label MSP objective, which
enforces the model to learn speech representations of all speakers
instead of focusing on the primary speaker. We also explored several
aspects of multi-talker ASR pre-training, including the pre-training
data configuration and the type of quantizer. Our experimental re-
sults on LibriSpeechMix showed that our proposed SSL framework
significantly reduced the WER for both non-overlapping and over-
lapping speech, especially with a prominent improvement on over-
lapping speech.

https://dl.fbaipublicfiles.com/hubert/hubert_base_ls960.pt
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