
In Proceedings of the 34th USENIX Security Symposium (USENIX Security’25)

DORAMI: Privilege Separating Security Monitor on RISC-V TEEs

Mark Kuhne
ETH Zurich

Stavros Volos
Azure Research, Microsoft

Shweta Shinde
ETH Zurich

Abstract
TEE implementations on RISC-V offer an enclave abstraction
by introducing a trusted component called the security mon-
itor (SM). The SM performs critical tasks such as isolating
enclaves from each other as well as from the OS by using
privileged ISA instructions that enforce the physical memory
protection. However, the SM executes at the highest privilege
layer on the platform (machine-mode) along side firmware
that is not only large in size but also includes third-party ven-
dor code specific to the platform. In this paper, we present
DORAMI—a privilege separation approach that isolates the
SM from the firmware thus reducing the attack surface on
TEEs. DORAMI re-purposes existing ISA features to enforce
its isolation and achieves its goals without large overheads.

1 Introduction

RISC-V is emerging as a promising ISA for upcoming plat-
forms, ranging from high-performance computation [34],
to sensors [47], to accelerators [46], to root-of-trust [9, 18].
Given the open nature of the RISC-V development model,
there are several implementations of cores that adhere to
the RISC-V standard. A RISC-V platform comprises of an
SoC, peripherals, and several other board components that
are customized by vendors. In such an ecosystem, maintain-
ing compatibility becomes a challenge and poses a threat of
fragmentation. To this end, RISC-V standards ratify ISA spec-
ifications that the core manufacturers can follow to ensure
software and compiler compatibility. Similarly, at a platform
level, the firmware acts as an interface between the operat-
ing system (e.g., Linux kernel) and the underlying platform.
Specifically, RISC-V offers a programmable firmware layer
called the machine-mode (M-mode) that houses low-level in-
terfaces to the CPU as well as peripherals. The software that
runs in the firmware is sourced from different vendors that
provide platform components. However, this opens up several
security concerns. Any code that executes in the M-mode has
direct access to all memory, including the one belonging to

the OS and applications. Thus any bug, intentional or acciden-
tal, in third-party modules that execute in the firmware can
compromise the confidentiality and integrity.

Trusted Execution Environments (TEEs) aim to isolate
application memory from privileged code executing in the
OS that is prone to bugs, with an abstraction called enclaves.
Keystone has showcased TEEs on RISC-V platforms [53].
One of the main building blocks in Keystone is to use a
trusted and bug-free security monitor that executes in the
M-mode and creates isolated memory regions for enclaves.
Keystone caters to the versatility of the RISC-V ecosystem
by assuming a standard ISA feature called physical memory
protection (PMP) to achieve its goals. Since only the M-mode
has privileges to change PMP configurations, Keystone and
other RISC-V TEEs trust not only the security monitor but any
other M-mode software to not maliciously corrupt or tamper
with PMP settings. However, given the nature of RISC-V
firmware, any third-party code that executes in the M-mode
and is part of the firmware can circumvent TEE protection.

In this paper, we aim to address this gap in the security
assumptions of RISC-V TEE platforms. Our goal is to en-
force privilege separation between the two components that
execute in the M-mode: (a) the security monitor which per-
forms critical operations of managing PMP configurations
using privileged instructions; (b) the firmware which performs
platform-specific tasks that usually do not use PMP-specific
instructions. This would allow platform vendors to use third-
party modules in the firmware without the need for verifying
that they do not break enclave isolation. Similarly, TEE ven-
dors can limit their testing and verification to the security
monitor without having to reason about or check the effects
of the rest of the firmware components. To this end, we present
DORAMI—the first system that enables privilege separation
of the security monitor on standard RISC-V platforms.

Privilege separation in general is a conceptually simple
security principle which is often challenging and imperfect
to enforce in real-world systems. To start with, practical im-
plementations are not modular but have several dependen-
cies and interactions between functions that need high or

low-privileges. Thus, defining a partition boundary is chal-
lenging [38]. Even after addressing the question of which
functionality should reside in high and low-privilege com-
partments, if the code has high co-dependence, it necessitates
a rich interface between compartments, leading to subtle at-
tacks (e.g., confused deputy) [51]. Finally, the mechanisms
to enforce isolation itself can be challenging. To address this,
most privilege separation approaches rely on a trusted lower-
layer (e.g., kernel [37] or hypervisor [43, 61] or hardware
changes [36]) to enforce isolation.

Our analysis of RISC-V firmware and security monitor
shows valuable insights that are conducive to privilege sepa-
ration. Since the development of security monitors is specif-
ically for TEEs, the implementation is fairly modular and
indeed well-separated from the firmware. This is also partly
because frameworks like Keystone aim to be platform agnos-
tic to the best of their ability. By virtue of this, the interface
between the firmware and the security monitor is also surpris-
ingly simple—all interactions are via small set of well-defined
functions that only pass data by registers without ever need-
ing memory de-references. The OS and the applications also
interact with the firmware necessitating interface-hardening.
This is a standardized interface which allows the OS to inter-
act with any platform firmware thus preserving compatibility.
This provides a good vantage point for privilege separation to
protect the monitor from untrusted OSes.

The main challenge in realizing DORAMI is the privilege
separation enforcement itself. Since the M-mode is already at
the highest privilege, short of changing hardware [36], there
is no other layer that can interpose the interactions between
the firmware and the security monitor. Worse yet, since both
of them execute in the M-mode, they have the privileges to
always use PMP-related instructions as well as access the OS
and enclave memory. One viable approach is to employ intra-
mode isolation, such that DORAMI only allows the security
monitor to use the PMP instructions. However, such in-situ
separation entails several challenges stemming from the na-
ture of the low-level code that is trying to enforce isolation,
in the presence of an adversary that can generate code, jump
in the middle of instructions, trigger asynchronous events that
change control flow (e.g., interrupts), and abuse the lack of
atomicity. These challenges have been demonstrated in prior
works that take the intra-mode isolation approach for kernels
and hypervisors [35, 44].

Our main contribution in DORAMI is to address the
challenges of intra-mode isolation by re-purposing an ex-
isting PMP mechanism extension called enhanced PMP
(ePMP) [32]. We outline four main invariants to ensure that
only the security monitor can access PMP registers. Next, we
make the security monitor a gateway between the OS and the
firmware, ensuring secure transitions. Finally, we ensure that
the security monitor and the firmware do not share any state
that can result in control or data flow changes (memory and
trap vectors). While seemingly simple, enforcing these invari-

ants turns out to be challenging because the security monitor
has to enable and disable memory isolation to different phys-
ical address ranges as it transitions between the OS and the
firmware. Our careful design of interface interposition and
compartment transition using PMP has to account for subtle
attacks such as ROP chains that exploit PMP instructions, trap
handlers that can break out of compartments, and use of PMP
instructions to avoid lock-ins.
Results. We implement DORAMI using ePMP emulation on
two FPGA setups (Rocket and NOEL-V cores) and QEMU.
We perform end-to-end benchmarking on HiFive Unmatched
board (FU740 cores) with only PMP support. DORAMI does
not break assumptions of OSes (Linux kernel), applications
with and without enclaves (CPU and IO, databases, web-
servers), or firmware (OpenSBI).
Contributions. DORAMI is the first work that shows priv-
ilege separation of the security monitor from the firmware
on a standard RISC-V platform that supports enhanced PMP.
DORAMI evaluation on a RISC-V board, two FPGA-based
cores, and an emulator shows that it does not incur drastic
software changes or performance penalties. DORAMI is open
source: https://dorami-riscv.github.io.1

2 Motivation

RISC-V has three execution modes as shown in Fig. 1. The
machine-mode (M-mode) houses the firmware which runs
at the highest privilege. It has access to all memory regions
and the privilege to change machine registers (CSRs equiv-
alent to control registers on x86_64 and special registers on
Arm) [7, 14, 26]. The supervisor-mode (S-mode) has lower
privileges than the M-mode and houses the OS. Applications
execute in user-mode (U-mode) and the OS isolates them
from each other using page tables. Since the S-mode can
access any U-mode memory, an attacker that can execute
its own applications can exploit bugs in the OS to bypass
process isolation to compromise other applications (Fig. 1a).
To reduce this attack surface, RISC-V TEEs use hardware
primitives to create an enclave abstraction, wherein the OS
executing in S-mode and untrusted applications executing in
U-mode cannot access enclave memory [36,42,50,53,64]. In
particular, one approach is to use physical memory protection
feature (PMP)—standard feature in RISC-V privilege specifi-
cation supported on most 64-bit platforms [4, 30, 31, 34]—to
prohibit the OS from accessing parts of physical memory.
Fig. 1b shows one such TEE based on Keystone. It introduces
a trusted security monitor in M-mode who is in charge of man-
aging PMP registers to create contiguous physical memory
regions for enclaves that are inaccessible to the OS. Keystone
can execute security-sensitive applications and supporting
runtimes in the enclaves to achieve its security goals.

1Artifact is available at: https://doi.org/10.5281/zenodo.14677522.

2

https://dorami-riscv.github.io
https://doi.org/10.5281/zenodo.14677522

OS/Kernel

App1 App2

FirmwareM
Mode

S
Mode

U
Mode

App3 App4

(a) Standard RISC-V

OS/Kernel

Firmware

Enclave
Runtime

App1 App2

SM

E-App

(b) Keystone

OS/Kernel

Firmware

Enclave
Runtime

App1 App2 E-App

SM

(c) DORAMI

Figure 1: Software stack on RISC-V systems.

Table 1: RISC-V Firmware Analysis.
Firmware Version Date Modules Lang Supported Platforms LoC

OpenSBI 1.3 10.2023 8 C All modern RISC-V boards 23,942
BBL 1.0 08.2019 0 C Early RISC-V boards 23,060
RustSBI 0.3.2 10.2023 4 Rust Qemu, Unmatched, Allwinner D1*, K210 –2

OreBoot 6b9ddbe 10.2023 8 Rust Qemu, Unleashed, Allwinner D1* 23,552

2.1 Firmware vs. Security Monitor
On closer examination, all RISC-V TEEs rely on a secu-
rity monitor—a trusted component executing in the M-mode.
For example, the Keystone security monitor isolates enclaves
(code and data), generates attestation reports, facilitates se-
cure context switches between the OS and the enclave, and
securely destroys enclaves before the OS can reclaim the phys-
ical memory. Other TEEs have security monitors that perform
similar protections (e.g., shared memory, intra-enclave isola-
tion, peripheral isolation). The monitors typically have small
codebases (10-15 KLoC), can be programmed in memory-
safe languages [1], and are subject to formal verification [55].

Other than the security monitor, the M-mode also houses
the firmware. The exact functionality and codebase compris-
ing the firmware depend on the specifics of the platform (the
components on the SoC, the board, vendor-specifics, device
management, interrupt controller, timer, IO, synchronization).
To allow diversity of such platforms while providing a uni-
form interface to the OSes, RISC-V specifies a Supervisor
Binary Interface (SBI) that the firmware implements and the
S-mode assumes [25]. We analyzed 4 open-source firmware
projects: Berkeley bootloader (BBL), OpenSBI, RustSBI, and
OreBoot [8, 17, 19, 28], summarized in Tab. 1. We observe
that the C implementations are capable of booting Linux, but
are prone to memory vulnerabilities. While the Rust imple-
mentations aim to address this gap, they have not reached a
maturity to support fully functional Linux. More importantly,
the firmware comprises not only the core-functionality (e.g.,
firmware versioning) but also third party code specific to the
components (e.g., cache controller, timer) on the RISC-V
platform. For example, OpenSBI has plugins from 8 vendors.
Since it executes in M-mode with the highest privileges, if
there are any bugs in the firmware (accidental or intentionally
introduced by third-party drivers), the attacker can exploit
them to corrupt the firmware. For example, prior works have
shown several bugs in firmware from devices such as IoT sen-

2RustSBI LoC is not precise since its build process is platform-dependent.

sors, to phones, to accelerators [39,45,49,54,57]. The RISC-V
firmware eco-system is not yet mature (e.g., no CVEs, secu-
rity bulletins, advisories), so we cannot report the number
of bugs in each of the implementations listed in Tab. 1. We
investigated OpenSBI bugs manually by sampling the RISC-
V mailing list. We found several bug reports and fixes for
buffer overflows [23], missing null termination [24], NULL
pointer dereference [22], missing checks [20], and incorrect
masks [21]. Thus, the security monitor in M-mode can be a
target of firmware exploits to bypass enclave isolation.

2.2 Challenges in Privilege Separation

Ideally, by the principle of least privilege, only the security
monitor should be able to change critical information pertain-
ing to enclave isolation. Similar to OS designs that advocate
for kernel’s privilege separation, such principled separation
of the SM can significantly reduce not only the TCB but also
the effective attack surface. To draw a further analogy to OS
design, the kernel must not access user memory in order to
protect itself from exploits where the attacker tricks the kernel
into accessing attacker-controlled user application memory.
For example, on x86_64, the kernel in ring 0 is denied from
accessing ring 3 memory; instead, it has to explicitly use
SMAP/SMEP [14] features to enable the access. This precau-
tion limits the attacker’s capabilities when exploiting kernel
vulnerabilities. On RISC-V, the security monitor or, for that
matter, any M-mode code does not need to access any S/U-
mode memory unless explicitly required (e.g., when the OS
requests the SM to generate an attestation measurement of
an enclave via an ecall). Thus, the SM should be disallowed
from accessing S/U-mode memory by default.

Partitioning the SM and the firmware into two com-
partments is a worthy goal if three requirements are met:
the partition boundary, the interface between the partitions,
and partition enforcement mechanisms. The first step is
to decide which functionality of the SM and the firmware
should execute with the higher privilege. From our anal-
ysis of several open-source security monitors for RISC-V
TEEs [42, 50, 53, 64], we observe that the monitor typically
has a clean and clear separation—it handles enclave lifecycle
and accesses certain hardware interfaces, it seldom interacts
with the firmware for servicing enclaves. On the other hand,
the OS invokes the firmware quite often but it almost always
does so for non-enclave operations. Due to this modularity,
deciding the partition boundary is a relatively easy task, es-
pecially compared to similar efforts for monolithic kernels
and applications [44]. The second step is to ensure that the
privilege-separated compartments have a minimal interface
that does not require excessive data transfers, thus further min-
imizing the attack surface. Our analysis shows that the SM
and the firmware do not need to pass any data beyond register
values, all of which are non-pointers. Tab. 2 summarizes our
interface analysis for 4 open-source RISC-V TEEs.

3

Table 2: Number of APIs from the S-mode (OS) to security
monitors (P), from P to firmware (F).

Monitor Release Version Firmware P LoC P F

Keystone [53] Mar 2021 1.0 OpenSBI 8,401 10 11
Elasticlave [64] Sep 2023 1.0 BBL 8,538 22 5
Penglai [50] Aug 2023 Tvm BBL 10,232 19 6
Sanctum [42] Feb 2020 1.0 independent 5,092 31 N/A

The final step in achieving such privilege separation is
enforcing the isolation. For example, one approach is to in-
troduce a lower layer that transparently isolates two com-
ponents (e.g., using a hypervisor to do intra-kernel isola-
tion [35]). Since M-mode is the lowest level that can execute
software on RISC-V, the only option is to rely on the micro-
architecture which would require, perhaps undesirable, plat-
form changes [36]. Alternatively, prior approaches achieve
in-situ isolation by using hardware features [35,40,44,59,63]
and instrumentation [48]. Either way, the enforcement must
ensure that the attacker can never misuse the isolation-specific
operations. For example, when the kernel uses SMAP/SMEP,
it has code snippets that conditionally allow it to access user
memory. If the kernel has memory bugs, the attacker can do a
ROP-chain attack to first use the SMAP/SMEP features [13].
As another example, when the hypervisor isolates the kernel,
it has to mediate all interfaces to correctly enforce the isola-
tion. Finally, the design has to consider low-level operations
such as interrupts, exceptions, and coarse-grained privileges.

2.3 Problem Statement

DORAMI aims to ensure that the monitor is privileged sepa-
rated from the firmware. It introduces the notion of a PMP
compartment (P) and a Firmware compartment (F), where
the PMP compartment is strictly more privileged than the
Firmware compartment. PMP compartment houses the SM
and does security-critical operations (e.g., enclave lifecycle)
that requires access to critical hardware instructions (e.g.,
PMP management, trap vectors). Firmware compartment
houses the remaining M-mode code i.e., platform firmware.

The OS, applications, and enclaves can invoke services
from the M-mode by explicitly invoking ecalls to syn-
chronously switch to M-mode. Additionally, if the CPU core
receives a runtime exception (divide-by-zero) or interrupt
(timer), the execution switches asynchronously to M-mode
handlers. DORAMI has to ensure that any such interfaces from
the S/U-mode to the M-mode are guarded. Further, DORAMI
has to route the request to the correct compartment. For ex-
ample DORAMI has to invoke the Firmware compartment if
the S/U-mode wants to invoke firmware functions and PMP
compartment if the OS wants to create a new enclave.

Since the M-mode is the most privileged layer on the plat-
form, DORAMI has to rely on hardware for isolation. Specif-
ically, DORAMI uses the RISC-V hardware’s ability to per-

form fast physical memory isolation via PMP configurations.
However, RISC-V allows any M-mode code to change PMP
configurations. So DORAMI has to enforce intra-mode isola-
tion to prohibit the Firmware compartment from tampering
the PMP configurations. To this end, DORAMI must enforce
four security invariants:

IePMP: Only P is trusted to configure and change PMP regions.
DORAMI only allows P to access PMP registers,3 since the
isolation itself is done using PMP.

IEnEx: P is the only entry and exit point between S/U-mode
and M-mode. DORAMI introduces new transitions for exist-
ing interface between the S/U-mode and M-mode to ensure
isolation—not only between compartments but also between
the modes. This includes synchronous interfaces (ecalls) and
asynchronous transitions (traps).

IIntf: F can only invoke P via a fixed interface. DORAMI
provides only one interface from P to enter F, without nesting.
Such explicit interface allows DORAMI to ensure a fixed
entry and exit point to and from the Firmware compartment
to enforce PMP isolation as well as control the data that is
passed between the compartments.

IMT: P and F do not share any memory regions or trap vectors.
DORAMI allocates independent physical memory regions to
the compartments. It also maintains different interrupt vector
tables (IVTs, referred to as trap vectors on RISC-V) per com-
partment. This way, if F installs malicious handlers that are
triggered when P is executing, they are not executed. DORAMI
performs a secure context save and restore across compart-
ments and modes during transitions.

Threat Model & Scope. The PMP compartment is trusted
by all components on the systems and is assumed to be bug-
free. The PMP compartment does not trust the Firmware
compartment and any other code executing in S/U-mode (OS,
user apps, enclaves), and hence avoids accessing any memory
belonging to these untrusted components. The Firmware com-
partment does not trust the S/U-mode, as is typical on RISC-V
platforms. The enclaves do not trust each other or the OS and
the OS does not trust the enclaves, as is typical for TEEs. The
attacker has full control of the host OS, can launch malicious
enclaves, and exploit bugs in the firmware with the goal of:
a) executing arbitrary code in firmware; b) leak code, leak/
corrupt data of enclaves. The attacker can use the Firmware
compartment to compromise the PMP compartment, which is
in charge of isolating the compartments and enclaves.

DORAMI does not address DoS, side-channel attacks, and
hardware bugs that may break the TEE guarantees provided
to enclaves. It relies on existing mechanisms that provide
protection against these attacks. DORAMI does not protect
against a Firmware compartment that can launch DoS attacks
against the PMP compartment.

3Barring one case that we will explain in Section 5.2.

4

2.4 Existing Approaches

Tab. 3 shows prior works that enforce isolation on different
architectures and layers. DORAMI shares challenges and ap-
proaches (e.g., using call gates, binary scanning, and interrupt
handler for sanitization) with them. In our experience, these
are common for any intra-mode isolation that does not use
instrumentation [35, 59, 63]. We compare DORAMI to two
approaches in particular for achieving intra-mode isolation by
either modifying the hardware or by repurposing standardized
hardware features. Cure [36] provides intra-mode isolation
and exclusive assignment of peripheral devices to enclaves.
But it modifies hardware to add CPU and bus-level checks:
CPU sets enclave ID and system bus does the access con-
trol. In DORAMI, instead, our goal is to provide intra-mode
isolation in the most privileged layer while relying on stan-
dardized hardware features (i.e., ePMP) and without any addi-
tional changes to hardware. Our work shows how to overcome
challenges arising from this goal (discussed in Section 3).

Nested Kernel (NK) [44] isolates memory management
functions in kernel space by protecting the page table transla-
tion configuration to create two compartments: nested kernel
with higher privilege to perform memory reconfigurations
and outer kernel that serves the remaining kernel functions.
Comparing NK to DORAMI, we observe some similarities
in this isolation principle, however the insights are different.
First, NK operates in kernel space (Ring 0) and uses MMU
and write-protect (WP) bit. This combination ensures that the
attacker does not jump to the privilege nested kernel code or
data. On the other hand, DORAMI operates in firmware space
(M-mode) where it cannot use page-table based isolation with
the MMU and there is no WP-bit; instead it has to resort to
ePMP. Because of this difference, DORAMI has to address the
challenge of an attacker jumping to code gadgets in a different
way—instead of unmapping the pages, we reconfigure the
PMP to make the gadgets inaccessible. While this may seem a
minor difference, DORAMI has to introduce a PMP reconfigu-
ration code snippet which can then in turn be used as a gadget.
To make this gadget useless to an attacker, DORAMI uses
a novel PMP trick—as soon as the attacker tries to misuse
the gadget, it locks the attacker’s memory. Next, NK reasons
about interrupts by changing all the interrupt handler code
to check that the WP-bit is set. This ensures that the outer
kernel cannot misuse the handlers to access the nested ker-
nel. In contrast, DORAMI allows the firmware to use its own
arbitrary interrupt handlers. It simply ensures that the execut-
ing firmware can never change its own memory permissions.
Specifically, DORAMI uses binary scanning, non-writeable
code pages, and atomic compartment switching.

3 Rationale for using ePMP

All prior RISC-V TEEs use a standard ISA feature called
physical memory protection (PMP). Although PMP can ef-

Table 3: Related Work Summary. Comparison of prior works
based on hardware modifications, standardized hardware fea-
tures, target ISA, privilege level for the trusted protector that
enforces isolation, isolation abstractions used for the pro-
tectee, isolation enforcement type, and TCB size.

Approach HW
Mod

Std.
Feature ISA Protector

(Trust Priv.)
Protectee

(Isolation Abs.)
Iso.

Type
TCB

KLoC

Cure [36] ✓ Bus filter RISC-V FW FW, OS, Enclave ex-situ 3.0
NK [44] ✗ MMU, WP x86 Kernel Kernel in-situ 4.0
SKEE [35] ✗ MMU ARMv7/8 Hypervisor Kernel in-situ Hyp.
NeXen [59] ✗ PT nesting x86 Hypervisor Monitor, Domains in-situ N/A
Elisa [63] ✗ EPT x86 Kernel/VM VM in-situ 1.4
SVA [43] ✗ LLVM x86 SVM OS, Services Instr. 5.1
DORAMI ✗ ePMP RISC-V Monitor Monitor, Firmware in-situ 10.6

SM OS Enclave

 P
rio

rit
y

0

Phy
Mem

pmpXcfg

a) PMP access permission configuration

1

2

SM OS
Enclave

SM OS Enclave

b) ePMP access permission configuration

☑ ☒
☒

SM OS
Enclave
☑ ☑

☒
SM OS
Enclave
☑ ☒

☑

SM OS
Enclave
☑ ☒

☒
SM OS
Enclave
☒ ☑

☒
SM OS
Enclave
☒ ☒

☑

Figure 2: The system memory is divided into 3 memory
regions, one each for SM, host-OS, and enclave. With PMP-
based isolation, host-OS and enclave cannot access each oth-
ers region, but the SM always has access to both, regardless
of the configuration in the pmpXcfg registers, where X is a
placeholder for a specific entry. With ePMP-based isolation,
the SM can also only access the memory in its own region.

fectively isolate enclaves and the host OS from each other, it
has several limitations that make it unsuitable for realizing
compartmentalization within the M-mode. First, we explain
the details of this PMP-based isolation and outline why it
is not a good fit for DORAMI. Then we introduce another
standardized RISC-V ISA feature called ePMP (stands for
enhanced PMP) and explain how it can realise DORAMI.4

Background: Physical Memory Protection (PMP). It is
a feature for RISC-V CPUs that can be used to divide the
physical memory into PMP regions, where a region is defined
by a range of continuous physical addresses. Each of these re-
gions can then be associated with specific access permissions
defined by a PMP configuration register. RISC-V introduces
two new types of registers, pmpaddr and pmpcfg, to enable
PMP regions and region-specific configurations, respectively.
Since these are privileged registers (CSRs), only M-mode is
allowed to change them. Once PMP regions are set up, on
each memory access originating from S/U-mode, the hard-
ware checks if the target address is protected by a PMP region.
If so, it further checks whether the access type (R/W/X) is
permitted according to the PMP configuration.

PMP can be used to isolate M-mode from S/U-mode, such
that the hardware denies any attempts by unprivileged soft-
ware (e.g., OS) to access M-mode memory (e.g., preventing
modifications of privileged system components). Specifically,

4The RISC-V specification refers to the ePMP extension as Smepmp.

5

M-mode first sets up one PMP region to protect itself by set-
ting the PMP configuration to be non-readable, non-writable,
and non-executable, as shown in pmp0cfg in Fig. 2(a). Then,
to allow the S/U-mode to access its own memory, M-mode
sets up a second PMP region for OS and user-space, as per
pmp1cfg in Fig. 2(a). With this PMP configuration, any ac-
cess by S/U-mode to SM will cause the pmp0cfg check to
fail, thus stopping accesses to M-mode. On the other hand,
when the S/U-mode accesses region 1 (i.e., its own memory),
pmp0cfg does not apply; instead, pmp1cfg applies and allows
the access. In other words, by setting up regions and assigning
permissions using priority-based PMP configurations, one can
isolate the M-mode from S/U-mode on RISC-V.

Region configurations can overlap; in this case the hard-
ware verifies an accessed memory address against the first
matching configuration with the highest priority. Further, one
can create multiple isolated regions within the S/U-mode by
using multiple PMP configurations. Existing TEEs, such as
Keystone, use this to create exclusive PMP regions for each
enclave by flipping the access permissions between enclave
and OS regions during context switch. This is required to
establish memory isolation between OS and enclaves, as PMP
only differentiates between M-mode and S/U-mode, but not
between different entities within S/U-mode. At time t1, be-
fore executing the OS, the SM grants S/U-mode access to the
OS and denies access to the enclave. Later at time t2, before
executing the enclave, the SM flips the permissions, allowing
access to the enclave region and denying access to the OS.
Problem 1: Default access permissions of M-mode. PMP-
based separation is unidirectional, i.e., only M-mode software
is protected from access by unprivileged software but not
vice versa. This leaves a large attack surface. We consider the
following example where secure enclaves are deployed on
the system. PMP enforces inter-enclave isolation, but the M-
mode software is buggy. A malicious enclave exploits the bug
(e.g., via ecalls) to get arbitrary code execution in M-mode
(e.g., ROP chain). Since the code executes in M-mode, it
can corrupt M-mode memory. More importantly, the enclave
can trick the M-mode into accessing any S/U-mode memory
(e.g., belonging to another enclave). Such an exploit could
eventually lead to leaked or compromised data of a second
enclave. If PMP-enforcement blocked M-mode’s access to
S/U-mode, the malicious enclave limits to M-mode.
Problem 2: M-mode PMP configurations are permanent.
One way to address the above outlined problem is to enforce
PMP configurations on M-mode as well. In the PMP specifica-
tion, this is indeed feasible, by setting an additional bit in the
pmp0cfg register. There are two undesirable repercussions of
this: (a) once set, the PMP configurations applied to M-mode
cannot be modified until reboot; (b) the configurations apply
to all modes. Put together, this makes it impossible to change
PMP configurations when switching enclaves (e.g., make only
region 1 accessible at time t1 and only region 2 at time t2). In
the context of our example, when the enclave tricks the M-

mode into accessing enclave 2’s memory, the hardware will
deny it. But enclave 2 itself can never access its own mem-
ory anymore. Thus, while this mechanism effectively limits
M-mode’s ability to access certain memory areas, it is unsuit-
able for enclaves, as they require frequent PMP configuration
changes (e.g., switching execution between enclaves).
Enhanced PMP (ePMP). It is a recently ratified extension to
PMP [32] that applies each set of PMP configurations specif-
ically to M-mode or S/U-mode. Fig. 2(b) shows that ePMP
allows setting up the memory regions where all entities have
exclusive access to their own memory regions. Further, ePMP
allows dynamic changes to M-mode’s PMP configuration.
ePMP allows the flexibility needed to achieve DORAMI goals,
but is not ideal. Specifically, it has three shortcomings: (a)
any M-mode code can maliciously change regions and PMP
configurations, leaving a large attack surface via buggy imple-
mentation; (b) when applied, a PMP configuration is enforced
for any code executing in M-mode, without fine-grained iso-
lation within the mode; (c) even if fine-grained isolation is
possible, transitioning between two partitions requires care
of ePMP configuration to ensure isolation.

4 DORAMI Compartments & Interfaces

DORAMI introduces 2 compartments in M-mode: P and F iso-
late the SM and firmware from each other. DORAMI enforces
the 4 security invariants in Section 2.3 to effectively prevent
F from maliciously tampering with SM or enclaves. However,
housing P and F in M-mode requires careful consideration of
the compartment memory layout, interfaces, transitions and
permissions. Therefore, DORAMI places each compartment in
separate physical memory and ensures that F can never access
any other memory outside its own compartment, satisfying
IMT. For inter-compartment and inter-mode communication,
DORAMI provides a set of secure register-based interfaces
that P always checks and controls, thus satisfying IEnEx. To
transition between compartments, DORAMI provides a se-
cure mechanism that never unlocks both P’s and F’s memory
spaces simultaneously, thus satisfying IIntf. Finally, DORAMI
introduces a binary scanner. During boot it ensures that the
firmware is free from any malicious code that can change the
isolation configuration, thus satisfying IePMP.
Memory Views. DORAMI starts with a memory layout such
that code and data of the PMP compartment are in separate
physical memory regions without any overlap. Code pages are
configured r-x, and data pages are configured rw-. Similarly,
code and data for the Firmware compartment are separated in
non-overlapping physical pages with the appropriate permis-
sions. More importantly, DORAMI ensures that the PMP com-
partment and Firmware compartment do not have any code
and data pages overlapping each other. DORAMI achieves
these layout requirements by changing the bootloader and
layout of the compiled SM and firmware binaries.

6

PC EPDFDFC OS

PC PDFDFC OS E

PC FC FD PD OS E
PC FD PDFC OS E

(a)

(b)

(c)

(d)

(e) PC OS EFC PDFD

Figure 3: DORAMI access permissions when executing core.
P=PMP compartment, F=Firmware compartment, OS=Host
OS, E=Enclave; C=code region, D=data region; white=access
allowed, grey=access denied. (a)-(c): Same memory view as
in DORAMI and legacy deployment: (a): Core operates in
M-mode; (b): Core executes Host-OS in S/U-mode; (c): Core
executes enclave in S/U-mode. (d)-(e): Memory views added
by DORAMI: (d): Core operates in M-mode and the PMP
compartment executes; (e): Core operates in M-mode and the
Firmware compartment executes.

During execution, DORAMI ensures an isolated memory
view, as shown in Fig. 3. First, it uses default ePMP features
such that when P and F are executing, they cannot access
OS- and enclave memory. Next, DORAMI confines P and
F within the M-mode such that each can only access their
own code and data. It again uses ePMP to achieve such intra
M-mode isolation but in an atypical fashion. For example,
when the execution is transitioning from P to F, DORAMI
disables access to P and enables access to F. More impor-
tantly, according to IePMP, DORAMI only allows P to execute
instructions related to PMP reconfiguration. DORAMI also
preserves Keystone’s isolation model, i.e., S/U-mode cannot
access M-mode and enclave memory. Lastly, for every inter-
face that involves mode or compartment change, DORAMI
changes the PMP configuration to reflect the correct memory
view (Tab. 4 and Fig. 3).

Interfaces. Tabs. 4-6 summarize all the interactions between
the components pertaining DORAMI. As per IePMP and IIntf,
any execution flow that incurs a memory view change has
to transition through P. This allows DORAMI to ensure that
P makes the required PMP updates to change the memory
view without leaving any window of attack. For example,
consider a scenario where an enclave wants to execute a
syscall in the host OS. In Keystone, this involves transitions
from enclave to SM to OS. Since DORAMI executes SM in P,
a syscall interface already satisfies our requirement and is thus
unaffected. Next, consider the case where the OS wants to
invoke a function in the firmware. In RISC-V, the OS simply
makes an ecall to M-mode where the firmware services the
OS request. In DORAMI, the firmware functions reside in the
Firmware compartment. If the OS directly jumps to the entry
point of F, the execution will fail because the firmware pages
are inaccessible. To address such cases, DORAMI enforces
isolation during such transitions by first transitioning through
P, satisfying IEnEx. This way, for our ecall, P can lock the OS
memory and unlock the firmware. DORAMI remedies all such
flows as summarized in Tab. 4.

Transitions between S/U and F. DORAMI has to enforce
isolation between S/U- and M-mode. We observe that as per
ePMP specification if the PMP region is set as accessible for
a particular mode (M or S/U), the other mode cannot access it.
DORAMI leverages this to its advantage. When the execution
is in S/U-mode, DORAMI sets the PMP configuration such
that the region covers the entire memory of the currently
executing unit (either OS or enclave). Similarly, DORAMI
assigns PMP regions that cover the entire memory of P’s code
and data. This way, when the S/U-mode switches to or from P,
the ePMP enforcement automatically ensures mode-exclusive
access. On RISC-V, the S/U-mode can execute an ecall to
transition to M-mode. The CPU traps on the ecall instruction
and uses the trap vector (stored in the mtvec CSR) to locate
and execute the handler that corresponds to the M-mode. By
IEnEx and IIntf, DORAMI enforces a fixed entry point into P by
setting the trap vector correctly so an attacker cannot tamper
it. As changing the trap vector requires M-mode privileges,
DORAMI ensures that only P and not F can change it.

Transitions between OS and enclave. Keystone execution
flow for transitions between enclaves and OS is mediated via
the SM. Since DORAMI just moves the SM into P, we do not
have to change PMP switching or transition flow.

Transitions between F and P. So far we have looked at inter-
mode transitions (S/U vs. M) or intra-mode transitions that are
forced to incur a mode transition (OS to enclave via M-mode).
However, the critical change brought about by DORAMI is
the creation of intra-mode isolation between F and P. Our
interface, respecting IIntf, only allows P to invoke F, and that
only for certain services such that F performs the operations
and simply returns to P. This choice reduces several attack
vectors (e.g., multiple entry points to F from OS/enclave/P, or
arbitrary calls from F to P). Nonetheless, DORAMI still has to
facilitate a call from P into F and return from F to P. This has
to be done with care for two reasons: (a) P and F execute in
M-mode, and both have the privileges to change PMP config-
uration; (b) during transition between compartments, memory
and interrupt isolation has to be enforced without leaving a
window for attacks (e.g., TOCTOU, lack of atomicity).

Bootstrapping. On traditional RISC-V systems, the first stage
bootloader (FSBL) loads and starts the firmware, which in
turn starts the OS. DORAMI modifies this bootprocess, particu-
larly the FSBL to enforce IePMP and IMT. In DORAMI firmware
and SM consist of two distinct binaries. The FSBL loads both
of them into memory. But before starting any software in
M-mode, the FSBL scans the firmware’s code blob to ensure
that it does not contain any malicious gadgets that can recon-
figure PMP-related registers or the trap vector. Since RISC-V
instructions are 2 B aligned, DORAMI scanner checks the blob
for suspicious opcode patterns in 2 B intervals. If the scan
does not detect any such opcodes, the FSBL starts the SM

7

Table 4: Transitions between compartments, OS and enclaves, that are affected by DORAMI

Source Destination Event Original Transitions DORAMI Transitions

OS FW ecall OS → FW → OS OS → P → F → P → OS
OS SM Enclave create/delete OS → SM → OS OS → P → OS
OS Enclave Enclave enter OS → SM → Encl. OS → P → Encl
Enclave OS Enclave exit Encl. → SM → OS Encl. → P → OS
Enclave OS ocall Encl. → SM → OS → SM → Encl. Encl. → P → OS → P → Encl.
Enclave FW ecall Encl. → FW → Encl. Encl. → P → F → P → Encl.
OS - Any M-Trap OS → FW → OS OS → P → F → P → OS
Leg. App - Timer M-Trap App → FW → App → OS → App App → P → F → P → App → OS → App
Leg. App - Non-Timer M-Trap App → FW → App App → P → F → P → App
Enclave - Timer M-Trap Encl. → SM → OS Encl. → P → OS
Enclave - Non-Timer M-Trap Encl. → FW → Encl. Encl. → P → F → P → Encl.

Table 5: Unaffected transitions

Source Dest. Event Unaffected Transitions

App OS ecall/syscall App → OS → App
App OS S-Trap App → OS → App
Encl. App Runtime ecall/syscall Encl. App → RT → Encl. App
Encl. App Runtime S-Trap Encl. App → RT → Encl. App

Table 6: New transitions, introduced by DORAMI

Source Dest. Event New Transitions

P F Enter F P → F → P
F P Exit F F → P
P - M-Trap impossible
F - M-Trap F → F (trap handler) → F

binary.5 The SM’s initialization creates the P and F compart-
ments by configuring the PMP registers. This creates and
enforces the isolation between SM and firmware. After initial-
izing P, DORAMI transitions to F for firmware initialization.
Once F finishes, DORAMI returns to P to start the OS.

5 Inter-compartment Transitions

The transitioning process between the PMP compartment and
the Firmware compartment requires differentiating between
the cases of switching from P to F and from F to P to ensure
a correct switching routine as required by IePMP and IMT.

5.1 PMP to Firmware Compartment
Switching from P to F entails four steps: removing access to
P’s memory regions, allowing access to F’s memory regions,
jumping to F’s entry point, and setting the trap handler to
F’s view. Despite the universal trust in P, these steps require
careful consideration to prevent malicious influence from
S/U-mode or F.
Execution in P. P is executed either because of transition
from S/U-mode or because it returned from F. When entering
into P from S/U-mode, DORAMI must ensure that for every
mode the permissions for S/U-mode memory regions are

5This one-time scan at boot is sufficient because F cannot write to its own
code memory or execute data memory during runtime.

disabled. This PMP configuration change happens directly
after entering P from S/U-mode. Thus, when P is executing,
it can only access its own memory (code and data pages).
Additionally, as per RISC-V ISA [26], the CPU automatically
disables interrupts when entering M-mode. This means that
entering M-mode from S/U-mode will automatically mask
all interrupts. The M-mode has to explicitly re-enable them
by writing to a specific CSR. In DORAMI, we never enable
interrupts while executing in P. Thus, P never incurs traps:
(a) exceptions such as divide-by-zero never arise because of
careful programming; (b) interrupts such as timers, even if
triggered, are masked. Lastly, P has its own view of the trap
vector—it has to be set such that the ecall entry point is fixed.
Put together, DORAMI ensures that P has memory and trap
isolation as specified by IMT.

Entering F. Next, we consider the case where P invokes a
function in F, which requires a transition from P to F, which
entails three steps: Reconfigure PMP to deny access to P’s
memory regions and allow access to F’s memory regions,
jump to F’s entry point, and set the trap handler to F’s view.
The order of these steps is crucial for several reasons. DO-
RAMI does not allow F to change the trap handler to preserve
security, as we will explain later in Section 5.2, so P has to
change it before entering F. If P removes access permission
to its own memory regions, it can no longer perform PMP
configuration changes to allow access to F’s memory regions.
So it has to allow access to F’s regions before or together
with removing access to its own regions. Similarly, P cannot
perform the jump to F’s entry point before or after removing
access to its own regions. Next, we explain how DORAMI
addresses these challenges securely.

Reconfiguring ePMP. The crucial step of switching from P to
F is the re-configuration of ePMP. Essentially, DORAMI has
to perform a configuration transition as visualized in Figs. 3d–
3e, thus stopping the execution in P and starting the execution
in F. To achieve this, P needs to prepare the PMP configuration
registers such that the isolation hardware enforces the combi-
nation mentioned above. P first writes required values into a
general-purpose register, which it then moves into the PMP
configuration register. Note that this reconfiguration can be
performed in a single step to disable access to P’s regions and

8

#define F_MTVEC 0x1234
#define PMP_CONFIG_F 0xB9...
_launch_firmware:
li t0, F_MTVEC
csrw mtvec, t0

li t0, PMP_CONFIG_F
csrw pmpcfg0, t0

_firmware_start:

Static values for F's trap
vector and PMP config

Write F's trap
vector into mtvec CSR

Write new PMP config
into pmpcfg0 CSR

IP advances and F
 starts execution

PC FD PDFC OS E

Before line 8:

After line 8:

PC OS EFC PDFD

Instructions Description Access Permissions
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

Figure 4: Transition P to F. P updates trap vector to F’s view
and then reconfigures access permissions for code and data
regions of P and F atomically using static configuration value.

enable access to F’s memory regions without an intermediate
step where both P and F are accessible. If DORAMI performs
this step with two instructions, e.g., first allowing access to F’s
memory regions and afterwards removing access to P’s mem-
ory regions, there would be a time window during which both
regions are accessible at the same time. If now, for any reason,
an exception occurs, the CPU will execute F’s trap handler,
as the reference to it was already set in the trap vector during
the previous step. Since both P’s and F’s memory regions are
now accessible, and F is executing, it could gain complete
control over M-mode, which would contradict IMT. However,
as explained above, it is impossible that DORAMI will trigger
a trap (exception or interrupt) during these two operations.
Hence, in this case, changing the PMP configurations does
not necessarily need to be performed atomically.
Jumping to the Firmware Compartment. The last crucial
step in switching from P to F is to set the instruction pointer
(IP) to the start of F’s code region. However, the question
remains if setting the IP should be performed before or af-
ter changing the PMP configuration. The main issue is that
since we set F’s and revoke P’s access permissions, we cannot
execute code any further in P after this. Therefore, we make
use of the CPU’s notion of advancing the instruction pointer
automatically after executing an instruction. We place the
instruction that changes the PMP configuration into the last
few bytes of P’s code region. Executing these instructions
directly at the border has the effect that we directly advance
the IP from P’s code region into F’s code region while si-
multaneously re-configuring the memory access permissions.
Fig. 4 shows an assembly pseudocode example of performing
the overall switching from P to F.

5.2 Firmware to PMP Compartment

Switching back from F to P entails four steps: remove access
to F’s memory regions, allow access to P’s memory regions,
jump to P’s entry point, set trap handler to P’s view. It re-
quires careful consideration when performing these security-
sensitive tasks since the attacker controls F. The attacker can-

1.
2.
3.
4.
5.
6.

#define PMP_CONFIG_P 0xA0...
_exit_firmware_unsafe:
li t0, PMP_CONFIG_P
csrw pmpcfg0, t0

_p_entry:

Static value for P's
PMP config

Write new PMP config
into pmpcfg0 CSR

IP advances and
P starts execution

PC FD PDFC OS E

Before line 4:

After line 4:

PC OS EFC PDFD

Instructions Description Access Permissions

Figure 5: Unsafe Transition from F to P. F reconfigures
ePMP with static value to deny access to F’s regions and
grant access to P’s regions. ROP can exploit this transition as
a gadget by jumping between lines 3-4.

not achieve arbitrary code injection (DORAMI enforces DEP
using ePMP). But it can perform arbitrary code execution, by
exploiting memory vulnerabilities to achieve ROP.

Let us first consider the step where F removes access per-
missions to its own memory regions and allows access to
P’s regions. Fig. 5 shows a pseudocode for performing this
operation. First, DORAMI does not allow F to execute any
instructions that change PMP configurations. Second, even if
we selectively allow F to execute the particular sequence of
PMP-related instructions in Fig. 5, we cannot trust F to faith-
fully prepare the configuration in a general-purpose register
and then move it into the PMP configuration register. F can
abuse this to write arbitrary values into the PMP configuration
registers. Therefore, Fig. 5 provides a very expressive gadget
that an attacker could use to change PMP configurations arbi-
trarily. This raises the dilemma that F needs to perform PMP
reconfigurations, even though it is not trusted to do it.
Reconfiguration of PMP using a SallyPort The main chal-
lenge in solving this dilemma is to achieve the same effect
that doing a PMP configuration change has, but with instruc-
tions that cannot be misused as a gadget. We address this
by introducing the notion of a SallyPort region.6 First, we
construct a way to revoke F’s access with a single write into
the PMP configuration register that has a static value. This
way, even if the attacker uses this mechanism as a gadget, it
will always end up getting access to its own memory regions
removed. We refer to this as a SallyPort-Entry, shortened to
SPEntry; F can use it, but it only revokes access to regions
and never explicitly adds new permissions.

Next, DORAMI has to enable access permissions of P’s
memory regions and jump to P’s entry point. But the PMP-
related instruction to enable it cannot be placed in F; it has
to be executed after F is locked. We again use the insight of
instruction pointer increment. We slightly modify the SPEntry
such that it atomically locks F safely and unlocks P. It achieves
this atomicity by putting the instructions that change PMP
configurations at the end of F’s code region and placing a part
of P’s code region immediately after the end of F (Fig. 6).
This creates a layout where F is sandwiched between P’s code
pages. Specifically, we refer to the part of P’s code region that

6Sally port can be entered but not exited through the same door.

9

1.
2.
3.
4.
5.

_exit_firmware:
csrwi pmpcfg0, 0x00

_sallyport_entry:
...

SallyPort Entry, Clear-
ing content of pmpcfg0

IP advances and Sally-
Port starts execution

Before line 2:

After line 2:

Instructions Description Access Permissions

PC OS EFC PDFDSP

PC FD PDFC OS ESP

Figure 6: Transition from F to SP using SPEntry. F clears
pmpcfg0, removing access to F’s memory regions and entry
that denies access to SP. Now the core can access SP.

resides immediately after F’s code region as the SallyPort (SP).
At this point, DORAMI can perform the remaining tasks of
restoring P’s trap vector, jumping to the entry point of P, and
continuing its execution.

We now detail the construction of such a SPEntry. DORAMI
uses a particular insight about setting PMP configurations to
achieve atomic locking of F and unlocking of P. We observe
that PMP bundles the permission setup for eight consecutive
regions in one pmpcfg register. This means that memory re-
gions 0-7 (with high priority) are configured using pmpcfg0,
while regions 8-15 (with lower priority) are configured with
pmpcfg2.7 DORAMI can ensure that permissions for P and
F are exclusively configured with the pmpcfg0 register (i.e.,
all code and data regions for P and F are always protected
by PMP entries between 0 and 7). In such a case, if F writes
zeroes to pmpcfg0, it will have the effect that regions 0-7
are essentially non-existent, i.e., not configured. Thus, any
access to memory previously covered by regions configured
with pmpcfg0 is denied if no configurations exist for them in
pmpcfg2. We can clear pmpcfg0 using the immediate-CSR-
write instruction, which does not take an argument from a
register but rather from one that is embedded in the instruc-
tion itself. Concretely, for our case, this is the instruction
csrwi pmpcfg0, 0. This instruction cannot be used as a
modifiable gadget, as it will always perform the same op-
eration since no general-purpose register can be specified.
Further, after executing the instruction that writes into the
pmpcfg register, the CPU will increment the IP, say to an ad-
dress M. If M falls within the range covered by pmpaddr0-7,
the instruction execution will cause an access fault due to
PMP violation. On the other hand, if M falls within the range
covered by pmpaddr8-15, the CPU will enforce the PMP
configuration as defined in pmpcfg2. If memory access per-
missions for F are completely covered with pmpcfg0 and at
least some parts of P’s memory access permissions are cov-
ered with pmpcfg2, the above gadget will achieve our desired
goal. To this end, we place the SPEntry as the last instruction
in F at the end of the page followed immediately by SP. Fig. 6
showcases a full transition in pseudocode from F to SP.
Switching from the SP to P. F uses the SPEntry to switch
into SP, which then unlocks P and restarts the execution of P.

7pmpcfg1 is invalid / does not exist on 64-bit RISC-V CPUs

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.

#define P_MTVEC 0x5678...
#define PMP_CFG_P1 0xA0...
_sallyport_entry:
csrci mstatus, 0x8

li t0, P_MTVEC
csrw mtvec, t0

li t0, PMP_CFG_P1
csrw pmpcfg0, t0
j _P_entry_from_F
########################

_P_entry_from_F:
#define PMP_CFG_P2 0xC0...
li t0, PMP_CFG_P2
csrw pmpcfg0, t0
[...]

Static values for P's trap
vector and PMP config

Write P's trap
vector into mtvec CSR

Enable access per-
missions for P

Jump to entrypoint of
PMP compartment

Disable access per-
missions for SallyPort

Before line 10:

After line 10:

After line 17:

Instructions Description Access Permissions

PC FD PDFC OS ESP

PC FD PDFC OS ESP

FD PD OS EPC FC SP

Disable any M-mode
interrupts if activated by F

Figure 7: Transition from SP to P. The SP reconfigures
the trap vector for P and restores access permissions to P’s
regions. Afterwards, SP jumps to P, which in turn removes
access permissions for SP’s memory region. An interrupt set
by F could be triggered between lines 4-5.

DORAMI performs several steps in the SP. First, it disables
any interrupts that might be active in M-mode. Then, it resets
the trap vector to P’s handler. Eventually, it reinstalls required
PMP configurations in pmpcfg0. Finally, it jumps to a pre-
specified entry point address of P. Note that in this case, we
are not using any tricks to advance the instruction pointer.
Instead, we trust the SP to perform the PMP configuration
changes faithfully and to normally jump to P’s entry point.
Fig. 7 shows the transition from SP to P.

Why is F not allowed to change the trap vector? Recall
that F and P need to have their own views of the trap vec-
tors for isolation. One way to achieve this is to simply save
and restore the trap vector between compartment switches.
However, DORAMI chooses a design where: At initialization,
the trap vector is set to P’s value of choice. Right before P
transitions to F, it updates the trap vector to F’s view that
P deems safe—all handlers in the trap vector must land in
F’s code pages. In other words, DORAMI never allows F to
change the trap vector to the extent that it employs a binary
scanner to ensure that F is launched if and only if it has no
such instructions. This measure is to stop the following attack.

Recall the mechanism of switching from F to P, where we
use two instructions in SP to a) set the PMP configurations and
b) disable any M-mode interrupts. This opens up a window
where the CPU can receive interrupts (e.g., a timer activated
intentionally by F just before exiting). At this point, the trap
vector is still set to a value controlled by F, which could point
to any arbitrary code available in SP. If the timer fires between
the PMP-configuration and interrupt-disabling instructions,
the CPU will execute the code pointed to by the trap vector,
set by F, which will execute instructions in SP at a location of
F’s choice and with register states provided by F. However, if

10

the trap handler still points to the original location in F, as set
by P before transitioning, and an interrupt arrives, the CPU
will stall unrecoverably until reset, thereby preventing this
attack. That is because the trap handler itself is located at an
address that is now inaccessible as the PMP configuration was
just cleared. So the CPU will endlessly trigger access fault
exceptions. This is why DORAMI’s design never allows F to
set the trap vector. However, this does not prohibit F from
handling interrupts and exceptions—P, trusted to set the trap
vector, sets it just before entering F (as shown in Section 5.1).
Binary Scanning. We observe that, on RISC-V, the only way
to modify the trap vector (mtvec) is to perform a CSR-write
instruction for this register. Therefore, DORAMI scans F dur-
ing boot to detect if CSR-write instructions are being used
in combination with mtvec. This scan is in addition to the
one that checks if F performs any modifications to the PMP
configuration, with the only exception of the SPEntry.

6 Security Analysis

We argue the security of DORAMI from various attackers.

6.1 Malicious S/U-Mode
DORAMI’s P ensures security of host OS and enclaves using
ePMP, exactly as in Keystone [53]. The host OS or enclave
runtime can try to attack the M-mode (both compartments)
by directly tampering with ePMP registers. The CPU will
disallow this because they do not have the privileges to access
ePMP registers as per RISC-V specification (IePMP).

S/U-mode can make ecalls to invoke P and misconfigure
ePMPs. Since we assume that P is bug-free and performs
input sanitization, the S/U-mode cannot trick P into doing
their bidding (e.g., change pmpcfg0). S/U-mode can also try
to use F to divert execution into a different entity i.e., host-OS
to enclave or vice versa, without P’s supervision. P prevents
this attack as it strictly controls that only host OS can invoke
F’s functions. Further, since P is the only entry and exit point
of M-mode, it can ensure that F can never compromise the
execution flow (IEnEx and IIntf).

S-mode can try to invoke Firmware compartment directly,
either by jumping to the physical memory address or changing
the mtvec register for re-routing ecalls. However, directly
jumping to F’s code triggers an access fault exception: (i) the
PMP configuration prevents any direct accesses from lower
execution levels; (ii) changing the mtvec register will trigger
an illegal instruction exception. Since both exceptions are
diverted to P, it will deny any such attempts (IEnEx). S-mode
can use F to launch attacks against P as we discuss next.

6.2 Malicious Firmware Compartment
M-mode is used by the PMP compartment and Firmware
compartment. Since P is considered trusted, we focus on the

attacks that F can launch against P or enclaves. First, F can at-
tempt to access memory beyond its PMP region configuration
(i.e., the memory of P, the host OS or enclaves). The CPU trig-
gers access fault exceptions to deny access. Although these
exceptions trigger the Firmware compartment’s exception
handler, it cannot successfully recover since the handler itself
does not contain any PMP-related instructions as confirmed
from the binary scanning during boot (IePMP and IMT).

F’s attempts to orchestrate Iago attacks to trigger PMP
reconfigurations in P are likewise ineffective. P does not
initiate PMP reconfigurations based on F’s return values, and
transitions between P and F adhere to a rigid program flow
without dynamic control flow changes, as enforced per IIntf.

F can generate malicious instructions that alter PMP config-
uration or collude with the OS to copy code blobs containing
them. F would attempt to write these instructions to its code or
data sections and then start their execution. However, both try-
ing to write to the code section or executing data as code will
trigger an access fault exception. Similar to the previous case,
the exception handler of F cannot recover from this exception
since it does not contain any PMP-related instructions (IePMP
and IMT). Maliciously using code sections from the enclave or
host OS to generate malicious instructions is also ineffective,
as this memory is not accessible to F. Any attempts to access
leads to access fault exception that F cannot recover from.

F can attempt ROP-style attacks and execute malicious
instructions as gadgets. It will be unsuccessful because: a)
RISC-V has a fixed-length instruction set of 2 or 4 Bytes. Any
unaligned execution will cause an exception that F cannot
handle for the same reasons mentioned above. b) DORAMI
ensures using binary scanning during boot that no gadgets
exist that the attacker could exploit to reconfigure PMP.

F can try to execute PMP instructions in the SP by ex-
ploiting the non-atomicity of interrupt masking as follows:
after switching into SP but before SP masks the interrupts,
F schedules a timer interrupt that diverts execution back F’s
handler. F then uses the instructions in the now unlocked SP
as a gadget to maliciously reconfigure PMP. This attack is not
successful, as F’s trap handler is no longer accessible to the
CPU after switching into SP (IIntf and IMT). So, the CPU will
infinitely trigger access fault exceptions from which the CPU
cannot recover until a hard reset.

F can try mtvec writes to modify the address of the excep-
tion handler triggered prior to invoking SP. However, binary
scanning during boot prevents the existence of any such in-
structions in F, and generating it faces the same challenges
mentioned above in regard to the PMP-related instructions.

7 Implementation

Implementing DORAMI involves assessing both the hardware
features available on the targeted platform and existing soft-
ware components, including the bootloader and firmware.

11

7.1 Components and Placement
We implement DORAMI on the HiFive Unmatched board. We
extend the platform’s first-stage bootloader (U-Boot SPL, pro-
vided by the manufacturer) with the binary scanner. The PMP
compartment in the M-mode houses Keystone’s SM, extracted
from the OpenSBI extension. The Firmware compartment
accommodates a modified OpenSBI version, featuring adjust-
ments for interaction with the PMP compartment. We disable
OpenSBI’s functions responsible for relocating itself since we
assume that the memory areas are fixed and the software in
M-mode is correctly placed in memory by trusted bootloaders
in earlier stages. To pass the measurement during boot, we
remove any instructions related to modifications of the PMP
entries or the trap vector since the PMP compartment now
performs these operations instead. Data exchange between
PMP compartment and Firmware compartment solely hap-
pens using registers passed during invocation of the Firmware
compartment (P to F), and after it yields (F to P).

7.2 Platform Considerations
DORAMI’s design requires ePMP extensions to enforce the
co-isolation of the PMP compartment and the Firmware com-
partment in M-mode. We tested our implementations on plat-
forms that natively support ePMP: QEMU and NOEL-V [16].
Further, we modified Rocketchip to add ePMP support. Dur-
ing our tests, we did not detect any memory access violations.

However, none of our ePMP-enabled platforms are suitable
for evaluating DORAMI. QEMU is not cycle accurate, its per-
formance changes based on host OS. Cores running on FPGA
require significant engineering to port Linux and Keystone if
they do not support it (e.g., NOEL-V). For cores that do sup-
port Keystone (e.g., Rocketchip), our ePMP implementation
is not optimized and exhibits large variance even for baseline
execution i.e., without DORAMI changes.

Ideally, we need a production board that supports ePMP.
However, at the time of writing, we could not obtain any board
that supports ePMP. Therefore, we evalaute DORAMI on a
platform with only PMP support i.e., the HiFive Unmatched.
While the lack of ePMP prevents a direct implementation
of DORAMI as per our original design, we adapted our ap-
proach to demonstrate the feasibility. We modified the PMP
configurations during context switches to exclude the L-bit,
effectively activating PMP configuration enforcement only for
S/U-mode. We do not expect any difference in performance
in terms of executed cycles by using this board compared to
one that employs ePMP (see Section 8.1).
Number of ePMP entries, enclaves, and compartments.
DORAMI creates two M-mode compartments: P and F.8 This
requires 6 PMP entries during execution: 1 for non-enclave
S/U-mode (e.g., OS) and 5 for M-mode (2 for P’s code and
data, 2 for F’s code and data, 1 for SallyPort). Fig. 6–7 show

8See Section 9.1 for extending DORAMI to multiple F compartments.

Table 7: LoC Breakdown of M-Mode software for a stan-
dard Keystone deployment and for our DORAMI prototype.
For Keystone, we removed unrelated device-specific libraries
from Keystone SM for fair comparison.

Component Keystone DORAMI

OpenSBI 23942 23922
DORAMI Compat Stubs - 46

Keystone SM 7777 6777
OpenSBI Stubs - 2724
DORAMI Enforcement - 1156

TCB 31751 10657

Total 31751 34625

this in detail. Since DORAMI needs one of these entries to
be the 9th entry, we need at least 9 entries on the platform.
Further, each enclave needs its own PMP entries. For exam-
ple, Keystone requires at least 2 PMP entries per enclave for
storing enclave private and host shared data, respectively [53],
whereas Elasticlave needs 3 PMP entries per enclave [64].
DORAMI does not change this requirement per enclave.

8 Evaluation

We show impact of using ePMP instead of PMP (Section 8.1).
and DORAMI’s performance (Section 8.2).
TCB. DORAMI in total consists of 34.6K LoC; this includes
a) the PMP compartment that houses the PMP reconfigura-
tion functions and the SM for enclave functions and b) the
Firmware compartment compartment that houses OpenSBI.
Tab. 7 summarizes the lines of code of DORAMI compared to
a typical system setup. We provide detailed information on
the impact of the monitor components and LoC breakdown.
Bootstrapping the PMP compartment. A considerable part
of the implementation overhead of P is the code required for
setting itself up and for basic LibC-like functions required for
operation. We implemented an initialization routine similar
to the one provided by OpenSBI with 343 LoC (included in
DORAMI Enforcement in Tab. 7). We import various OpenSBI
functions as stubs for the SM to function correctly.
Calling Firmware Services from the Host-OS. One of P’s
main tasks is to forward interrupts and exceptions from S/U-
mode to F, as showcased in Tab. 4. The switching process
involves saving the context from S/U-mode, creating and
loading a context for F and starting F. After F yields, P needs
to save and evaluate the context it returns. Based on this data,
P modifies the previously saved context from S/U-mode and
restores the context before switching to it. This functionality
is part of the DORAMI Enforcement in Tab. 7 and consists of
813 LoC: 474 LoC written in C and 339 LoC in assembly.
Handling Keystone Requests. Adding the Keystone SM to
P allows it to service the OS with launching and managing
secure enclaves. Including Keystone’s SM into P required
adding library functions from original OpenSBI (2724 LoC).

12

Table 8: Synthesis overview for Rocketchip and NOEL-V
in different configurations. SI: Single-Issue, DI: Dual-Issue.
Gray lines: maximum capacity of the FPGA.

Setup No.
PMP

CLB
LUT

CLB
FF

F-Mux
[7+8] DSPs BRAMs

VCU118 1182240 2364480 886680 6840 2160
0 170642 150288 4202 36 350

15 176307 151489 4228 36 350ROCKET
SI, PMP % 3.31 0.79 0.62 0.00 0.00

15 176378 151497 4264 36 350ROCKET
SI, ePMP % 3.36 0.80 1.47 0.00 0.00

KCU105 242400 484800 181800 1920 600
0 128907 73389 5053 39 84.50

15 131973 75890 5621 39 84.50NOEL-V
SI, ePMP % 2.37 3.41 11.24 0.00 0.00

0 144233 77179 4165 39 96.50
15 150841 79943 5506 39 96.50NOEL-V

DI, ePMP % 4.58 3.58 32.19 0.00 0.00

8.1 Impact of ePMP
We synthesize the custom Rocketchip CPU for a Xilinx
VCU118 FPGA using FireSim and the NOEL-V CPU for
a Xilinx KCU105 FPGA using Gaisler GRlib, both with a tar-
get frequency of 100 MHz. Both CPUs feature two RV64GC
cores with ePMP support for up to 15 entries each.9 We syn-
thesize one PMP-only and three ePMP-enabled setups summa-
rized in Tab. 8, varying from 0 to 15 PMP entries. We report
the impact of enabling ePMP support on area and PMP/ePMP
reconfiguration on four setups. We test our setups using the
CLI Linux distributions provided by FireSim and GRlib that
are compatible with Rocketchip and NOEL-V. Rocketchip
operates with Linux v. 6.2 and OpenSBI v. 1.2, and NOEL-V
with Linux v. 6.8 and OpenSBI v. 1.4.
Area Impact. Our first goal is to measure the impact of in-
troducing PMP to a core. We use Rocketchip to evaluate this
by configuring it with 0 and 15 PMP entries.10 As shown in
Tab. 8 (rows 4 vs 5), there is a large increase in LUT and
F-Mux usage, purely due to PMP logic. Next, we measure
the impact of moving from PMP to ePMP. Our Rocketchip
measurements with our ePMP implementation show that this
incurs relatively less hardware overheads (additionally 0.04 %
LUTs and 0.85 % F-Mux). This shows that while introducing
PMP logic does have high impact, extending that logic to
ePMP support is not invasive. Lastly, we measure the impact
of ePMP for different pipelines by configuring NOEL-V in
single and dual-issue modes. When we increase the entries
from 0 to 15 we see that dual-issue NOEL-V requires nearly
twice the amount of additional LUTs and thrice the amount of
additional F-Muxes compared to single-issue. From this, we
conclude that the impact of ePMP can increase with a more
complex pipeline. We note that for all our experiments, for a

9Our NOEL-V synthesis for 16 PMPs failed so we used 15 for all instead.
10We outline security considerations for integrating ePMP into RISC-V

processors in Section 9.2.

particular configuration of the core, the number of PMP and
ePMP entries do not have an impact on DSPs and BRAMs.

Execution Overheads. Our goal is to measure the effect of
frequently changing ePMP configurations and how it varies
for different core implementations. To evaluate this, we used
three setups: Rocketchip with our ePMP implementation,
NOEL-V with in-built ePMP implementation in single and
dual-issue mode. We used the AES binary from RV8 bench-
mark [29] and performed a configuration change for every
context switch incurred for scheduling. Specifically, we in-
voked an ecall which performs a write to the pmpcfg0 reg-
ister to incur a configuration change. For each setup, we ran
a baseline which performs the ecall but does not change the
configuration (i.e., no writes to pmpcfg0). We report an over-
head of 5.58% for RocketChip, whereas it is only 1.87% for
NOEL-V in single-issue mode. This shows that the impact of
ePMP varies based on the implementation. One possible ex-
planation why Rocketchip introduces higher overhead is that
our implementation of ePMP has not been optimized whereas
the NOEL-V’s implementation is production-level. Next, we
report an overhead of 0.54% for NOEL-V in dual-issue mode.
Thus, adding ePMP checks does not slow down optimized
pipelines as much as in the case of single-issue.

8.2 Performance

We measure the lifecycle cost for booting the platform, host
OS, and enclave operations. Then we benchmark stress tests
for CPU with RV8 and I/O with FSCQ. Lastly, we measure the
performance impact on real-world applications: webservers
with darkhttpd and in-memory databases with SQLite.

Hardware & Software Setup. All our evaluation numbers
are presented based on 10 runs measured on the HiFive Un-
matched board four SiFive U74 RV64GC cores [31]. The
U74 cores operate at 1.2 GHz with 32KB instruction and data
caches, with 8 PMP entries per core. While DORAMI needs at
least 9 entries which would incur two writes, our board only
needs one write to update the PMP entries. To capture the cost
of two writes, we add an additional write instruction in our
code that performs the same write twice while ensuring that
the compiler does not optimize it out. For software setup, we
use the SiFive Freedom-U-SDK(2022.10) [12] for building
a CLI Linux distribution (with Kernel v. 5.19) as the OS and
OpenSBI (v. 1.3) as the firmware. We build two setups for
the measurements: baseline and DORAMI. The baseline setup
consists of a standard Keystone deployment. At the time of
writing, Keystone does not provide a functional/stable base
configuration for Unmatched board. Therefore, we manually
add Keystone’s SM to the OpenSBI version of the SDK as
an extension. We modify the Kernel configuration to support
contiguous memory allocations as Keystone requires. Addi-
tionally, we add Keystone’s kernel module using a new yocto
recipe. DORAMI setup is a standard deployment of DORAMI.

13

Table 9: Summary of (left) Lifecycle Costs for Baseline vs.
DORAMI and (right) Impact of DORAMI on RV8 when exe-
cuting in U-mode and enclave.

Stage Component %

In
it

OpenSBI 5.29
Monitor 91.28
M-Mode 20.81

K
er

ne
l Boot 0.44

Ecall 290.00
Timer 142.00

E
nc

la
ve

Creation 15.58
Execution 0.12
Deletion 17.17
Ctx. Switch 18.30

Target U-mode Enclave
RV8 % %

aes 0.35 0.28
dst. 5.58 0.29
miniz 0.14 0.63
norx 0.12 0.29
prime 0.11 0.89
qsort 0.20 0.28
sha 0.17 0.29

We place the software that handles the PMP configurations
and enclave management in the PMP compartment as de-
scribed in Section 4. In the Firmware compartment, we place
the modified OpenSBI, which performs no PMP configura-
tions except for using the SPEntry, as described in Section 5.2.
We use the same OS as in the baseline.

Measuring Lifecycle Costs. Since DORAMI effectively acts
as an additional layer in the firmware and lies on the criti-
cal path for handling M-mode interrupts or exceptions, we
expect it to directly impact the overall system performance.
Tab. 9 (left) summarizes the overheads of DORAMI for life-
cycle operations for the platform, host, and enclaves.

Platform Initialization Cost. During firmware boot, DO-
RAMI adds a minimal overhead of 20.81,% to set up its data
structures and to set up static memory access configurations of
the PMP compartment, the Firmware compartment, and host-
OS. This overhead is a one-time cost during system boot-up
and does not repeat until a restart of the system.

Host-OS Boot Cost. During boot, the host-OS kernel per-
forms severeal requests to the firmware’s base platform han-
dler to get information about the system or to reconfigure
settings. We measured the overhead for executing this handler,
including the transitions required (Tab. 4, row 1). Although
we observed a slowdown of 4-10x for these ecalls (Tab. 9 left,
rows 5-6), it did not cause major overheads on the OS’s boot
process. The reason is that during general runtime, the M-
mode is mainly invoked because of timer interrupts that the
OS requests. They have a frequency of 251 invocations per
second (Tab. 4, rows 8-9 for the involved transitions).

Enclave Lifecycle Costs. Before performing larger-scale
benchmarks, we assessed, what overheads can be expected un-
der normal enclave execution. Tab. 9 (left), rows 8-11 summa-
rize measured overheads for executing the helloworld enclave
from Keystone. Execution overheads are caused by handling
M-mode timers in firmware and context switch overheads
by DORAMI’s save and restore routine, including the ecall
checks. The overhead for enclave creation and deletion varies
depending on the size of the loaded runtime binary.

Keystone_r8
Dorami_r8

Keystone_r128
Dorami_r128

Keystone_r512
Dorami_r512

100K
200K
300K
400K
500K

Th
ro

ug
hp

ut
(K

B/
s)

Seq. Read

1400
1500
1600
1700
1800
1900
2000

Seq. Write

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

File Size (KB)

100K
200K
300K
400K
500K

Th
ro

ug
hp

ut
(K

B/
s)

Rand. Read

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

File Size (KB)

 0
 10
 20
 30
 40

Rand. Write

Figure 8: Throughput report for FSCQ-largefiles.

Benchmark 1: CPU (RV8). We execute the RV8 [29] bench-
marks natively on the host OS and in an enclave to compare
overheads for CPU-intensive applications. Tab. 9 (right) sum-
marizes the results. For the enclaves, we additionally analyze
overheads for creation, runtime, and deletion. Enclave cre-
ation adds ≈12.5% overhead, and deletion ≈10.7%. These
one-time overheads result from DORAMI’s direct handling of
these operations in the PMP compartment, with a constant
part (e.g., configuring/deleting data structures) and a variable
part (e.g., checking page tables and clearing memory). For
the host OS, DORAMI adds an average overhead of 0.2%,
excluding Dhrystone, which incurs 5.6%. Execution overhead
of other apps remains below 1% for both host OS and enclave.

Benchmark 2: IO (FSCQ-Largefiles). The RV8 benchmarks
show enclave overheads induced by asynchronous context
switches from scheduling. However, I/O operations require
synchronous exits (ocalls) to the host OS. To measure DO-
RAMI’s impact on ocalls we use the FSCQ-largefile bench-
mark. It performs file I/O operations with file sizes from 8KB
to 16MB and batch sizes of 8KB, 256KB, and 512KB. It reads
and writes to the files both sequentially and randomly. Fig. 8
shows the throughput in all experiments. As expected, the
throughput decreases across all experiments in the DORAMI
setup. Operations with smaller batch sizes show larger perfor-
mance gaps due to more frequent context switches. Random
writes with smaller batches perform significantly worse, com-
pared to larger batch sizes. However for sequential writes,
smaller batches initially perform better but eventually stabi-
lize at around 1650 KB/s across all file sizes. This is due to
the 512KB block size of the file system, which requires the
kernel to read before writing data in smaller batches. This
issue is particularly pronounced for random writes, where
smaller batches are more likely to access uncached blocks.

14

Table 10: darkhttpd event counts for baseline (B) and DO-
RAMI (D) execution. ocalls (row 3), total and normalized
M-mode enters (rows 4-5), timer interrupts (rows 6-7).

Event 1KB 10KB 100KB 1MB 10MB

B D B D B D B D B D

Ocalls Total 11 11 11 11 11 11 11 11 20 20

M enters Total 37.74 38.65 43.83 45.58 59.06 65.57 413 438.04 2686.83 3212.69
Norm 37.74 38.73 4.28 4.45 0.57 0.64 0.40 0.43 0.26 0.31

Timers Total 1.38 1.39 1.39 1.39 2.00 2.64 6.11 6.10 10.56 24.10
Norm 1.38 1.39 0.13 0.13 0.02 0.026 0.006 0.006 0.001 0.002

1KB 10KB 100KB 1MB 10MB
File Size

0
400
800

1200
1600

Re
qu

es
ts

 p
er

 se
co

nd

Requests per second
Keystone
Dorami

1KB 10KB 100KB 1MB 10MB
File Size

0

50

100

150

Ti
m

e
pe

r r
eq

ue
st

 [m
s] Time per request [ms]

Keystone
Dorami

Figure 9: Darkhttpd: Requests per second and Time per re-
quest (latency) for Keystone and DORAMI, sizes 1 KB-10 MB.

Case-study 1: Webserver (darkhttpd). We demonstrate DO-
RAMI’s compatibility with real-world applications. Our first
case-study is Darkhttpd, a webserver to serve html-based web-
pages [11]. We take darkhttpd version from Cerberus which is
compatible with Keystone [52]. It executes the webserver in
an enclave and serves webpages to the network using ocalls.
We use apachebench to test webpages varying from sizes of
1KB to 10MB [3]. Fig. 9 shows the number of requests per
seconds (RpS) and the time per request (TpR) for Keystone
(baseline) and DORAMI for each file size. Only smaller file
sizes show noticeable overheads, where RpS decreases by
13% and TpR by 15% for DORAMI. For a larger sizes (e.g.,
1 MB), DORAMI overheads drop to 0.45%. It is almost 0 for
10 MB. Since RpS and TpR differences are only significant
for smaller files, we conclude that DORAMI would not signifi-
cantly impact SLAs. DORAMI does not impact ocalls (Tab. 10,
row 3), the setup incurs 11 ocalls with 9 more for large file
size to load more blocks. DORAMI incurs a fixed overhead for
M-mode enters and timer interrupts. Tab. 10 shows that the
total events increase with file size as expected—the larger the
file,the longer it takes to serve it, resulting in more timer in-
terrupts. When we normalize the number of enters and timers
per unit of file size (1KB), we see fewer events for larger files,
which is expected—larger files spend more time on I/O while
either yielding CPU time slices or blocking the CPU execu-
tion for IO. Importantly, as the normalized events decrease,
DORAMI overhead reduces.

Case-study 2: In-memory Database (SQLite). We measure
a simple database server based on SQLite from Cerberus [52].
SQLite executes in an enclave and loads a database from the
host using ocalls. As in Cerberus, we measure 1,000 SELECT
queries and observe 5 % overhead compared to the baseline.

PMemory Layout F SP

multi-F Layout P ... FienSP Fi FiexSP ... FjenSP Fj FjexSP

Fi active

PMPCFG-1 PMPCFG-2PMPCFG-0 ... PMPCFG-8

P FienSP Fi FiexSP

PMPCFG-1 PMPCFG-2PMPCFG-0 ... PMPCFG-8

P FjenSP Fj FjexSP

PMP regs.

Fj active

PMP regs.

PMPCFG-1PMPCFG-0 ... PMPCFG-8

P F SPPMP View

PMP regs.

...

a)

b)

Figure 10: multiple-F: Memory layout and PMP configs.
P=PMP compartment, F=Firmware compartment, SP =Sal-
lyPort, enSP=entry-SP; exSP=exit-SP. a) shows extract of
DORAMI’s memory layout and PMP config with a single
F-compartment. b) shows the same for a multi-F implementa-
tion of DORAMI with two F compartments.

9 Discussion

We first discuss an approach for extending DORAMI from
one to multiple F compartments. Then we outline security
considerations for implementing ePMP in hardware.

9.1 Supporting Multiple F Compartments
DORAMI’s design can be extended to create multiple F com-
partments, for example to isolate different firmware modules.
Fig. 10(a) shows the current memory layout of DORAMI for
supporting one P and one F compartment with the corre-
sponding PMP configurations. In original DORAMI design
we placed the code section of Firmware compartment directly
after the code section of the PMP compartment for compart-
ment transitioning (5.1). However this approach can not apply
as-is to n compartments. We can solve this issue by placing
a SallyPort Entry (enSP) and a SallyPort Exit (exSP) before
and after each of the n Firmware compartments. Fig. 10(b)
shows the memory layout for one P and multiple Fs. Such a
solution would not need more PMP entries per compartment
i.e., the number of needed entries does not increase with the
number of compartments. Before transitioning into a partic-
ular F compartment (e.g., Fj), P can re-use an existing PMP
configuration of another F (e.g., Fi) and configure it with Fj’s
configuration. This way, all other compartments automatically
become inaccessible since they are not covered by any ePMP
configuration. In total, compared to the single F design, such
a solution would only require 1 additional PMP entry to be
permanently reserved for all the F compartments.

9.2 Microarchitectural Considerations
Variations in ePMP implementation have security implica-
tions on DORAMI in two aspects: (a) location of the checks;
(b) hazard management. All the ePMP open-source implemen-
tations that we analyzed (QEMU, Rocket, NOEL-V) adhere

15

to the above two requirements. We outline the detailed re-
quirements, their security implications, and mitigations below
for completeness.

First, the RISC-V specification does not define when or
where PMP (or ePMP) access checks must occur within the
CPU pipeline. Typically, these checks are performed dur-
ing an instruction fetch phase for instruction addresses and
during a memory access phase for data/operand addresses.
Although the exact location of these checks is not critical for
DORAMI, it is crucial that all PMP checks in M-mode are
performed immediately and are never cached. For example,
if manufacturers optimize checks by caching access permis-
sions for M-mode in the TLB (despite M-mode’s lack of
memory translations), PMP changes require a flush to take ef-
fect. Specifically, DORAMI would require a TLB flush during
compartment transition to apply the new PMP configurations.
Second, when a PMP configuration is updated, DORAMI re-
quires that the corresponding instruction should be marked
as hazardous to ensure the pipeline is flushed after its execu-
tion. Without this step, instructions already in progress may
execute under outdated PMP rules until the pipeline clears.
The same issue exists in superscalar architectures; hazards
should be synchronized across all pipelines to immediately
reflect the new configuration. For consistency, PMP-related
instructions should also act as instruction barriers, preventing
reordering of subsequent instructions until the PMP update is
fully applied. This ensures that no instructions beyond a PMP-
related instruction are executed out of order. For DORAMI,
PMP-related hazards are critical to ensure that the Firmware
compartment F cannot execute any instructions outside of its
boundaries (e.g. of the SallyPort). In summary, DORAMI as-
sumes that apart from the core implementing ePMP correctly
as per the specification, the implementation adheres to the
above requirements as is the case in cores we evaluated.

10 Related Work

We discuss works beyond the ones covered in Section 2.4.
Use of PMP in TEEs. Keystone [53] is one of the first TEEs
on RISC-V that solely leverages PMP features without any
hardware modifications. SPEAR-V, Elasticlave, and Cerberus
also leverage PMP features to establish secure enclave sys-
tems [52, 58, 64]. Timber-V, Penglai, Servas, Cure, and Sanc-
tum introduce hardware modifications to achieve memory
isolation through alternative means, such as bus-level or CPU-
component-based isolation [36, 42, 50, 60, 62]. While these
TEE implementations assume the entirety of firmware to be
trusted and error-free, DORAMI serves as a complementary
addition rather than a competitive alternative.
Confidential VMs. Modern TEEs offer a VM abstraction.
In addition, they introduce a new privilege level that exe-
cutes trusted software beneath the VM. For example, Arm
CCA executes a security monitor in EL3 as part of the trusted

firmware, but also introduces a Realm Management Monitor
(RMM) that executes in the EL2 of realm world to isolate
different realm VMs [5]. Similarly, Intel TDX has a TD mod-
ule that executes in a new privilege level called SEAM Root
Mode [15]. AMD SEV-SNP has Secure VM Service Module
(SVSM) which optionally executes in VM Permission Level
VMPL0 [2]. All of them use horizontal privilege separation.

Extension of DORAMI to Different Architectures. Commer-
cial products like Intel SGX and TDX, or AMD SEV-SNP,
offer confidential computing capabilities through enclaves and
VMs [2, 15, 41]. These platforms, featuring fundamentally
distinct memory isolation designs compared to RISC-V, imple-
ment proprietary measures for memory isolation, with closed-
source firmware components. Similarly, Arm TrustZone [33]
and CCA [5] introduce secure services and VM-based com-
puting, respectively. TrustZone employs an Address Space
Controller (ASC) [10] for memory isolation, while CCA intro-
duces Physical Address Space (PAS) regions. Arm encounters
challenges in privilege separation of code execution within
the trusted firmware in EL3, equivalent to M-mode on RISC-
V, which is 310 KLoC [6]. Future works can investigate if
DORAMI approach can be applied to CCA.

RISC-V Hypervisor Extensions. SMMTT [27] isolates
Physical Address Spaces for S-Mode software using memory
tagging. SMMTT is a flexible alternative to Arm CCA [56],
which also requires a universally trusted firmware in M-mode
for configuration, similar to PMP. DORAMI complements
SMMTT, PMP compartment can configure both SMMTT and
ePMP, with remaining firmware in a separate compartment.

11 Conclusion

DORAMI is the first system that isolates the security monitor
and the firmware on RISC-V. It uses an existing standard ISA
feature, ePMP, to achieve this goal with minimal overheads.
DORAMI is compatible with current RISC-V firmware &
extensions and achieves reduction in the TCB. This can pave
path for future works to formally verify the security monitor
without reasoning about the rest of the firmware that executes
alongside in the highest privileged execution layer on RISC-V.

Acknowledgments

We thank the Usenix Security 2024 reviewers for pointing us
to NOEL-V and for their constructive feedback that signifi-
cantly improved the paper. Thanks to Laurent Wirz for analyz-
ing OpenSBI to identify the partition boundaries, Mélisande
Zonta-Roudes for feedback on the early version of the pa-
per and Supraja Sridhara for fruitful discussions on RISC-V
TEEs. This work was supported by the Swiss Joint Research
Center financed by Microsoft Research.

16

References

[1] ACE. https://github.com/IBM/ACE-RISCV.

[2] AMD SEV-SNP. https://www.amd.com/en/
developer/sev.html.

[3] ApacheBench. https://httpd.apache.org/docs/
current/programs/ab.html.

[4] Ariane Cpu. https://github.com/lowRISC/ariane.

[5] Arm CCA. https://developer.arm.com/
documentation/den0125/0300/.

[6] Arm TF-A. https://www.trustedfirmware.org/.

[7] ARMv8 Registers. https://developer.arm.com/
documentation/ddi0595/2021-12/.

[8] BerkeleyBL. https://github.com/andestech/BBL.

[9] Caliptra. https://caliptra.io.

[10] CoreLink TZC-380 Technical Reference. https://
developer.arm.com/documentation/ddi0431/.

[11] Darkhttpd. https://unix4lyfe.org/darkhttpd/.

[12] Freedom U SDK. https://github.com/sifive/
freedom-u-sdk.

[13] HEVD: kASLR + SMEP Bypass. https://
fluidattacks.com/blog/hevd-smep-bypass/.

[14] Intel 64 and IA-32 Architecture Manuals. https:
//www.intel.com/content/www/us/en/developer/
articles/technical/intel-sdm.html.

[15] Intel TDX. https://www.intel.com/content/www/
us/en/developer/articles/technical/intel-
trust-domain-extensions.html.

[16] NOEL-V CPU. https://www.gaisler.com/noel-v.

[17] OpenSBI. https://github.com/riscv-software-
src/opensbi.

[18] OpenTitan. https://opentitan.org.

[19] Oreboot. https://github.com/oreboot/oreboot.

[20] [PATCH 1/2] lib: sbi: fwft: check feature value to
be exactly 1 or 0. https://lists.infradead.org/
pipermail/opensbi/2024-June/007050.html.

[21] [PATCH] include: Adjust Sscofpmf mhpmevent mask
for upper 8 bits. https://lists.infradead.org/
pipermail/opensbi/2024-July/007147.html.

[22] [PATCH] lib: sbi: dbtr: fix potential NULL pointer
dereferences. https://lists.infradead.org/
pipermail/opensbi/2024-August/007184.html.

[23] [PATCH] lib: sbi: Fix timing of clearing tbuf.
https://lists.infradead.org/pipermail/
opensbi/2023-June/005078.html.

[24] [PATCH v6 12/12] lib: sbi: Fix missing ‘\0’ when
buffer szie equal 1. https://lists.infradead.org/
pipermail/opensbi/2023-June/005170.html.

[25] RISC-V SBI Specification. https://github.com/
riscv-non-isa/riscv-sbi-doc.

[26] RISC-V Specifications. https://riscv.org/
technical/specifications/.

[27] RISC-V Supervisor Domains Access Protection. https:
//github.com/riscv/riscv-smmtt.

[28] RustSBI. https://github.com/rustsbi/rustsbi.

[29] RV8-Bench. https://michaeljclark.github.io/.

[30] SiFive U540 Platform. https://www.sifive.com/
boards/hifive-unleashed.

[31] SiFive U74 Platform. https://www.sifive.com/
boards/hifive-unmatched.

[32] Smepmp. https://github.com/riscv/riscv-tee/
blob/main/Smepmp/Smepmp.pdf.

[33] TrustZone for AArch64. https://
developer.arm.com/documentation/102418/0101.

[34] Xuantie CPU. https://www.xrvm.com.

[35] Ahmed M Azab, Kirk Swidowski, Rohan Bhutkar, Jia
Ma, Wenbo Shen, Ruowen Wang, and Peng Ning. SKEE:
A lightweight Secure Kernel-level Execution Environ-
ment for ARM. In NDSS, 2016.

[36] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. CURE: A security ar-
chitecture with CUstomizable and resilient enclaves. In
Usenix Security, 2021.

[37] Andrea Bittau, Petr Marchenko, Mark Handley, and
Brad Karp. Wedge: Splitting applications into reduced-
privilege compartments. In Usenix NDSI, 2008.

[38] David Brumley and Dawn Song. Privtrans: Automati-
cally partitioning programs for privilege separation. In
USENIX Security, 2004.

[39] Cerdeira, David and Santos, Nuno and Fonseca, Pedro
and Pinto, Sandro. SoK: Understanding the Prevail-
ing Security Vulnerabilities in TrustZone-assisted TEE
Systems. In IEEE S&P, 2020.

17

https://github.com/IBM/ACE-RISCV
https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html
https://httpd.apache.org/docs/current/programs/ab.html
https://httpd.apache.org/docs/current/programs/ab.html
https://github.com/lowRISC/ariane
https://developer.arm.com/documentation/den0125/0300/
https://developer.arm.com/documentation/den0125/0300/
https://www.trustedfirmware.org/
https://developer.arm.com/documentation/ddi0595/2021-12/
https://developer.arm.com/documentation/ddi0595/2021-12/
https://github.com/andestech/BBL
https://caliptra.io
https://developer.arm.com/documentation/ddi0431/
https://developer.arm.com/documentation/ddi0431/
https://unix4lyfe.org/darkhttpd/
https://github.com/sifive/freedom-u-sdk
https://github.com/sifive/freedom-u-sdk
https://fluidattacks.com/blog/hevd-smep-bypass/
https://fluidattacks.com/blog/hevd-smep-bypass/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.gaisler.com/noel-v
https://github.com/riscv-software-src/opensbi
https://github.com/riscv-software-src/opensbi
https://opentitan.org
https://github.com/oreboot/oreboot
https://lists.infradead.org/pipermail/opensbi/2024-June/007050.html
https://lists.infradead.org/pipermail/opensbi/2024-June/007050.html
https://lists.infradead.org/pipermail/opensbi/2024-July/007147.html
https://lists.infradead.org/pipermail/opensbi/2024-July/007147.html
https://lists.infradead.org/pipermail/opensbi/2024-August/007184.html
https://lists.infradead.org/pipermail/opensbi/2024-August/007184.html
https://lists.infradead.org/pipermail/opensbi/2023-June/005078.html
https://lists.infradead.org/pipermail/opensbi/2023-June/005078.html
https://lists.infradead.org/pipermail/opensbi/2023-June/005170.html
https://lists.infradead.org/pipermail/opensbi/2023-June/005170.html
https://github.com/riscv-non-isa/riscv-sbi-doc
https://github.com/riscv-non-isa/riscv-sbi-doc
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://github.com/riscv/riscv-smmtt
https://github.com/riscv/riscv-smmtt
https://github.com/rustsbi/rustsbi
https://michaeljclark.github.io/
https://www.sifive.com/boards/hifive-unleashed
https://www.sifive.com/boards/hifive-unleashed
https://www.sifive.com/boards/hifive-unmatched
https://www.sifive.com/boards/hifive-unmatched
https://github.com/riscv/riscv-tee/blob/main/Smepmp/Smepmp.pdf
https://github.com/riscv/riscv-tee/blob/main/Smepmp/Smepmp.pdf
https://developer.arm.com/documentation/102418/0101
https://developer.arm.com/documentation/102418/0101
https://www.xrvm.com

[40] Yeongpil Cho, Donghyun Kwon, Hayoon Yi, and Yunhe-
ung Paek. Dynamic Virtual Address Range Adjustment
for Intra-Level Privilege Separation on ARM. In NDSS,
2017.

[41] Victor Costan and Srinivas Devadas. Intel SGX Ex-
plained. IACR Cryptology ePrint Archive, 2016.

[42] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanc-
tum: Minimal Hardware Extensions for Strong Software
Isolation. In Usenix Security, 2016.

[43] John Criswell, Nicolas Geoffray, and Vikram Adve.
Memory safety for low-level software/hardware interac-
tions. In Usenix Security, 2009.

[44] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz,
John Criswell, and Vikram S. Adve. Nested Kernel: An
Operating System Architecture for Intra-Kernel Privi-
lege Separation. In ASPLOS, 2015.

[45] Drew Davidson, Benjamin Moench, Thomas Ristenpart,
and Somesh Jha. FIE on Firmware: Finding Vulnerabil-
ities in Embedded Systems Using Symbolic Execution.
In USENIX Security, 2013.

[46] Salvatore Di Girolamo, Andreas Kurth, Alexandru Calo-
toiu, Thomas Benz, Timo Schneider, Jakub Beránek,
Luca Benini, and Torsten Hoefler. A RISC-V in-network
accelerator for flexible high-performance low-power
packet processing. In ISCA, 2021.

[47] Manuel Eggimann, Stefan Mach, Michele Magno, and
Luca Benini. A RISC-V Based Open Hardware Platform
for Always-On Wearable Smart Sensing. In IWASI 2019.

[48] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai
Budiu, and George C. Necula. XFI: software guards for
system address spaces. In OSDI, 2006.

[49] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scal-
able and Hardware-independent Firmware Testing via
Automatic Peripheral Interface Modeling. In Usenix
Security, 2020.

[50] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang
Jiang, Yubin Xia, Binyu Zang, and Haibo Chen. Scalable
Memory Protection in the PENGLAI Enclave. In OSDI,
2021.

[51] Norman Hardy. The Confused Deputy: (or why capa-
bilities might have been invented). ACM SIGOPS Oper.
Syst. Rev., 1988.

[52] Dayeol Lee, Kevin Cheang, Alexander Thomas,
Catherine Lu, Pranav Gaddamadugu, Anjo Vahldiek-
Oberwagner, Mona Vij, Dawn Song, Sanjit A. Seshia,
and Krste Asanovic. Cerberus: A Formal Approach to
Secure and Efficient Enclave Memory Sharing. In CCS,
2022.

[53] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanovic, and Dawn Song. Keystone: An Open Frame-
work for Architecting Trusted Execution Environments.
In EuroSys, 2020.

[54] Christian Lindenmeier, Mathias Payer, and Marcel
Busch. EL3XIR: Fuzzing COTS Secure Monitors. In
Usenix Security, 2024.

[55] Wojciech Ozga. Towards a Formally Verified Secu-
rity Monitor for VM-based Confidential Computing. In
HASP, 2023.

[56] Ravi Sahita and Atish Patra and Vedvyas Shanbhogue
and Samuel Ortiz and Andrew Bresticker and Dylan
Reid and Atul Khare and Rajnesh Kanwal. CoVE: To-
wards Confidential Computing on RISC-V Platforms.
In arXiv, 2023.

[57] Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric
Gustafson, Marius Muench, Giovanni Vigna, Christo-
pher Kruegel, Thorsten Holz, and Ali Abbasi. Fuzzware:
Using Precise MMIO Modeling for Effective Firmware
Fuzzing. In Usenix Security, 2022.

[58] David Schrammel, Moritz Waser, Lukas Lamster, Martin
Unterguggenberger, and Stefan Mangard. SPEAR-V:
Secure and Practical Enclave Architecture for RISC-V.
In ASIA CCS, 2023.

[59] Lei Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn,
Haibo Chen, and Binyu Zang. Deconstructing Xen. In
NDSS, 2017.

[60] Stefan Steinegger, David Schrammel, Samuel Weiser,
Pascal Nasahl, and Stefan Mangard. SERVAS! Secure
Enclaves via RISC-V Authenticryption Shield. In ES-
ORICS, 2021.

[61] Zhi Wang and Xuxian Jiang. HyperSafe: A Lightweight
Approach to Provide Lifetime Hypervisor Control-Flow
Integrity. In IEEE S&P, 2010.

[62] Samuel Weiser, Mario Werner, Ferdinand Brasser, Maja
Malenko, Stefan Mangard, and Ahmad-Reza Sadeghi.
TIMBER-V: Tag-Isolated Memory Bringing Fine-
grained Enclaves to RISC-V. In NDSS, 2019.

[63] Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis
Aublin. Exit-Less, Isolated, and Shared Access for Vir-
tual Machines. In ASPLOS, 2023.

[64] Jason Zhijingcheng Yu, Shweta Shinde, Trevor E. Carl-
son, and Prateek Saxena. Elasticlave: An Efficient Mem-
ory Model for Enclaves. In Usenix Security, 2022.

18

	Introduction
	Motivation
	Firmware vs. Security Monitor
	Challenges in Privilege Separation
	Problem Statement
	Existing Approaches

	Rationale for using ePMP
	Dorami Compartments & Interfaces
	Inter-compartment Transitions
	PMP to Firmware Compartment
	Firmware to PMP Compartment

	Security Analysis
	Malicious S/U-Mode
	Malicious Firmware Compartment

	Implementation
	Components and Placement
	Platform Considerations

	Evaluation
	Impact of ePMP
	Performance

	Discussion
	Supporting Multiple F Compartments
	Microarchitectural Considerations

	Related Work
	Conclusion

