
Putting network verification to good use
Ryan Beckett
Microsoft Research

Ratul Mahajan
University of Washington

Intentionet

ABSTRACT
The past decade has witnessed remarkable progress in the
field of network verification, and interest from academia
and industry has spurred the development of increasingly
sophisticated verification tools and algorithms. However,
outside of a handful of large cloud computing providers, the
use of network verification is still sparse. We argue that the
next frontier for network verification is to enable easy and
effective use by "average" network engineers. Whereas in
software development, practitioners frequently use testing
frameworks to describe the expected behavior of their sys-
tems and to measure the effectiveness of their tests through
metrics such as code coverage, no such frameworks exist for
the equally challenging task of designing and maintaining
networks. To address this gap, we outline the design of a
network verification framework. In doing so, we propose 1)
a method to compute test coverage for networks, which tells
engineers how well their invariants are testing the network;
and 2) a new declarative invariant language that makes it
easy to express network invariants and enables computation
of coverage metrics.

CCS CONCEPTS
• Networks→ Network reliability; Network manageability;

KEYWORDS
network verification, testing, code coverage

ACM Reference Format:
Ryan Beckett and Ratul Mahajan. 2019. Putting network verification
to good use. In ACM Workshop on Hot Topics in Networks (HotNets
’19), November 13–15, 2019, Princeton, NJ, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3365609.3365866

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets ’19, November 13–15, 2019, Princeton, NJ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7020-2/19/11. . . $15.00
https://doi.org/10.1145/3365609.3365866

1 INTRODUCTION
Networks have grown increasingly large and more com-
plex as more services, users, and workloads move online.
Consequently, the day-to-day operation of such networks, a
difficult task to begin with, has become increasingly more
challenging. The failure to properly manage and validate
network state can lead to outages that impact large swaths
of users, and indeed such failures happen frequently in prac-
tice [2, 8, 13–17].
These factors have contributed to a surge of interest in

both the academic and industry communities in network ver-
ification, which promises to enable systematic validation of
network invariants. In response, researchers have produced
many innovative tools with high fidelity and performance,
such as HSA [10], Veriflow [11], Batfish [6], ARC [7], and
Minesweeper [3] to name a few.
However, the use of such tools is still not widespread

outside of the few largest of organizations; and even in such
organizations, we are aware of outages that have happened
despite the use of network verification because network
verification was not being used as effectively as it could have
been. In particular, the network invariants were not testing
in some critical aspects of the network.

We argue that the next frontier for network verification is,
not more sophisticated analysis tools, but enabling easy and
effective use of network verification by network engineers
on the ground. We do not intend to imply that network
verification is a solved problem from an analysis perspective;
our position is that the primary bottleneck to adoption today
is easy and effective use.

By way of analogy, in software development, many frame-
works exist today that assist practitioners in writing robust
code by making it easy to test their code for correctness
and by measuring the effectiveness (i.e., coverage) of said
tests [1, 9]. Coverage metrics, in particular, make it easy to
spot gaps in existing tests, facilitating a feedback loop where
users can add new tests to close these gaps.
While powerful network verification tools exist today,

based on our experiencewith these tools and interactingwith
network engineers, we have found that they do not provide
a comparable experience. In particular, the verification APIs
offered by current tools are too low-level compared to the
invariants that network engineers want to ensure. Further,

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Ryan Beckett and Ratul Mahajan

these tools cannot guide the user as to how “good” their tests
are or what aspects of the network remain untested.

To address these hurdles, we present the design of a new
network testing framework. A key challenge for this design
is to develop amethod to compute test coverage for networks.
The coverage metrics should be able to inform users how
well individual aspects of the network are tested and where
they should focus their testing efforts. While such reports are
inspired by the software domain, providing a meaningful no-
tion of coverage presents a different challenge for networks.
Unlike programs, where the flow of information is linear
(i.e., statement X follows statement Y), networks consist of
a bag on intertwined facts, e.g., the IP address of this inter-
face determines if a BGP session will be established, which
determines if a BGP route is learned, which determines if
the route will appear in a forwarding table. We address this
challenge by modeling the network as a dependency graph
of “facts” and containers of facts. Our model is not specific
to a particular tool but operates at the level of fundamen-
tal networking concepts (e.g., interface IP addresses, access
control list entries).
Computing network coverage is also complicated by the

difficulty of tracking what “facts” have been tested in an
unrestricted setting. To address this issue, we propose a new
domain-specific language for expressing network invariants.
Our language simplifies the expression of invariants at a high
level, by enabling users to read and filter information from
different aspects of the network through a variety of opera-
tions over the network model mentioned above. However,
more importantly, the declarative nature of the language
makes it possible to accurately compute of coverage metrics.

Our language and coverage metrics can be integrated with
existing verification tools. To illustrate such an integration,
we report on the results of a small scale experiment in which
we report coverage metrics for a network tested using high-
level reachability invariants.

2 MOTIVATION
We motivate our position using a simple example that illus-
trates what it takes to verify reasonable properties in existing
tools and what that experience lacks. Consider a standard
three-tier datacenter, where the bottom tier is top-of-rack
switches (ToR), the middle tier is aggregation switches, and
the top tier is spine switches. Assume that all hosts within
a rack belong to the same application (e.g., Web server or
database server), and some applications may be spread across
multiple racks. Also assume that each application has a well-
known address space (e.g., 10.0.0.0/16 for Web servers).
Now suppose one of the invariants we want to ensure

in this network is that all hosts of the Web server applica-
tion can reach all hosts of the database application. From a

network validation perspective, this invariant implies that
if a packet with appropriate headers enter a ToR through
an interface where a Web server is connected, it should be
able to reach the right destination ToR which should in turn
forward the packet out the interface to which the database
server is connected. "Appropriate" headers could mean that
the source IP is that of the source Web server, the destina-
tion IP is that of the destination database server, and the
destination port is one of the database ports.
The invariant above can be checked with a reachability

query that several verification tools support [3, 4, 6, 7, 10–12].
An abstract view of this query, without getting into specifics
of individual tools, is that it checks for interface-to-interface
reachability. Users can check if reachable(si ,di ,h) is true,
that is, if all possible packets that start at an interface in
the set si and have headers field values in the space h can
reach at least one of the interfaces in set di . This query will
return false if any packet in the specified set is dropped by
the network, for instance, due to a bad access-control list or
routing protocol misconfiguration for destination addresses.
To use the query to check our invariant, we need to first

identify all valid interfaces that connect to the source and
destination application. Then, we need to find all headers
that are specific to each source-destination interface pair. It
is not correct to simply use source and destination addresses
of the entire space that has been assigned to the applications;
some addresses in that space may be unused (for which it is
acceptable to not have reachability), and individual ToRs may
be configured to provide connectivity to only the specific
addresses that they connect to (and not the full space).
Pseudocode for this process is show in Figure 1. In the

code, v.x() represents a call to the verification tool. In ad-
dition to the reachability query, we are using a query that
returns all interfaces in the network. The first chunk of the
code is identifying all relevant interfaces. The second chunk
is running a number of reachability queries over pairs of
interfaces using headers that are relevant to that pair and
collecting all such counter examples. Each counterexample
is a pair of interfaces such that a Web server host connected
to the source interface will not be able to reach the DB server
connected to the destination interface.
One problem with this approach is that the amount of

effort needed to check even straightforward invariants is
high. This effort is needed because of the semantic mismatch
between the query, which takes constant values as inputs
(specific interfaces and headers), and the invariant, which is
expressed in terms of higher-level information that must be
translated to those constants by the users. This state of affairs
is particularly problematic because most network engineers
are not expert software developers [5].
A more fundamental problem with this approach is that,

given a test suite where each test is like the pseudocode

Putting network verification to good use HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

function testWebToDbReachability ()

webInterfaces = {}

dbInterfaces = {}

for iface in (v.networkInterfaces ())

if iface.ip in WEB_ADDRESS_SPACE

webInterfaces.add(iface)

if iface.ip in DB_ADDRESSS_SPACE

dbInterfaces.add(iface)

counterExamples = {}

for webIface in webInterfaces

for dbIface in dbInterfaces

h = header ()

h.srcIps = webIface.subnet

h.notSrcIps = webIface.ip

h.dstIps = dbIface.subnet

h.notDstIps = dbIface.ip

h.dstPorts = DB_PORTS

if !v.reachable(webIface ,dbIface ,h)

ce = [webIface , dbIface]

counterExamples.add(ce)

assert counterExamples.length () == 0

Figure 1: Example test using a verification tool API.

above, it is quite difficult to give feedback to the user as to
how good is their test coverage. We formalize the notion of
test coverage below but for now consider it to be a quanti-
tative measure of how well different aspects of the network
have been covered. Without a deep (and perhaps impossi-
ble) inspection of the user’s test code, we can only tell that
the user has a test in which they read IP addresses of all
interfaces and then run a series of reachability queries. It
cannot tell, for instance, that no checking was done at all for
interfaces that did not match certain criteria.
The inability to provide guidance on test coverage is a

key hurdle toward effective use of network verification. We
know of cases where major outages have happened despite
a robust use of network verification. These outages could
have been prevented had the user been given some guidance
of what their existing test suite did or did not cover.

3 TEST COVERAGE FOR NETWORKS
For software, code coverage metrics are frequently used to
estimate how well a test suite is able to test a codebase. Cov-
erage tools estimate these metrics by observing the test suite
in action and measuring the fraction of the code base that
is exercised by the user-provided tests. Multiple coverage
metrics exist, which measure coverage for important con-
cepts in the program (e.g., statements, basic blocks, branches,

subroutines). The most basic one is to measure the fraction
of statements that are covered. Test suites that do well on
this metric cover a large fraction of program statements.

However, no such associated tools, or even metrics, exist
for estimating network coverage given a test suite. In this
section, we put forth a coverage metric that is inspired by
statement coverage, and in the next section, we outline a
system to estimate this metric. As with software, there are
likely other valid metrics of test coverage, which we will
explore as our work matures.

A key difference between the software world and network-
ing is that the network configurations are driven by data (e.g.,
the loopback interface’s IP address for a router is 17.0.121.3)
rather than code.While programs execute sequentially (state-
ment Y follows after statement X), networks resemble a bag
of “facts” that are related in complex ways dictated by the
various protocols that govern the behavior of the network.

One may wonder if it is possible to simply measure the
coverage in the usual way, in terms of the code that runs
on the router (e.g., Cisco iOS). However, there are several
issues with this approach. The first is that proprietary router
software source code is usually not available. The second is
that a user will typically want to focus on the coverage of
their network with respect to the configurations that they
wrote. For instance, suppose a user never uses a particular
feature of BGP in their code base, and therefore never writes
tests for this feature. By analyzing the coverage of the router
software, one would report code related to this feature as
being not tested. And yet, the user in this case would be
correct in not needing to write such tests.

Another important difference between the software world
and networking is that frequently network tests are ex-
pressed, not in terms of information that directly appears
in the configurations, but in terms of data that is derived
from other data. For instance, the reachability query from
the example is a test over the FIB (Forwarding Information
Base) rules. Tools like Batfish [6] compute such entries from
configurations. When FIB rules are tested, information that
appears in the configuration are tested as well. A useful
coverage metric should account for such dependencies.

3.1 Network model
Based on the observations above, for the purposes of com-
puting coverage, we model the network as a dependency
graph. Nodes in the graph correspond to either facts that can
be tested and containers of one or more facts. One may think
of facts as basic blocks in software and containers as entities
that contain basic blocks such as functions, packages, and
files; though the relationship between facts is different in the
two domains.

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Ryan Beckett and Ratul Mahajan

Figure 2: A simplified subset of a dependency graph.

Facts may appear directly in the input that is supplied to
the verifier, or derived from the input. We call these two
types of facts, respectively, as base facts and derived facts.
Whether some network information is base or derived fact
depends on the verification tool and its input. For instance,
for data plane verification tools such as HSA [10], which
take FIBs as input, FIB rules are base facts. For control plane
verification tools such as Batfish, which take configuration
as input and compute FIBs from it, FIB rules are derived facts.
In the rest of the paper, unless explicitly stated otherwise, we
assume that we are working with a control plane verification
tool; those tools handle a superset of concepts compared to
data plane verification tools.
Figure 2 shows a simplified subset of our dependency

graph model for a control plane verifier. The ellipses denote
containers, solid rectangles denote base facts, and dashed
rectangles denote derived facts. Solid edges (which emanate
only from containers) denote a containment relationship.
Dashed edges (which lead to only derived facts) denote a
data dependency; the target fact is derived from the source
fact. There can be multiple dependency edges that lead to a
derived fact.
In the figure, we see example facts corresponding to the

node n1’s hostname, NTP servers, interfaces, RIBs (routing
information base), FIB, and ACLs (access control lists). We
also see a RIB entry fact for a connected route that is derived
from the interface address, and a FIB entry that is derived
from that RIB entry. In the full model, there will be many
more RIB entries, including those for other protocols such
as BGP, and many more FIB entries. The full model will
also have dependencies that go across nodes, e.g., BGP RIB
entries of n1 may depend on BGP RIB and FIB entries of
the neighboring node, in addition to depending on facts that
capture relevant n1’s BGP neighbor configuration.

3.2 Coverage metric
Before we can define a test coverage metric atop our network
model, we must formalize what a test execution does. This
formalization then provides raw input to the coverage metric.
In the software world, a test exercises one ormore statements.

Figure 3: System architecture.

Similarly, in our context, we deem that a test exercises one
or more facts, that is, it reads the value of those facts. For
instance, a reachability query exercises facts for FIB entries
and ACL lines on nodes along the path.
We can now define the coverage metric for a test as the

fraction of all base facts that it covers. A base fact is con-
sidered "covered" if it is directly exercised by the test or if
one of its descendants (derived) fact is exercised by the test.
The coverage of a test suite is the fraction of all base facts
collectively covered by the tests in the suite.

4 SYSTEM OVERVIEW
We now outline our network testing framework. Our system
has two main components: 1) an invariant language and
an associated compiler for declaratively specifying network
tests, which enables (2) a dependency tracker and coverage
estimator.
Figure 3 shows the system architecture. It takes as input

network data and the test suite with individual tests written
in our language, and it outputs test results along with the
coverage metrics. The system is layered on top of existing
verification tools, be they data plane verifiers such as HSA
or control plane verifiers such as Batfish. To integrate with
a tool, our compiler will translate the tests to one or more
verification API calls that are native to the tool. This aspect
of the integration requires no changes to the underlying tool.
However, some instrumentation is needed to verification
tools to track dependencies in the network model and label
which facts in themodel were covered by a test. The coverage
computer takes this annotated network model to compute
the output that is returned to the user. We discuss in §6 how
to do dependency tracking in a scalable manner. But first we
describe our language.

5 NETWORK INVARIANT LANGUAGE
Detecting what facts are covered by a test is challenging in
a completely general setting. Recall that, in the reachability

Putting network verification to good use HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

example from Figure 1, the code inspects the address value
for every interface in the network even though the behavior
of on a small subset is actually tested. To simplify tracking
coverage metrics and to make it easier to express network
invariants, we now present a new, domain-specific testing
language for our framework. The language lets users flexibly
query, filter, and then check the state of facts (and containers)
defined in the network model. We start by describing the
language through a series of examples and then provide its
formal specification.

5.1 Example: Counting NTP servers
As a simple first example, consider an invariant that all ToRs
in the network should be configured with three NTP servers.
This invariant can be expressed simply as:
nodes[hostname matches "tor .*"]

verify all count(ntp_servers) == 3

The test starts by looking through individual nodes contained
in the “nodes” container where the node’s hostname matches
the regular expression “tor.*” (assuming that is the way to
identify all ToRs in this network). The result of this filtering
will be a new nodes container that contains a subset of the
original nodes. The query then takes the resulting subgraph
and verifies that all children (individual nodes) of the root
(nodes container) have exactly three NTP servers.

5.2 Example: Web server/DB reachability
Our earlier invariant from §2, regarding the Web server to
database server reachability, can be expressed as:
reachability

[ingress anyof interfaces[ip in WEBSPACE]]

[egress anyof interfaces[ip in DBSPACE]]

[srcIp in ingress.subnet]

[dstIp in egress.subnet]

[srcIp != ingress.ip]

[dstIp != egress.ip]

[dstPort anyof DBPORTS]

verify all result == true

The query begins by looking through the (derived) reacha-
bility container that, conceptually1, contains facts about the
reachability of every possible ingress, egress, packet header
pair. From reachability facts, it filters out those where the
ingress is some web interface, the egress is some database
interface, which are themselves provided by filtering the in-
terfaces container for those interfaces that have ip addresses
in these address spaces respectively. Further filtering restricts
the source (destination) IP to be contained within the ingress
(egress) interface subnet but is not the exact interface IP.
1In verification tools, this container is an abstract view that is not actually
materialized but rather reasoned about symbolically.

Similarly, the destination port is filtered to be one of the
database ports. The result in the dependency subgraph for
the reachability container with this restricted set of packet
headers ingress, and egress point identifiers. The test then
verifies that the reachability result value is true for each
remaining reachability fact.

5.3 Example: BGP advertisements
As noted in §2, a challenge with verification tools today is
that calls to the verifier must provide exact values (e.g., the
prefix 125.3.17.0/24), making it hard write tests that relate
different parts of the network. Another example of this is
where the packets that users expect to be successful between
two devices is likely related to other configuration objects
such as the BGP networks configured to be advertised by the
destination ToR in a data center.
Consider the invariant below that shows how our lan-

guage can capture such an invariant:

reachability

[ingress.name matches "T.*"]

[egress.name matches "T.*"]

[srcIp anyof ingress.local_ips]

[dstIp in egress.bgp_networks]

[protocol == UDP && dstPort == 53]

verify all result == true

The test starts by looking at the reachability container as
with the previous example. The query filters the container to
only include entries where a packet starts from a department
router and ends at a border router. Further, it requires that
the source IP address must be a “local IP” address defined
for the ingress location; the destination IP address is covered
by at least one prefix from the bgp_networks container at
the egress location; and the packet protocol is UDP and
destination port is 53 (DNS). Finally, we check that the result
for all remaining reachability facts is true.

5.4 Language specification
Given the dependency graph model in §3, invariants are
written using this simple language for filtering and extracting
components of the graph. While traditionally verification
tools have distinguished between symbolic (e.g., reachability)
and concrete (e.g., BGP session) information, we represent
and query both using the same abstraction.

The syntax for the language is shown in Figure 4. It defines
a valid test case, which consists of an expression e followed
by a collection of verification expressions that take a quanti-
fier all, some, or none and an expression that should hold
for either all, some, or no facts in the resulting subgraph.
Expressions can filter a table where a number of other ex-
pressions hold (filter expression), refer to a constant or fully

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Ryan Beckett and Ratul Mahajan

t ::= e v1, . . . ,vn test case
v ::= verify q e verify expression
q ::= all | some | none quantifier type
e ::= constant literal constant

| f qn fully qualified name
| e1 ◦ e2 binary op
| e1[e2, . . . , en] filter expression
| let x = e1 e2 assignment
| count e count expression
| e1 matches e2 regex match
| e1 in e2 ip subnet coverage
| e1 anyof e2 membership

Figure 4: Invariant language.

qualified name (e.g., node.ntp_servers), compare two expres-
sions for equality or inequality, assign an expression to a
variable x (let), count the number of facts in a container
(count), check if a string expression matches a regular ex-
pression given from a string (matches), combine expressions
with a binary operation (◦), check if an IP address expression
is covered by any prefix from a table of prefixes (in), and
test if a value given by an expression is equal to any of a
collection of values given by a table (anyof).

6 COMPUTING COVERAGE
To compute the coverage of a given test, we need the network
model with facts and dependencies, along with information
on which facts were directly covered for the test. From that
information, we can derive which base facts were covered
and, from that, the coverage metric.
We need to instrument the verification tool to get the

information we need to compute coverage. What this entails
depends on the tool. For data plane verification tools, which
take FIB entries as input, this task is straightforward. Their
network model has FIB entries as base facts and have no
derived facts (or dependencies). From these tools, we just
need to output which FIB entries were exercised by a test.

For control plane verification tools such as Batfish, which
take configurations as input, the task of generating the in-
formation needed for coverage computation can be more
involved. These tools compute forwarding state (FIB entries)
from device configurations. The challenge is scalably track-
ing the dependency from configuration information to FIB
entries. This computation is akin to provenance tracking,
which is known to be a hard problem from both memory
and compute perspectives. (The early version of Batfish, de-
scribed in the original paper [6], was based on a Datalog
engine that was tracking provenance, but that engine has

since been replaced by an imperative engine because it did
not scale to large networks.)

We can address this challenge by associating each base fact
with a GUID (globally unique identifier) and each derived
fact with a Bloom filter. Bloom filters are highly efficient data
structure for tracking set membership such that we cannot
enumerate the members in the set but can check if a given
member is present in the set. The membership check can
have a small false positive rate (i.e., members not inserted
into the set may be inferred as being present) that depends
on the size of the filter; the false negative rate is guaranteed
to be zero. When a new derived fact is computed, its Bloom
filter is a union of the set of GUIDs of base facts on which it
is based and the Bloom filters of the derived facts on which
it is based. Test execution yields information on which facts
(base or derived) were covered. To go from that to which
base facts were (indirectly) covered, we can check which
base fact GUIDs are present in the Bloom filters of derived
facts. This check will have a slight false positive rate but the
overall computation will be a lot faster and lower overhead
than precise provenance tracking.

7 PRELIMINARY EVALUATION
To demonstrate the usefulness of network coverage feedback,
we show coverage metrics computed for a simple datacenter
for control plane verification (which takes network configu-
ration as input and derives RIBs and FIBs based on it).
Consider the network in Figure 5(a). Assume that each

ToR router will advertise two subnets into BGP, one for each
of its connected hosts. Also assume that a default route is
advertised from a wide-area network outside the data center
to reach external destinations. After routing converges, each
ToR will have 30 RIB entries–2 local BGP routes, the default
route from each of the 4 connected aggregation routers, and
6 routes to other ToRs learned through 4 aggregation routers
each. Each ToR will also have 36 FIB entries – 6 directly
connected routes for interfaces, and 30 routes from the RIB
(assuming multipath is configured).

Suppose our test suite consists of a single invariant, the
one we described in §5.3–each ToR should be able to reach ad-
vertised BGP network by other ToRs. The query will evaluate
the reachability of packets to the BGP subnets and we should
thus consider these reachability facts as being covered. Since
reachability is derived data, it will use provenance informa-
tion to mark the 30 of the 36 FIB entries as covered–the two
connected routes for hosts and the 4 default routes will not
be covered. Since the FIB itself is derived, we will further
cover 26 out of 30 of the RIB entries as being covered–all
but the 4 default routes. This process would continue, and 4
of the 6 interfaces at T0 would be covered and so on. Other
configuration elements on T0 such as NTP servers that are

Putting network verification to good use HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

Figure 5: Example coverage report (b) for a datacenter network (a) generated from evaluating the BGP network
reachability test from §5 against the datacenter network.

not tested by the query will not be covered. Similarly, for
aggregation routers, when checking reachability between
ToRs, the FIB entries used to provide connectivity would be
covered and a similar covering process would occur.
Figure 5(b) shows a subset of the coverage results from

this test. It shows the total number of elements (facts), hits
(covered facts), misses (uncovered facts), and coverage per-
cent for each configuration element. Other nodes such as
A0 are also summarized. One could easily drill down further
into the data model to see finer grained information such
as which interfaces have not been covered, or the coverage
of different subelements in dependency graph such as the
coverage of individual access-control lists.

Guidance for adding new tests. This coverage informa-
tion makes it easy to understand both what is being tested
currently as well as what new tests are needed in order
to improve validation. We can clearly draw a few conclu-
sions. First, the aggregation routers are being tested more
thoroughly than the ToR routers, even though the reachabil-
ity testing is from ToR-to-ToR. This is because ToR-to-ToR
reachability relies on aggregation routers being correctly con-
figured and ToRs have configuration related to connected
servers that is not being tested. Second, the current test suite
covers nothing that is not related to routing such as the NTP
servers. This information will help a user realize that new
tests that adding invariants that test for NTP servers and
ToR-rack interfaces would be productive.

8 CONCLUSION
Network verification tools have made incredible progress
towards scalable analysis of real networks. Yet effective use
of such tools remains a challenge and hurts their adoption

in practice. We argue that the next stage on the journey of
network verification is to make such tools more accessible
for average network operators. In other domains, such as
software, where testing tools are widely used, code coverage
is used as a useful metric for both measuring software test
quality and to provide guidance on how to expand coverage
with new tests. To build a similar experience for network
operators, we formalize the definition of network coverage
and present the design of a new invariant language. These
elements simplify writing network tests and make it feasible
to compute and report to users actionable network coverage
statistics.

ACKNOWLEDGMENTS
The ideas presented in this paper have benefitted from con-
versations with several people. Yevgeniy Rombakh first men-
tioned the need for coverage metrics to guide the use of
network verification; Dan Halperin and Victor Heorhiadi
suggested ways to scalably track dependencies in Batfish;
and discussions with Todd Millstein helped shaped the in-
variant language. We thank them all.

REFERENCES
[1] I. Ahmed, R. Gopinath, C. Brindescu, A. Groce, and C. Jensen. Can

testedness be effectively measured? In FSE, 2016.
[2] M. Anderson. Time warner cable says outages largely re-

solved. http://www.seattletimes.com/business/time-warner-cable-
says-outages-largely-resolved, 2014.

[3] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach
to network configuration verification. In SIGCOMM, 2017.

[4] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and
G. Varghese. Efficient network reachability analysis using a succinct
control plane representation. In OSDI, 2016.

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Ryan Beckett and Ratul Mahajan

[5] G. Ferro. Turn network engineers into software engineers. https:
//etherealmind.com/turn-network-engineers-software-engineers/.

[6] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Ma-
hajan, and T. Millstein. A general approach to network configuration
analysis. In NSDI, 2015.

[7] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan. Fast
control plane analysis using an abstract representation. In SIGCOMM,
2016.

[8] J. Godfrey. The summer of network misconfigurations.
https://blog.algosec.com/2016/08/business-outages-caused-
misconfigurations-headline-news-summer.html, 2016.

[9] M. Hilton, J. Bell, and D. Marinov. A large-scale study of test coverage
evolution. In ASE, 2018.

[10] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:
Static checking for networks. In NSDI, 2012.

[11] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
Verifying network-wide invariants in real time. In NSDI, 2013.

[12] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese.
Checking beliefs in dynamic networks. In NSDI, 2015.

[13] S. Ragan. Bgp errors are to blame for monday’s twitter outage, not
ddos attacks. https://www.csoonline.com/article/3138934/security/
bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-
attacks.html, 2016.

[14] S. Sharwood. Google cloud wobbles as workers patch
wrong routers. http://www.theregister.co.uk/2016/03/01/
googlecloudwobblesasworkerspatchwrongrouters/, 2016.

[15] Y. Sverdlik. Microsoft: misconfigured network device led to azure
outage. http://www.datacenterdynamics.com/content-tracks/servers-
storage/microsoft-misconfigured-network-device-led-to-azure-
outage/68312.fullarticle, 2012.

[16] Y. Sverdlik. United says it outage resolved, dozen flights canceled
monday. https://www.datacenterknowledge.com/archives/2017/01/
23/united-says-it-outage-resolved-dozen-flights-canceled-monday,
2017.

[17] D. Tweney. 5-minute outage costs google $545,000 in rev-
enue. https://venturebeat.com/2013/08/16/3-minute-outage-costs-
google-545000-in-revenue/, August 2013.

