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ABSTRACT

Neural audio codec tokens serve as the fundamental build-
ing blocks for speech language model (SLM)-based speech
generation. However, there is no systematic understanding
on how the codec system affects the speech generation per-
formance of the SLM. In this work, we examine codec to-
kens within SLM framework for speech generation to pro-
vide insights for effective codec design. We retrain existing
high-performing neural codec models on the same data set
and loss functions to compare their performance in a uniform
setting. We integrate codec tokens into two SLM systems:
masked-based parallel speech generation system and an auto-
regressive (AR) plus non-auto-regressive (NAR) model-based
system. Our findings indicate that better speech reconstruc-
tion in codec systems does not guarantee improved speech
generation in SLM. A high-quality codec decoder is crucial
for natural speech production in SLM, while speech intelligi-
bility depends more on quantization mechanism.

Index Terms— neural audio codec, speech language
model, speech generation, tokens, codec investigation

1. INTRODUCTION

The emergence and success of large language models, such
as the GPT series of work [1, 2], have inspired research in
the field of speech language model (SLM) within the speech
generation community [3, 4, 5, 6]. Rather than synthesizing
the speech in a sample-by-sample fashion [7] or by estimating
the continuous features such as mel-spectrum, SLM directly
predict the discrete speech tokens. These predicted tokens are
then used by the pre-trained decoder module to reconstruct
the waveform. By modeling discrete speech tokens within
the language model framework, we can harness the advance-
ments from large language models to enhance speech genera-
tion tasks. Another advantage of using discrete tokens is that
it facilitates the construction of multi-modal model. These
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tokens originating from various modalities (such as speech,
text, video, etc.), can be seamlessly integrated and processed
in a unified manner.

Discrete speech representation tokens primarily stem
from two lines of work: self-supervised learning [8, 9, 10],
resulting in semantic tokens, and the neural audio codec
system [11, 12, 13], yielding codec tokens. Initially, seman-
tic tokens were adopted by SLM-based speech generation
[14]. While they produce intelligible speech, they fail to
capture consistence acoustic traits like speaker identity. In
contrast, the neural audio codec system, which is based on
residual vector quantization (RVQ), generates hierarchical
codec tokens that preserve rich acoustic information. These
codec tokens are then employed, either alone [4] or alongside
semantic tokens by SLM to generate speech [3, 5].

Neural audio codec systems were originally designed for
communication purposes, whereas compression rate and re-
construction quality are the primary evaluation metrics. Ex-
tended from VQ-VAE [15] and introducing the RVQ mod-
ule, SoundStream [11] stands as the pioneering neural au-
dio codec model. It comprises three essential modules: en-
coder, RVQ-based quantizer, and decoder. These components
are jointly trained using both reconstruction and adversarial
losses. Subsequently, a series of neural audio codec models
are proposed [12, 13, 16], expanding upon SoundStream. En-
codec [12] incorporated LSTM layers and a small transformer
language model over the quantized units to further reduce
bandwidth. Vocos [16] predicted the short-time Fourier trans-
form (STFT) coefficients instead of waveform in the decoder
stage, which demonstrates improvement over Encodec. DAC
[13] proposed two key improvements over Encodec. First, it
addressed the codebook collapse problem by reducing the di-
mension of the latent vector to a small value for quantization.
Second, DAC replaced the ReLU activation function with the
snake activation function [17], offering benefits for recon-
structing periodic signals such as speech and music. Lately,
there has been a surge in research efforts focused on design-
ing low bit-rate codec system [18, 19, 20, 21, 22, 23] that
can be integrated with speech language models, aiming for



Fig. 1. High-level architecture of neural audio codecs

greater efficiency. A comprehensive review of existing neural
codec models and the audio language models can be found in
[24, 25].

While the original goal of neural codec design is to
achieve a high compression rate and superior signal level
reconstruction quality, it remains unclear how the codec af-
fects the SLM-based speech generation. In this work, we
investigate the effectiveness of the established codec systems
within the framework of SLM for zero-shot speech genera-
tion. Our goal is to identify key components for designing
codec systems tailored to SLM. Regarding codec systems, we
select three high-performing models: Encodec [12], Vocos
[16] and DAC [13]. To ensure a fair comparison, we retrain
these models and their variants by using the same data set
and loss functions. We consider two SLM-based zero-shot
speech generation models. First, we adopt the masked-based
parallel speech generation model, originally proposed in the
SoundStorm work [5]. We built upon the original design by
incorporating enhancements such as mask span and classifier-
free guidance (CFG) techniques [26, 27]. Second, we explore
the AR + NAR models introduced in VALL-E work [4]. We
systematically assess both the speech reconstruction quality
of the codec systems and the speech generation quality of the
speech generation systems. The main contributions of this
work include:

• We leverage large-scale speech data to retrain high-
performing codec models for a unified comparison.

• We integrate these codecs into two popular SLM-based
speech generation systems for investigation.

• Thorough evaluation and analysis inform effective
codec design for SLM-based speech generation.

2. NEURAL AUDIO CODEC SYSTEMS

Neural audio codecs can compress audio into discrete rep-
resentations used by speech generation models. Figure 1
presents a high-level architecture of a neural audio codec. It
has an encoder that downsamples waveforms to a much lower
sampling rate (e.g., 50Hz), a residual vector quantization
(RVQ) module that discretizes latent features, and a decoder
that reconstructs audios from discrete tokens. In the follow-
ing sections, we examine the design choices of Encodec [12],
Vocos [16] and DAC [13]. We categorize two aspects of a

codec that affect speech generation: i) vector quantization
(VQ) scheme which can affect the distribution of tokens and
indirectly affect speech modeling complexity; ii) decoder
scheme which affects the generated audio quality.

2.1. Encodec
For quantization, Encodec [12] uses Residual Vector Quanti-
zation (RVQ) similar to SoundStream [11]. The output of the
n-th quantizer Qn is expressed as Qn = VQ(Q0−

∑n−1
i=1 Qi)

where Q0 is the continuous latent vector. The VQ operation
at each layer is to find the codebook vector that is closest
to the residual embedding in Euclidean distance. During
training, the codebook vectors are updated using Exponen-
tial Moving Average (EMA)[15]. To mitigate the codebook
collapse problem, Encodec also applies a “restart” technique
to replace unused codebook vectors with candidates sam-
pled from the batch. Encodec utilizes a fully-convolutional
decoder SEANet[28] same as SoundStream[11], with trans-
posed convolutions to upsample the quantized features into
waveform. Two small LSTM layers are added to improve
sequence modeling.

2.2. Vocos
Vocos [16] is a GAN-based Vocoder trained to produce STFT
coefficients. It can be integrated into any neural codec frame-
work as a decoder [16], either by training from a frozen pre-
trained encoder and quantizer, or by building it from scratch
in an end-to-end manner. Vocos predicts STFT coefficients
(logarithmic scale spectrum amplitude and the phase values)
instead of raw waveforms, and upsampling to waveform is re-
alized through inverse Fourier Transform [16]. This system
has shown to produce higher quality audios than original En-
codec [16], and is used in speech generation system VALL-E
2 [29].

2.3. DAC
Descript-audio-codec (DAC) [13] is a recent codec sys-
tem that features several VQ improvements over Encodec.
DAC mitigates codebook collapse by quantizing in a very
low-dimensional latent space. Its updated RVQ is: Qn =
Proj Out(VQ(Proj In(Q0) −

∑n−1
i=1 Proj In(Qi))) where

Proj In is a linear projection from the original latent space
(1024 dimensional) to the low-dimensional quantization la-
tent space (8 or 32 dimensional). It also changes the VQ
lookup distance from Euclidean distance to cosine simi-
larity for stability. DAC uses an explicit MSE codebook
loss function instead of the EMA update scheme to learn
the projection functions. This loss can be expressed as
Lcodebook = ||q − z||22, where z and q denote the looked-
up vectors and the quantized vectors, respectively.

Compared with the decoder in Encodec, DAC replaces
the ReLU activation with Snake activation, which is shown
to benefit periodic signal reconstruction quality [17].



Fig. 2. Model architecture of masked-based parallel speech
generation.

3. SPEECH GENERATION WITH CODEC TOKENS

For the speech generation task, we selected two types of
SLM-based systems. The first one is a masked-based parallel
speech generation model [5] conditioned on oracle semantic
tokens. The second is an AR + NAR models-based text-to-
speech system [4]. Both systems predict the codec tokens for
the target speech which are then used to reconstruct the final
waveform via a pre-trained codec decoder.

3.1. Masked-based parallel speech generation

The masked-based parallel speech generation is proposed
in [5] which is inspired by maskGIT in image generation
field [30]. Unlike the AR-based method, masked-based par-
allel speech generation produces codec tokens for the entire
speech sample in a batch-style manner, iterating through mul-
tiple rounds based on confidence scores. Fig. 2 illustrates the
model architecture for masked-based parallel speech gener-
ation. The backbone employs a bidirectional self-attention-
based Conformer, which predicts masked codec tokens using
summed embeddings of codec tokens and semantic tokens.
Due to the hierarchical structure of the RVQ-based codec to-
kens, masked-based parallel generation occurs layer by layer,
advancing to the next layer only when all tokens from the
current layer have been estimated.

We adopted the span-based masking strategy [26] where
a sequence of block-wise (block size is set as 5 in our case)
masks is applied instead of individually masking each token
in every iteration. To further enhance the quality of the gener-
ated speech, we integrated the annealing-based CFG mecha-
nism, as proposed in the same work [26]. During training, the
model is trained both conditionally and unconditionally with
a certain probability. During inference, the generated signal
is sampled from a linear combination of the predicted condi-
tional and unconditional probabilities with ratio controlled by
the masking rate. This mechanism gradually steers the gener-
ation process from being solely guided by semantic tokens to
incorporating contextual infilling. Ultimately, the predicted
codec tokens are transformed into speech waveforms using
the decoder module of the codec system.

Fig. 3. AR + NAR speech generation.

Note that in this experiment, our focus is solely on inves-
tigating the framework of masked-based parallel generation
across various codec systems. We achieve this by utilizing
oracle semantic tokens as input, without the need for text-to-
semantic-tokens mapping as in [5].

3.2. Speech generation with AR and NAR models

The alternative SLM-based speech generation system we’ve
experimented with employs AR and NAR models, as pro-
posed in the VALL-E work [4]. Fig. 3 illustrates the model
architectures of the method. The overall system involves two
stages of generation. First, the AR model takes the phoneme
sequences derived from the text and the prompt codec to-
kens from the first quantization layer as input, predicting the
first layer of the codec tokens for the target speech in an AR
manner. Subsequently, the NAR model predicts the remain-
ing codec tokens layer-by-layer, based on all the already pre-
dicted layers of codec tokens combining with the phoneme
sequence and the prompt codec tokens of all quantization lay-
ers, in a parallel fashion. Both the AR and NAR models uti-
lize the same Transformer model architecture. However, the
AR model operates causally, whereas the NAR model oper-
ates in parallel.

4. EXPERIMENT

4.1. Experiment of codec reconstruction

4.1.1. Model configuration

We evaluated official 24kHz pretrained models of Encodec [12],
Vocos (with Encodec features)[16], and DAC [13]. We also
evaluated these reproduced codec models. Since the official
Encodec does not provide training codes, we reproduced a
baseline codec with encoder and decoder architecture from
Encodec. For the quantizer, we used an EMA quantiza-



Table 1. Training configuration comparison between official
pre-trained models and our reproduced models.

Model name Quantization Sampling Token Bitrate
method rate (kHz) rate (Hz) (kbps)

Encodec-official EMA w/ restart 24 75 1.5-24
Vocos-official - 24 75 1.5-12
DAC-official Projection 24 75 0.75-24

Baseline-16kHz EMA 16 50 4
Baseline-Vocos-16kHz - 16 50 4

DAC-16kHz Projection 16 50 4
DAC-Vocos-16kHz - 16 50 4

tion module with no restart technique. After obtaining the
baseline codec system, we trained a Vocos decoder with the
encoder and quantizer frozen. We reproduced DAC using its
official repository1. Then, we trained a Vocos decoder for the
reproduced DAC with frozen encoder and quantizer.

We retrained all the codec models with 54k hours of the
Librilight-Large dataset [31]. Table 1 shows a comparison be-
tween official pre-trained models and our reproduced models.
We trained our models using 16kHz sampling rates to align
with our training set. We also used a fixed bitrate for training
reproduced models.

4.1.2. Training Details

For discriminators, we used a combination of a multi-scale
STFT (MS-STFT) discriminator from Encodec [12], and
a multi-period discriminator (MPD) from HiFi-GAN [32].
We used the same discriminator implementation for all re-
produced codecs. For the loss formulation, we followed an
effective configuration in [13] and used a combination of
reconstruction loss, adversarial loss and commitment loss.

Each reproduced model was trained on 8 V100 GPU for
200k steps. We used a segment length of 1 second, and a
batch size of 22 per GPU. We used AdamW optimizer with
learning rate 1e-4, β1 = 0.8, β2 = 0.9, and an exponential
learning rate decay with γ = 0.999996.

4.1.3. Evaluation Metrics

We used the short-split of Librispeech-test-clean [33] as the
test set with a duration range spanning from 4 seconds to
10 seconds. To evaluate the speech quality of the codecs,
we used the Perceptual Evaluation of Speech Quality (PESQ)
[34], Short Term Objective Intelligibility (STOI) [35], Virtual
Speech Quality Objective Listener(ViSQOL) [36], Mel Cep-
stral Distortion (MCD) [37] as indicators. We also measured
the speaker similarity (SIM) between the original speech and
reconstructed speech using the WavLM-TDNN model [38].
For Word Error Rate (WER) evaluation, we used a market-
leading ASR API to get the transcripts and calculate word
error rates with ground-truth transcripts.

1https://github.com/descriptinc/descript-audio-codec

Table 2. Evaluation results of both official codec and re-
trained codec models

Codec models PESQ STOI VISQOL MCD(↓) SIM WER (%)

Encodec-official 3.12 0.94 4.37 2.60 0.89 1.31
Vocos-official 3.57 0.95 4.41 2.50 0.90 1.31
DAC-official 3.77 0.95 4.36 2.34 0.90 1.27

Baseline-16kHz 3.63 0.95 4.44 2.32 0.90 1.29
Baseline-Vocos-16kHz 3.62 0.95 4.47 2.58 0.92 1.20

DAC-16kHz 3.99 0.97 4.53 1.95 0.94 1.12
DAC-Vocos-16kHz 3.98 0.97 4.54 2.00 0.95 1.06

4.1.4. Results

As shown in Table 2, for official models, we observed that the
official DAC model performs the best among most metrics.
We also observed that using the Vocos-official decoder for
Encodec improves its codec quality. Our reproduced mod-
els share similar trends, where the reproduced DAC-16kHz
model performed better than the baseline codec. Also, adding
Vocos can improve some aspects of sound quality, in particu-
lar, we found this gives better speaker similarity and ViSQOL
scores, and lower word error rates. We observed that our
reproduced models generally outperform official models in
the evaluation metrics. This superiority may stem from both
our training set and test set being within the audiobook do-
main, ensuring better alignment between train-test distribu-
tions compared to official models, which incorporate crowd-
sourced data like Common Voice [39] in training.

4.2. Experiment of masked-based parallel generation

4.2.1. Dataset

We trained the masked-based parallel speech generation
model with 54k hours of Librilight-Large dataset [31]. The
data was chunked into a maximum 30s for each training sam-
ple. For inference, we utilized the short-split of LibriSpeech-
test-clean [33] data set.

4.2.2. Model configuration

For semantic token extraction, we used the Hubert-base
model [9]. The semantic and retrained codec tokens were
generated at 50 tokens per second, while the official Encodec
tokens were at a rate of 75 tokens per second. To align the
timing between official Encodec tokens and semantic tokens,
we up-sampled the embeddings of the semantic tokens to
match the official Encodec token rate. The model has 12
layers of Conformer, each layer has 16 attention heads, 1024
dimension of embeddings, 4096 feedforward dimensions,
with a convolution kernel size of 5 and rotary positional
embeddings, similar as [5]. During decoding, we applied 5
iterations for the first codec layer. For annealing CFG config-
uration, we set the initial and final guidance coefficients to 0
and 2, respectively. For the rest of the RVQ layers, we used



Table 3. Results of masked-based parallel speech generation

ID Codecs Token rate Continuation generation Cross-speaker generation

SIM-O NISQA WER (%) SIM-O NISQA WER (%) CMOS SMOS

GT GroundTruth - 0.67 3.87 0.96 0.70 3.87 0.96 0.29 4.75
S1 Encodec-official 75 0.50 3.17 1.54 0.55 3.31 1.79 -0.79 4.29
S2 Baseline-16kHz 50 0.59 3.33 1.27 0.58 3.52 1.85 -0.38 4.69
S3 Baseline-Vocos-16kHz 50 0.61 3.47 1.22 0.58 3.76 1.86 -0.31 4.52
S4 DAC-16kHz 50 0.54 3.80 1.37 0.58 3.99 1.78 -0.09 4.43
S5 DAC-Vocos-16kHz 50 0.54 3.74 1.28 0.59 3.97 1.79 0.00 4.57

the greedily decoding without iterations. Overall, it requires
12 forward passes to predict the tokens for all 8 RVQ layers.

The model was trained using Adam optimization, with a
batch size of 32. We employ the linear decay learning rate
scheduler with 10k steps of warmup and a peak learning rate
of 1e-4. The model trained with official Encodec tokens used
10 epochs, while other codec tokens utilized 5 epochs.

4.2.3. Results

Table 3 presents the evaluation results. In continuation gen-
eration, we used the first 3 seconds of speech from the same
utterance as the prompt. For cross-speaker generation, we
employed 3 seconds of speech from a different utterance as
the prompt. Our evaluation metrics for continuation genera-
tion include SIM-O [40], NISQA score [41] and WER. Ad-
ditionally, for cross-speaker generation, we included CMOS
(comparative mean option score) and SMOS (similarity mean
option score) to assess human perception of speech natural-
ness and speaker similarity in the generated speech. The test-
ing procedure of CMOS and SMOS followed the same pro-
tocol as described in [4], with 10 subjects participating each
test and 10 randomly selected samples for each condition.

In general, generated speech using the retrained codec
tokens outperformed the official Encodec tokens across most
evaluation metrics. The WER results of generated speech
were similar across all codec tokens, likely because we used
oracle semantic tokens as conditions. From NISQA scores,
we observed the following trends: i) The Vocos decoding
outperformed the waveform-based decoding in the baseline
codec model; ii) DAC decoding exhibited similar perfor-
mance to Vocos decoding, with both surpassing the baseline
decoding. Moreover, the CMOS score in cross-speaker gen-
eration showed a robust correlation with the NISQA score.
These results suggested that employing the snake activation
function for waveform decoding had a similar impact on
speech naturalness as predicting the STFT coefficients. Com-
paring Baseline-Vocos-16kHz and DAC-Vocos-16kHz, we
observed that the quantization of DAC yields better speech
naturalness.

In terms of SIM-O results, there was a slight discrepancy
between continuation generation and cross-speaker genera-
tion when comparing the baseline-16kHz and DAC-16kHz.

However, considering that all SIM-O scores fell within a nar-
row range, the discrepancy can be ignored. The SMOS scores
indicated that baseline-16kHz has the best speaker similarity
performance, followed by DAC-Vocos-16kHz.

4.3. Experiment of AR + NAR generation models

4.3.1. Dataset

We trained both the AR and NAR models with 54k hours
of Librilight-Large dataset [31]. For the AR model, data
was chunked into samples between 10 and 20 seconds, while
for NAR model we used samples of up to 30 seconds. The
phoneme data was obtained from the ASR model and the
phoneme alignment tool presented in [4] with a frame size of
30ms, whereas the consecutive repetitions of the phonemes
were removed. For inference, we also used the short-split of
LibriSpeech-test-clean [33] data set.

4.3.2. Model configuration

We adopted the same Transformer architecture as described
in the VALL-E work [4] for both AR and NAR models. This
architecture consisted of 12 layers, with each layer containing
16 attention heads. The embedding dimension is 1024, and
the feed-forward layer dimension is 4096.

All models were trained for 800k steps with a 6k codec
token batch size across 16 GPUs, except the NAR model with
Encodec tokens, trained for 560k steps. Using the AdamW
optimizer, AR and NAR models underwent optimization with
a linear decay learning rate scheduler, 32k warmup steps, and
a peak rate of 5e-4.

4.3.3. Results

We present the evaluation results in Table 4. For both contin-
uation and cross-speaker generation, we experimented with
three different temperature settings during AR model infer-
ence. Notably, different temperatures yielded optimal results
for different systems.. For each temperature setting, both
DAC-16kHz and DAC-Vocos-16kHz demonstrated equally
outstanding performance across all evaluation metrics. An
unexpected observation from Table 4 was that the Baseline-
16kHz and Baseline-Vocos-16kHz exhibited significantly



Table 4. Results of AR + NAR models-based speech generation

ID Codecs Token rate Continuation generation Cross-speaker generation
SIM-O NISQA WER (%) SIM-O NISQA WER (%) CMOS SMOS

GT GroundTruth - 0.67 3.87 0.96 0.70 3.87 0.96 0.61 4.77

AR model sampling temperature: 1.0
S1 Encodec-official 75 0.43 3.21 4.73 0.47 3.25 3.53 -1.03 4.15
S2 Baseline-16kHz 50 0.46 3.35 10.20 0.48 3.32 11.25 -0.73 4.39
S3 Baseline-Vocos-16kHz 50 0.46 3.52 10.10 0.48 3.53 11.31 -0.70 4.37
S4 DAC-16kHz 50 0.48 3.78 4.97 0.49 3.72 3.31 0.01 4.33
S5 DAC-Vocos-16kHz 50 0.48 3.76 4.95 0.49 3.72 3.28 0.00 4.33

AR model sampling temperature: 0.9
S1a Encodec-official 75 0.44 3.23 3.88 0.47 3.22 3.38 - -
S2a Baseline-16kHz 50 0.46 3.35 6.94 0.48 3.31 8.52 - -
S3a Baseline-Vocos-16kHz 50 0.47 3.52 6.97 0.49 3.52 8.63 - -
S4a DAC-16kHz 50 0.48 3.76 3.08 0.49 3.75 3.03 - -
S5a DAC-Vocos-16kHz 50 0.48 3.74 3.09 0.50 3.73 2.91 - -

AR model sampling temperature: 0.8
S1b Encodec-official 75 0.42 3.23 4.59 0.45 3.16 9.80 - -
S2b Baseline-16kHz 50 0.46 3.35 5.39 0.48 3.23 8.40 - -
S3b Baseline-Vocos-16kHz 50 0.47 3.54 5.30 0.48 3.46 8.55 - -
S4b DAC-16kHz 50 0.48 3.74 3.16 0.49 3.69 3.82 - -
S5b DAC-Vocos-16kHz 50 0.49 3.73 3.17 0.49 3.68 3.89 - -

worse WER performance compared to other codec settings,
despite having similar WER for the reconstruction in Table 2.

To investigate this issue, we analyzed the logarithmic dis-
tribution of the first-layer codec token utilization rate using
LibriSpeech-test-clean, as depicted in Fig. 4. The Baseline-
16kHz curve sharply declined at around 700, indicating the
lowest code utilization rate among the three codec systems
(Encodec-official and DAC-16kHz used 850 and 1024 codes,
respectively). This low code utilization rate likely contributed
to the poor WER performance. We infer that this low code
utilization is related to the underlying VQ scheme: our base-
line model used standard EMA update, while the rest ap-
plied techniques to benefit codebook utilization. Using a
lower temperature during AR model inference significantly
improved the WER performance for Baseline-16kHz. The
sharper sampling distribution resulting from a lower temper-
ature may mitigate hallucination issues, particularly when the
number of used codes is much smaller than the number of
classes in the AR model’s classification layer. However, we
found that the sampling temperature must be within a specific
range; an excessively small value could worsen the WER.

We reported subjective evaluation results when AR model
sampling temperature was at 1.0. The same 10 participants
from the masked-based parallel speech generation experi-
ments were invited for this test, following the same protocol.
The results indicated a positive correlation between CMOS
scores and NISQA scores, while SMOS scores fall within a
tight range, with Baseline-16kHz achieving the highest score.

Fig. 4. The log-scale distribution of 1st layer codec tokens.

5. CONCLUSION

We explored various neural codec systems for the SLM-
driven speech generation task. Our investigation included
training our own baseline codec systems, as well as variants
based on existing high-performing codec systems, includ-
ing Encodec, Vocos, and DAC. We integrated the codec to-
kens from these codec systems into two types of SLM-based
speech generation systems: masked-based parallel speech
generation and AR + NAR models-based text to speech gen-
eration systems. Our experiment results revealed that DAC
models perform exceptionally well overall for SLM-based
speech generation. Vocos served as a competitive vocoder,
demonstrating similar performance as the DAC decoder. In-
terestingly, we observed that the speech reconstruction quality
was highly correlated with the naturalness of the generated
speech, but this correlation did not hold true for speaker
similarity and speech intelligibility.
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