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Abstract

Recent research on fine-tuning large language models (LLMs) through the ag-
gregation of multiple preferences has attracted considerable attention. However,
the existing literature predominantly focuses on the empirical performance of
aggregation algorithms while neglecting the underlying motivation for agents to
misreport their preferences. In this paper, we formalize this as a multi-parameter
mechanism design problem, where an LLM provider designs training and payment
rules to achieve specific objectives and promote the truthful reporting of prefer-
ences. Firstly, we claim the necessity of a payment scheme by demonstrating that
without payments, truth-telling is a strictly dominated strategy under a wide range
of training rules. Then, we introduce the affine maximizer payment scheme for the
social welfare maximizing training rules, which ensures both dominant-strategy
incentive compatibility (DSIC) and individual rationality (IR). Furthermore, we
prove that under mild conditions, any other payment rule that implements these
training rules in DSIC can be converted to the affine maximizer payment by adding
a factor irrelevant to the agents’ reports. We also show that this mechanism satisfies
approximate DSIC when the input of the mechanism is a biased version of the
reported preferences, showcasing its robustness in real-world applications.

1 Introduction

The process of fine-tuning an LLM to align with specific human preferences is challenging to achieve
through supervision (Ji et al. [2023], Köpf et al. [2024], Wang et al. [2023b], Shen et al. [2023]),
primarily due to the difficulty in constructing datasets with a substantial number of valid question-
answer pairs for supervised training. Reinforcement learning from human feedback (RLHF) (Ouyang
et al. [2022], Christiano et al. [2017]) offers a promising solution to this problem. In RLHF, a reward
model is first trained as a proxy for human judgment. This model then provides reward signals for the
standard reinforcement learning process. This fine-tuning technique with a reward model has proven
effective in encoding human preferences into models and has become a fundamental component of
the training process for most advanced LLMs. With the advancement of RLHF, numerous studies
have investigated efficient methods for aggregating multiple preferences into a single fine-tuned
model.

However, most of these studies focus on improving empirical performance across various met-
rics (Ramé et al. [2024], Wu et al. [2024], Coste et al. [2023], Zhang et al. [2024a], Jang et al. [2023],
Eisenstein et al. [2023], Yang et al. [2024], Rame et al. [2024], Shi et al. [2024]). They often implicitly
assume that we are accessible to actual preferences, neglecting the possibility of agents’ misreporting
their preferences. This problem becomes more crucial when considering a real-world scenario where
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Figure 1: Motivating example of the RLHF Game: Consider a basic training rule ψ in RLHF for two
groups, setting w1 = w2 = 1. When there is no payment rule and group 2’s report r̃m2 is fixed, the
valuation that group 1 can achieve from a truthful report r̃m1 = rm1, v1(θ; rm1), is strictly less than
from a strategic report r̃m′

1 ̸= rm1, v1(θ′; rm1). On the other hand, such strategic behavior also has
an impact on the affine social welfare: ASW (−→rm, w⃗, θ; θinit) < ASW (−→rm, w⃗, θ′; θinit).

different agents provide their preferences for the aggregation. In such cases, agents may engage in
strategic misreporting to increase utility. An intuitive example is if an agent knows beforehand that
the fine-tuning process aims to neutralize all preferences, it might pretend to have a more polarized
preference as a beneficial strategy, as shown in Figure 1. These strategic behaviors can distort the
final training results, even if the trained algorithm is highly effective. Nevertheless, this issue has not
attracted sufficient attention in the existing literature, particularly concerning the fine-tuning process
of LLMs.

Our Contribution. In this paper, we mainly study the incentive design in such scenarios. First,
we formalize this as a multi-parameter mechanism design problem, which we call the RLHF Game,
involving a fine-tuning service provider and groups of agents seeking the service.

Next, we demonstrate the necessity of payment mechanisms for commonly used SW-Max training
rules (Theorem 3.2) and derive that the affine maximizer payment scheme can implement these rules in
both dominant-strategy incentive compatibility (DSIC) and individual rationality (IR) (Theorem 3.3).

We further explore payment equivalence, showing that under a mild condition, any other payment
rule that also implements these training rules in DSIC can be converted to the affine maximizer
payment by adding a factor irrelevant to groups’ reports (Theorem 3.5). Consequently, we derive
the revenue-maximizing payment rule that implements SW-Max training rules in both DSIC and
IR (Corollary 3.6).

Finally, we show that the mechanism remains approximately DSIC even when the input prefer-
ences are biased, reflecting practical scenarios where errors occur (Theorem 3.7). We also provide
preliminary empirical validation in real RLHF scenarios Appendix B.2.

2 Formulation of the RLHF Game

In this section, we present the formal description of the RLHF Game. In the RLHF Game, there is one
LLM provider and n groups of agents, denoted by [n] = {1, 2, · · · , n}. Let T ∗ := ∅∪T ∪T 2∪ · · ·∪
TK represent the set of all possible input sequences with lengths up to K. The provider has an initial
model LLMθinit with non-zero probability for all sequences, i.e., LLMθinit(x) > 0 for all x ∈ T ∗. We
mainly consider two types of reward models: normalized by summation (

∑
x∈T∗ rm(x) = 1) and

normalized by maximum (maxx∈T∗ rm(x) = 1). Each group i has wi agents and a joint preference
represented by a reward model rmi : T

∗ → R≥0. Let R and W ⊆ N+ denote the domains for each
group’s reward model and group size, respectively. We assume an upper bound w̄ for W . The exact
reward model and the size are group i’s private information. For an agent in group i, the valuation
when it receives a model LLMθ is denoted by vi(θ; rmi). We consider a reasonable form v(·; ·):
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Definition 2.1. For any agent with preference represented by reward model rm, its valuation on model
LLMθ is its expected reward on the sequences generated by LLMθ: v(θ; rm) = Ex∼LLMθ

rm(x) =∑
x∈T∗ LLMθ(x)rm(x).

The provider first announces the mechanism, including a training rule ψ : Rn × Wn ×
Θ → Θ and a payment rule p : Rn × Wn × Θ → Rn. Both rules take n reported re-
ward models, n reported sizes, and an initial model as input and output the objective fine-
tuned model and each group’s payment, respectively. Specifically, the training rule seeks
to find the model that maximizes a specific objective function h. That is, ψ(−→rm, w⃗, θinit) ∈
argmaxθ∈Θ h(v1(θ; rm1), · · · , vn(θ; rmn), w⃗,D(LLMθ||LLMθinit)), where D is a measure of the
distance between LLMθ and LLMθinit . We assume the function h has a unique global optimal point
for any possible inputs. Hence, in the definition of ψ, we use “=” to substitute “∈”.

After observing the announced mechanism (ψ, p), each group i reports a reward model, r̃mi, and its
group size w̃i ≤ w̄. Based on the reported information, the provider fine-tunes the model and gets
the final parameter θfinal = ψ(

−→
r̃m, ⃗̃w, θinit). We assume each group i has a quasi-linear utility, which

means ui(
−→
r̃m, ⃗̃w;ψ, p, rmi, wi) = wivi(θfinal; rmi)− pi(

−→
r̃m, ⃗̃w, θinit). When the specific mechanism

(ψ, p) is given, we will omit their notations for simplicity.

The goal of the LLM provider is to achieve its training objective based on the group’s true preferences,
taking into account that the misreporting may distort the training outcome. To this end, it is crucial to
incentivize all groups to report their information truthfully so that the provider is accessible to the
groups’ private information. We formally define these desiderata of a mechanism:

(1) A mechanism (ψ, p) satisfies ϵ−dominant-strategy incentive compatibility (ϵ-DSIC) if ∀i, rmi,
wi, rm′

i, w
′
i,
−→rm−i, w⃗−i, θinit, we have

ui((rmi,
−→rm−i), (wi, w⃗−i); rmi, wi) + ϵ ≥ ui((rm′

i,
−→rm−i), (w

′
i, w⃗−i); rmi, wi). (ϵ-DSIC)

(2) A mechanism (ψ, p) satisfies ϵ−individually rationality (ϵ-IR) if ∀i, rmi, wi,
−→rm−i, w⃗−i, θinit, we

have
ui((rmi,

−→rm−i), (wi, w⃗−i); rmi, wi) + ϵ ≥ 0. (ϵ-IR)

In particular, we use the terms DSIC and IR to refer to 0-DSIC and 0-IR, respectively. When a
mechanism (ψ, p) satisfies DSIC, IR, or both DSIC and IR, we say that the payment rule p implements
ψ in DSIC, IR or both DSIC and IR. When we say the implementability of a training rule, we refer to
the property of DSIC.

3 Incentives for SW-Maximizing Training Rules

This section will discuss the incentive design within the RLHF Game framework. Our primary focus
is on a subset of training rules that maximizes social welfare under regularization constraints, which
is commonly used in practice to aggregate various preferences (Boyd and Vandenberghe [2004],
Nocedal and Wright [1999]).

Definition 3.1 (SW-Max Training Rules). A SW-Max training rule fine-tunes the model to maxi-
mize social welfare, subject to a regularization penalty measured by f -divergence (Ali and Silvey
[1966], Csiszár [1967], Shi et al. [2024]). Formally, this can be expressed as: ψ(−→rm, w⃗, θinit) =
argmaxθ∈Θ

∑n
i=1 wivi(θ; rmi)−λEx∼LLMθinit

f(LLMθ(x)/LLMθinit(x)), where f is convex on R+

and f(1) = 0, and λ > 0 is the hyperparameter that controls regularization strength. We use
ψ ∈ ΨSW to indicate that ψ is a member of the SW-Max training rules.

3.1 Necessity of Payment Rule

We begin by showing that without payment, strategies always exist that bring strictly higher utility
than truthful reports for SW-Max training rules.

Theorem 3.2. For the mechanism (ψ, p) that ψ ∈ ΨSW and p ≡ 0, assuming that for all w⃗, −→rm
and θinit, the fine-tuned model θ = ψ(−→rm, w⃗, θinit) satisfies that LLMθ(x) > 0 for all x ∈ T ∗, then
for group i, truthfully reporting is a strongly dominated strategy when minx∈T∗ rmi(x) > 0 and
|{r|r = rmi(x), x ∈ T ∗}| ≥ 2.
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Here, we call a strategy strongly dominated when there exists another strategy that yields strictly
higher utility regardless of others’ reports. Theorem 3.2 tells us that truthful reporting is strongly
dominated with only training rules and thus will not be adopted by rational groups. We prove this
result by constructing such report reward models rm′

i, and the intuitive is that rm′
i assigns a lower

value for the less preferred x and a higher value for the most preferred x.

3.2 Affine Maximizer Payment

Having established the necessity of payment rules in this scenario, we mainly address two questions
in this part: First, given a training rule ψ, can we find a payment rule p such that the mechanism
(ψ, p) satisfies DSIC? This is the so-called implementability of a training rule ψ. Second, for an
implementable training rule ψ, can we identify the relationship between the payment rules ps among
all DSIC mechanisms (ψ, p).

For SW-Max training rules, we resolve the first question by introducing affine maximizer payment
rule (Roberts [1979]), which is a weighted version of the well-known VCG payment (Vickrey
[1961], Clarke [1971], Groves [1973]). The payment rule can be written as pAFF

i (−→rm, w⃗, θinit) =
ASW−i(

−→rm, w⃗, ψ(−→rm−i, w⃗−i, θinit); θinit)−ASW−i(
−→rm, w⃗, ψ(−→rm, w⃗, θinit); θinit), where the notation

ASW−j(
−→rm, w⃗, θ; θinit) :=

∑
i ̸=j wivi(θ; rmi)− λEx∼LLMθinit

f(LLMθ(x)/LLMθinit(x)) refer to the
affine social welfare without group j for a specific fine-tuned model. We show that pAFF implements
SW-Max training rules in both DSIC and IR, implying that truthfully reporting both reward models
and group sizes constitutes a dominant Nash Equilibrium in this mechanism.
Theorem 3.3. For any ψ ∈ ΨSW , mechanism (ψ, pAFF ) satisfies DSIC and IR.

The second question is more general, so we primarily consider the concept of payment equiva-
lence ([Ashlagi et al., 2010]) defined as:
Definition 3.4 (Payment Equivalence). An implementable training rule ψ satisfies payment equiva-
lence if for any two mechanisms (ψ, p) and (ψ, p′) satisfying DSIC, there exists a function f such
that for ∀rmi ∈ Ri, p′i(rmi,

−→rm−i; θinit) = pi(rmi,
−→rm−i; θinit) + f(−→rm−i, θinit).

Payment equivalence indicates that the only way to modify a DSIC mechanism (ψ, p) to (ψ, p′) while
maintaining incentive compatibility is to add a term that is independent of i’s report to group i’s
payment function pi. Thus, the payment equivalence of ψ is sometimes interpreted as the uniqueness
of the payment rule p that implements it in DSIC. This notion is strong and useful since when a
training rule ψ satisfies payment equivalence, and we can figure out one mechanism (ψ, p) that
satisfies DSIC, all the payment rules p′ that implement ψ in DSIC are characterized. We show
that SW-Max training rules satisfy such property under a mild assumption, which holds for various
distance measures (see Proposition C.2).
Theorem 3.5. When for any ϵ > 0, there exists a δ > 0 such that for any θinit, −→rm, −→rm′, w⃗ and
w⃗′, if maxx∈T∗ |

∑n
i=1(wirmi(x) − w′

irm′
i(x))| ≤ δ, then maxx∈T∗ |LLMθ(x) − LLMθ′(x)| ≤ ϵ,

where θ := ψ(−→rm, w⃗, θinit) and θ′ := (−→rm′, w⃗′, θinit), each training rule ψ ∈ ΨSW satisfies payment
equivalence.

With the property of payment equivalence, we can investigate the revenue-maximizing payment rule
that implements SW-Max training rules in both DSIC and IR.
Corollary 3.6. Under the assumption in Theorem 3.5, for each training rule ψ ∈ ΨSW , the revenue-
maximizing payment rule p∗ under a distribution F whose support is R×W that implements ψ in
both DSIC and IR is given by

p∗i (
−→rm, w⃗, θinit) = pAFF

i (−→rm, w⃗, θinit) + inf
rm′

i∈R,w′
i∈W

ui((rm′
i,
−→rm−i), (w

′
i, w⃗−i);ψ, p

AFF , rm′
i, w

′
i).

Finally, we discuss the influence of error generated in practice on the incentive property in the
RLHF Game. We abstract it as an approximate valuation problem (Chiesa et al. [2012]). For-
mally, when group i reports its reward model rmi, the mechanism will take a noisy reward
model r̂mi with a conditional distribution Fi(·|rmi) as the input into the mechanism. For sim-
plicity, we assume that each group only considers such randomness for itself. Thus, under mech-
anism (ψ, p), the expected utility of group i is given by Ui((rm′

i,
−→rm−i), (w

′
i, w⃗−i); rmi, wi) =

Er̂mi∼Fi(·|rm′
i)
ui((r̂mi,

−→rm−i), (w
′
i, w⃗−i); rmi, wi). We derive the following connection between the

magnitude of the error and the deviation from DSIC.
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Theorem 3.7. In the approximate valuation model, assuming maxx∈T∗,r̂mi∼Fi(·|rmi) |r̂mi(x) −
rmi(x)| ≤ ϵ for all i ∈ [n], when w⃗ is truthfully reported, the mechanism (ψ, pAFF ) that ψ ∈ ΨSW

is maxi∈[n] 2wiϵ-DSIC.

This theorem means that for any group i, the maximum gain of misreporting is less than 2wiϵ
regardless of the others’ reports. Groups will tend to truthfully report in cases where finding the
optimal strategy is costlier than 2wiϵ.
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A Related Work

A.1 Primary Related Work

Several studies have investigated similar scenarios. Among them, Duetting et al. [2023] and Soumalias
et al. [2024] are most related to ours. Duetting et al. [2023] examines the problem of designing
a mechanism to aggregate multiple agents’ preferences based on each agent’s bids and determine
their payments. However, they exclude the case where preferences can be misreported, which is
the primary concern in our study. The concurrent work by Soumalias et al. [2024] also considers
the mechanism design for aggregating multiple preferences. Their focus is mainly on the practical
implementation of SW-Max training rule with KL-divergence and the payment scheme that obtains
both DSIC and interpretability. However, in this scenario, we are more concerned with the theoretical
properties of more general mechanisms, including the implementability and the property of payment
equivalence.
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Additionally, works are studying other scenarios related to LLMs from the perspective of algorithmic
game theory. Laufer et al. [2023] abstracts the fine-tuning process as a bargaining game and
characterizes the perfect sub-game equilibria. Dubey et al. [2024] proposes an auction where bidders
compete to place their content within a summary generated by an LLM. Conitzer et al. [2024]
considers incorporating social choice theory in LLM alignment. Feizi et al. [2023] explores the
potential for leveraging LLMs in online advertising systems.

A.2 RLHF with Multiple Reward Models.

Research involving multiple reward models primarily focuses on developing algorithms to enhance
practical performance. Some studies design methods to simultaneously satisfy multiple prefer-
ences (Ramé et al. [2024], Wu et al. [2024], Jang et al. [2023], Park et al. [2024], Chakraborty
et al. [2024], Shi et al. [2024], Yang et al. [2024], Rame et al. [2024]). They develop more efficient
algorithms to extend the Pareto front among different objectives (Rame et al. [2024], Jang et al.
[2023], Shi et al. [2024], Yang et al. [2024]) and balance issues from various perspectives (Park et al.
[2024], Chakraborty et al. [2024], Ramé et al. [2024]).

Additionally, there is a body of work that trains multiple models for a single preference and then
ensembles them to improve the robustness of RLHF (Coste et al. [2023], Zhang et al. [2024a]),
mitigate the influence of incorrect and ambiguous preferences in the dataset (Wang et al. [2024]),
and reduce reward hacking (Eisenstein et al. [2023]). Unlike these approaches, our work considers
how to collect misaligned preferences truthfully from different agents. As we have mentioned, these
works are often assumed to be accessible to the actual preference of humans, neglecting the incentive
issue for motivating rational agents for truthful reports.

A.3 Multi-parameter Auctions.

Several studies have explored the properties relevant to our paper in various multi-parameter auc-
tion scenarios, such as implementability (Rochet [1987], Miyake [1998], Conitzer and Sandholm
[2004], Saks and Yu [2005], Bikhchandani et al. [2006], Ashlagi et al. [2010]) and payment equiv-
alence (Ivanova-Stenzel and Salmon [2008], Heydenreich et al. [2009], Bergemann and Välimäki
[2010], Pavan et al. [2014]). Another central topic in auction theory is to design mechanisms that
satisfy DSIC and IR while maximizing the expected revenue for the auctioneer. Although the
single-parameter scenario has been resolved by Myerson [1981], the optimal auction design for
multi-parameter settings remains an open question. Therefore, there is a stream of research focusing
on a specific subset: affine maximizer auctions, which inherently satisfy DSIC and IR (Sandholm
and Likhodedov [2015], Roberts [1979], Likhodedov and Sandholm [2004], Briest et al. [2010],
Tang and Sandholm [2012], Jehiel et al. [2007]), and proposes optimizations to enhance empirical
performance (Curry et al. [2022], Duan et al. [2024a,b]). Compared to these works, we are the first
to discuss the property of payment equivalence and the revenue-maximizing solution for SW-Max
training rules in the scenario of fine-tuning LLMs.

A.4 Game Theory and LLMs.

Other works also explored the intersection of game theory and large language models. Some research
has proposed algorithms for training LLMs inspired by concepts in game theory, such as Nash
learning from human feedback (Munos et al. [2023]), consensus game (Jacob et al. [2023]), and
direct Nash optimization (Rosset et al. [2024]), and Gemp et al. [2024].

Furthermore, various studies assess LLMs from a game-theoretical perspective, examining aspects
such as rationality (Chen et al. [2023], Fan et al. [2023]), behavior in matrix games (Akata et al.
[2023], Gandhi et al. [2023], Lorè and Heydari [2023]), and performance in strategic games like auc-
tions (Guo et al. [2023, 2024a]), Werewolf (Xu et al. [2023a,b]), Avalon (Wang et al. [2023a]), Diplo-
macy (Mukobi et al. [2023], [FAIR]), card game (Feng et al. [2024]) and electronic game (Agashe
et al. [2023], Ma et al. [2023], Shao et al. [2024]). There are also comprehensive surveys (Zhang
et al. [2024b], Gallotta et al. [2024], Guo et al. [2024b]).
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B Empirical Study

In this section, we present an empirical demonstration of the mechanism, focusing on the DSIC
property and showing how payment rules promote truthful reporting in practical applications.

B.1 Models and Datasets

Our experimental setup mainly follows the literature that studies MORLHF (Wu et al. [2024]) and
the improved method for multiple objectives training for LLMs, like Rewarded Soups (Rame et al.
[2024]), Rewards-in-Context (Yang et al. [2024]), and Multi-Objective Decoding (Shi et al. [2024]).
We consider two tasks: the Helpful Assistants task (Bai et al. [2022]) and the Reddit Summary
task (Stiennon et al. [2020]). And we use LLAMA2-7B (Touvron et al. [2023]) as the base model for
both tasks.

We get the initial model LLMθinit for the Helpful Assistants task by first supervised fine-tuning an
LLAMA2-7B model on the Anthropic-HH dataset (Bai et al. [2022]). Then, we use two reward
models that measure harmlessness and humor for the RLHF process. For the Reddit Summary task,
the supervised fine-tuning is on the Summarize-from-Feedback dataset (Stiennon et al. [2020]). We
use two reward models for this task, measuring the summary’s quality and faithfulness.

We frame these tasks as reinforcement learning from human feedback (RLHF) games. We have a
"Harmless v.s. Humor" game for the Helpful Assistants task and a "Faithful v.s. Summary" game for
the Reddit Summary task. In each game, the reward models reflect the true preferences of two groups:
for instance, in "Harmless v.s. Humor," group 1 focuses on harmlessness, while group 2 values humor.
We denote the reward models for these preferences as rm1 (harmlessness) and rm2 (humor), with
group size vectors (w1, w2) selected from {(3, 7), (5, 5), (7, 3)}, varying across different settings.

B.2 Results

We implement the basic training rule described in Definition 3.1 and use KL-divergence as the
distance measure f . Instead of directly optimizing the objective function in RL, we train models using
individual reward models first and then combine them using techniques like Rewarded Soups (Rame
et al. [2024]) and Multi-Objective Decoding (Shi et al. [2024]) to produce a set of hybrid models
{θ1, θ2, · · · , θK}. These hybrid models form the set Θ in Definition 3.1. This method reduces
training costs while yielding results comparable to full multi-objective fine-tuning, as demonstrated
in previous research (Rame et al. [2024], Shi et al. [2024]).

For each game, we fix one group’s report and explore two types of misreports for the other group
(r̃mi, w̃i):

1. r̃mi = rmi and w̃i = αwi.

2. r̃mi = βrmi + (1− β)rm−i and w̃i = wi.

α = 1 and β = 1 refer to the case of truthful reports, and by intuition, reporting a higher α or β can
get a more preferred training outcome.

Since different reward models have various scales, we normalize all the reward values to [0, 1] and
make sure that the maximum and minimum are 1 and 0. Then, We report the group i’s valuations,
payments, and utilities for different report strategies under the mechanism calculated on the normal-
ized values in Figure 2. Each column represents a specific group size (w1, w2), with the first three
columns for the "Harmless vs. Humor" task and the last column for "Faithful vs. Summary."

As shown in the figure, when fixing α (or β) and increasing the other variable, the group’s valuation
increases, demonstrating the failure of non-payment mechanisms in promoting truthfulness. However,
when payments are set according to pAFF , the payment rises alongside α or β. This has balanced the
impact of the valuation and ensures truthful reporting (α = 1 and β = 1) maximizes utility in all
cases.
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Figure 2: The empirical result for the mechanism (ψ, pAFF ). We set the group number n = 2, and
the group size for each column is in the title. The first three columns are for the "Harmless v.s.
Humor" in the Helpful Assistants task, and the last column is for the "Faithful v.s. Summary" in the
Reddit Summary task. We report the valuation, the payment, and the utility for group 1 for different
reporting parameters α and β (defined in Appendix B.2). As is shown in the figure, truthfully report,
i.e. α = 1 and β = 1, brings the highest utility for all cases, showcasing the DSIC property of the
mechanism.

C Omitted proofs in Section 3

Theorem 3.2. For the mechanism (ψ, p) that ψ ∈ ΨSW and p ≡ 0, assuming that for all w⃗, −→rm
and θinit, the fine-tuned model θ = ψ(−→rm, w⃗, θinit) satisfies that LLMθ(x) > 0 for all x ∈ T ∗, then
for group i, truthfully reporting is a strongly dominated strategy when minx∈T∗ rmi(x) > 0 and
|{r|r = rmi(x), x ∈ T ∗}| ≥ 2.

Proof. We mainly discuss the strategies other than simply over-reporting the group size. Without
loss of generality, we set w⃗ = 1 and assume all the groups will truthfully report w⃗. Omitting the
notation w⃗ for simplicity, the optimization of ψ can be written as a programming problem:

ψ(−→rm, θinit) := argmax
θ∈Θ

n∑
i=1

vi(θ; rmi)− λEx∼LLMθinit
f(

LLMθ(x)

LLMθinit(x)
)

s.t.
∑
x∈T∗

LLMθ(x) = 1

LLMθ(x) ≥ 0 ∀x ∈ T ∗

Because of assumption (2), we can infer that the condition LLMθ(x) ≥ 0, ∀x ∈ T ∗ is not active for
the optimal solution. Since the optimal solution is also a local extreme point, the necessary condition
for the optimal θ∗ is that there exists µ ∈ R (Luenberger et al. [1984]), such that

n∑
i=1

∂vi
∂LLMθ(x)

− λ
∂f(y)

∂y

∣∣ LLMθ(x)

LLMθinit
(x)

= µ ∀x ∈ T ∗.

Under Definition 2.1, ∂vi

∂LLMθ(x)
= rmi(x), so we have

n∑
i=1

rmi(x)− λ
∂f(y)

∂y

∣∣ LLMθ(x)

LLMθinit
(x)

= µ ∀x ∈ T ∗. (OPT)

Our main technique for proof is to construct a report reward model rm′
i ̸= rmi for group i such that

vi(ψ((rm′
i,
−→rm−i), θinit); rmi) > vi(ψ((rmi,

−→rm), θinit); rmi) holds for all −→rm−i and θinit.

12



We first analyze the case of the reward model being normalized by summation. We take the x1 ∈
argmaxx∈T∗ rmi(x),x2 ∈ argminx∈T∗ rmi(x). Since minx∈T∗ rmi(x) > 0, we have rmi(x1) <
1 and rmi(x2) > 0. Then we take a small ϵ < min{1− rmi(x1), rmi(x2)} and define rm′

i as:

rm′
i(x) =


rmi(x) + ϵ, x = x1,

rmi(x)− ϵ, x = x2

rmi(x), x ̸= x1,x ̸= x2.

Intuitively, rm′
i assigns more value to the element with the highest rmi value and less to the element

with the lowest rmi value. Let θ = ψ((rmi,
−→rm−i), θinit) and θ′ = ψ((rm′

i,
−→rm−i)), θinit), we use µ

and µ′ to denote the variable in the necessary condition for LLMθ and LLMθ′ , and we can derive the
following results.

(a) LLMθ′(x1) > LLMθ(x1) and LLMθ′(x2) < LLMθ(x2). We prove the former by contradiction:
if LLMθ′(x1) ≤ LLMθ(x1), then by definition, ∂2f(y)/∂y2 ≥ 0, we have

∂f(y)

∂y

∣∣ LLM
θ′ (x1)

LLMθinit
(x)

≤ ∂f(y)

∂y

∣∣ LLMθ(x1)

LLMθinit
(x)

.

With rm′
i(x1) > rmi(x1), we can infer that µ′ > µ. However, since for all x ̸= x1, we have

rm′
i(x) ≤ rmi(x), to satisfy the optimal condition in (OPT), there must be for all x ̸= x1,

∂f(y)

∂y

∣∣ LLM
θ′ (x)

LLMθinit
(x)

<
∂f(y)

∂y

∣∣ LLMθ(x)

LLMθinit
(x)

.

Which is equivalent to LLMθ′(x) < LLMθ(x), and hence results in
∑

x∈T∗ LLMθ′(x) <∑
x∈T∗ LLMθ(x) = 1. The latter, LLMθ′(x2) < LLMθ(x2), can be proved by totally same

method.

(b) The order of LLMθ(x) and LLMθ′(x) for all x /∈ {x1,x2} is consistent. Without loss of
generality, we assume there is x3 /∈ {x1,x2} such that LLMθ′(x3) ≥ LLMθ(x3). Then we have

∂f(y)

∂y

∣∣ LLM
θ′ (x3)

LLMθinit
(x)

≥ ∂f(y)

∂y

∣∣ LLMθ(x3)

LLMθinit
(x)

.

Since ∂h/∂f = −λ < 0, we can infer that µ′ ≤ µ. Then for all x /∈ {x1,x2}, to satisfy (OPT),
there must be

∂f(y)

∂y

∣∣ LLM
θ′ (x)

LLMθinit
(x)

≥ ∂f(y)

∂y

∣∣ LLMθ(x)

LLMθinit
(x)

.

which is equivalent to LLMθ′(x) ≥ LLMθ(x). Similarly, if there is x3 /∈ {x1,x2} such that
LLMθ′(x3) ≤ LLMθ(x3), then for all x /∈ {x1,x2}, there is LLMθ′(x) ≤ LLMθ(x).

Finally, with the results in (a) and (b), when LLMθ′(x) ≤ LLMθ(x) for all x /∈ {x1,x2}, there is

vi(ψ((rm′
i,
−→rm−i), θinit); rmi)− vi(ψ((rmi,

−→rm−i), θinit); rmi)

=
∑
x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x)

=
∑

x ̸=x1,x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x) + (LLMθ′(x1)− LLMθ(x1)) rmi(x1)

=−
∑

x ̸=x1,x∈T∗

(LLMθ(x)− LLMθ′(x)) rmi(x) + (LLMθ′(x1)− LLMθ(x1)) rmi(x1)

(2)

≥ −
∑

x ̸=x1,x∈T∗

(LLMθ(x)− LLMθ′(x)) rmi(x1) + (LLMθ′(x1)− LLMθ(x1)) rmi(x1)

=rmi(x1)

LLMθ′(x1)− LLMθ(x1)−
∑

x ̸=x1,x∈T∗

(LLMθ(x)− LLMθ′(x))


=rmi(x1)

∑
x∈T∗

(LLMθ′(x)− LLMθ(x)) = 0.
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When LLMθ′(x) ≥ LLMθ(x) for all x ̸= x1,x2, there is

vi(ψ((rm′
i,
−→rm−i), θinit); rmi)− vi(ψ((rmi,

−→rm−i), θinit); rmi)

=
∑
x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x)

=
∑

x ̸=x2,x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x) + (LLMθ′(x2)− LLMθ(x2)) rmi(x2)

=
∑

x ̸=x2,x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x)− (LLMθ(x2)− LLMθ′(x2)) rmi(x2)

(3)

≥
∑

x ̸=x2,x∈T∗

(LLMθ′(x)− LLMθ(x)) rmi(x2)− (LLMθ(x2)− LLMθ′(x2)) rmi(x2)

=rmi(x2)

 ∑
x ̸=x2,x∈T∗

(LLMθ′(x)− LLMθ(x))− (LLMθ(x2)− LLMθ′(x2))


=rmi(x2)

∑
x∈T∗

(LLMθ′(x)− LLMθ(x)) = 0.

Note that both (2) and (3) are because of rmi(x1) ≥ rmi(x2). And unless rmi(x1) = rmi(x2),
which is excluded by |{r|r = rmi(x),x ∈ T ∗}| ≥ 2, the “>”s are hold.

The case of the reward model being normalized by maximum is similar. We take the x1 ∈
argminx∈T∗ rmi(x). Since minx∈T∗ rmi(x) > 0, we have rmi(x1) > 0. Then we take a small
ϵ < rmi(x1) and define rm′

i as:

rm′
i(x) =

{
rmi(x)− ϵ, x = x1,

rmi(x), x ̸= x1.

With the same technique, we first show that LLMθ′(x1) < LLMθ(x1) and LLMθ′(x) > LLMθ(x)
for all x ̸= x1. After that, it is easy to derive that

vi(ψ((rm′
i,
−→rm−i), θinit); rmi)− vi(ψ((rmi,

−→rm−i), θinit); rmi) > 0.

Theorem 3.3. For any ψ ∈ ΨSW , mechanism (ψ, pAFF ) satisfies DSIC and IR.

Proof. We assume that for group i, the true reward model is rmi, and the agent number is wi. The
reports of other groups are (−→rm−i, w⃗−i) and the initial model is θinit.

(1) (ψ, pAFF ) satisfies DSIC.

We compare the utility between reporting (rmi, wi) and any other (rm′
i, w

′
i). For convenience, we

first simplify the notations by letting

θ = ψ((rmi,
−→rm−i), (wi, w⃗−i)), θinit),

θ′ = ψ((rm′
i,
−→rm−i), (w

′
i, w⃗−i)), θinit).

The valuation of group i is the valuation for each agent multiply the real agent number:

vi = wivi(θ; rmi),

v′i = wivi(θ
′; rmi).

According to the payment rule pAFF , the payment pi for (rmi, wi) and p′i for (rm′
i, w

′
i) is

pi = ASW−i(
−→rm−i, w⃗−i, ψ(

−→rm−i, w⃗−i, θinit); θinit)−ASW−i(
−→rm−i, w⃗−i, θ; θinit)

p′i = ASW−i(
−→rm−i, w⃗−i, ψ(

−→rm−i, w⃗−i, θinit); θinit)−ASW−i(
−→rm−i, w⃗−i, θ

′; θinit)
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Therefore, we can calculate the change in the utility:

u′i − ui =(v′i − p′i)− (vi − pi)

=
(
wivi(θ

′; rmi) +ASW−i(
−→rm−i, w⃗−i, θ

′; θinit)
)

−
(
wivi(θ; rmi) +ASW−i(

−→rm−i, w⃗−i, θ; θinit)
)

=ASW ((rmi,
−→rm−i), (wi, w⃗−i)), θ

′; θinit)−ASW ((rmi,
−→rm−i), (wi, w⃗−i)), θ; θinit)

≤0.

The last inequality holds by the definition of θ

θ = ψ((rmi,
−→rm−i), (wi, w⃗−i)), θinit) = argmax

θ̂∈Θ
ASW ((rmi,

−→rm−i), (wi, w⃗−i)), θ̂; θinit).

Therefore, we can conclude that, for all −→rm, w⃗ and any possible rm′
i, w

′
i, we have

ui((
−→rm, w⃗);ψ, pAFF , rmi, wi) ≥ ui((rm′

i,
−→rm−i), (w

′
i, w⃗−i));ψ, p

AFF , rmi, wi).

(2) (ψ, pAFF ) satisfies IR.

We reuse the notations above and denote θ−i to be the optimal parameter for groups except for i, i.e.
θ−i = ψ(−→rm−i, w⃗−i, θinit). When group i truthfully report its reward model rmi and agent number
wi, the utility can be written as:

ui = vi − pi

= wivi(θ; rmi)−ASW−i(
−→rm−i, w⃗−i, θ−i; θinit) +ASW−i(

−→rm−i, w⃗−i, θ; θinit)

= wivi(θ; rmi) +ASW−i(
−→rm−i, w⃗−i, θ; θinit)−ASW−i(

−→rm−i, w⃗−i, θ−i; θinit)

= ASW (−→rm, w⃗, θ; θinit)−ASW−i(
−→rm−i, w⃗−i, θ−i; θinit)

≥ ASW (−→rm, w⃗, θ−i; θinit)−ASW−i(
−→rm−i, w⃗−i, θ−i; θinit)

= wivi(θ−i; rmi) +ASW−i(
−→rm, w⃗, θ−i; θinit)−ASW−i(

−→rm−i, w⃗−i, θ−i; θinit)

= wivi(θ−i; rmi) ≥ 0.

Therefore, we can conclude that, for all −→rm, w⃗, we have

ui((
−→rm, w⃗);ψ, pAFF , rmi, wi) ≥ 0.

Theorem 3.5. When for any ϵ > 0, there exists a δ > 0 such that for any θinit, −→rm, −→rm′, w⃗ and
w⃗′, if maxx∈T∗ |

∑n
i=1(wirmi(x) − w′

irm′
i(x))| ≤ δ, then maxx∈T∗ |LLMθ(x) − LLMθ′(x)| ≤ ϵ,

where θ := ψ(−→rm, w⃗, θinit) and θ′ := (−→rm′, w⃗′, θinit), each training rule ψ ∈ ΨSW satisfies payment
equivalence.

Proof. We prove the equivalent version of payment equivalence: For any group i, when fixing
other groups reports (−→rm−i, w⃗−i) and θinit, any two payment rules p, p′ that implement ψ in DSIC
must satisfy that there exists a constant c, such that pi(rmi, wi)− p′i(rmi, wi) = c for any rmi and
wi. Therefore, in the rest of the proof, we suppose fixed (−→rm−i, w⃗−i) and θinit and will omit these
notations.

Firstly, we introduce a new notation ti to represent the combination (rmi, wi), whose domain is
Ri × Wi. Without specially claim, ti is used to represented for the rmi and wi with the same
superscript and subscript, for example, tki = (rmk

i , w
k
i ). Then, we define the functions l(·, ·) and

V (·, ·) as follows. l(t′i, ti) is the change in valuation from misreport type t′i to report type ti truthfully.
In formal,

l(t′i, ti) := wivi(ψ(ti); rmi)− wivi(ψ(t
′
i); rmi).

And V (t′i, ti) refers to the smallest values of l on a finite and distinct path from t′i to ti

V (t′i, ti) := inf
A finite and distinct sequence
[t0i :=t′i,t

1
i ,··· ,t

k
i ,t

k+1
i :=ti]

k∑
j=0

l(tji , t
j+1
i ).
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We also define the uniform reward model:

rm∗(x) =


1

|T ∗|
rm∗ is normalized by summation,

1 rm∗ is normalized by maximum.
(1)

We prove the following lemma, which is a special case in Heydenreich et al. [2009],

Lemma C.1. An implemented training rule ψ satisfies payment equivalence if for any agent i, and
any types ti, t′i, we have

V (ti, t
′
i) = −V (t′i, ti).

Proof. Assume there is a mechanism (ψ, p) satisfies DSIC. For any two types ti, t′i and a finite and
distinct sequence [t′i, t

1
i , · · · , tki , ti], let t0i = t′i and tk+1

i = ti, we have that

wj+1
i vi(ψ(t

j+1
i ), rmj+1

i )− pi(t
j+1
i ) ≥ wj+1

i vi(ψ(t
j
i ), rm

j+1
i )− pi(t

j
i ) ∀0 ≤ j ≤ k.

This can be rewritten as

wj+1
i vi(ψ(t

j+1
i ), rmj+1

i )− wj+1
i vi(ψ(t

j
i ), rm

j+1
i ) ≥ pi(t

j+1
i )− pi(t

j
i ) ∀0 ≤ j ≤ k.

Sum over j, we get the following inequality

k∑
j=0

l(tji , t
j+1
i ) =

k∑
j=0

wj+1
i vi(ψ(t

j+1
i ), rmj+1

i )− wj+1
i vi(ψ(t

j
i ), rm

j+1
i )

≥
k∑

j=0

pi(t
j+1
i )− pi(t

j
i ) = p(ti)− p(t′i).

Since this holds for arbitrary finite and distinct sequences, we can infer that V (t′i, ti) ≥ p(ti)− p(t′i).
Similarly, there is V (ti, t

′
i) ≥ p(t′i) − p(ti). Combining these results with V (ti, t

′
i) = −V (t′i, ti),

there is
V (ti, t

′
i) = −V (t′i, ti) ≤ p(t′i)− p(ti) ≤ V (ti, t

′
i),

which means that p(t′i) − p(ti) = V (ti, t
′
i). Note that this holds for arbitrary ti and t′i. Therefore,

when for some ti, the payment p(ti) is determined, then the payment for all other t′is is determined.
For example, if there are any two payment rules p and p′ both implement ψ in DSIC, and we set the
payment when i reports uniform reward model rm∗ defined in Equation (1) and wi = 1 as p∗ and p′∗
respectively, then ∀ti

pi(ti)− p′i(ti)

= (pi(ti)− p∗)− (p′i(ti)− p′∗) + p∗ − p′∗

=V ((rm∗, 1), ti)− V ((rm∗, 1), ti) + p∗ − p′∗

=p∗ − p′∗.

Note that p∗ and p′∗ are not influenced by i’s report, but they may vary for different −→rm−i, w⃗−i and
θinit, which means that we can consider the term p∗ − p′∗ as a function f on (−→rm−i, θinit).

Then we show that SW-Max training rule satisfies the condition stated in Lemma C.1. Firstly, we
show that for any ti, t′i, we have V (ti, t

′
i) + V (t′i, ti) ≥ 0. By definition of the function V (·, ·),

V (ti, t
′
i) and V (t′i, ti) refer to the shortest path from ti to t′i and from t′i to ti respectively, which

means that V (ti, t
′
i) + V (t′i, ti) is the shortest weight for a cycle that goes through ti and t′i. Since

the SW-Max training rule is implementable, by cycle monotonicity (Rochet [1987]), we know that
the weight for any cycle is non-negative. Therefore, V (ti, t

′
i) + V (t′i, ti) ≥ 0 must be satisfied.

Then we show that for any ti, t′i and ϵ > 0, V (ti, t
′
i) + V (t′i, ti) ≤ ϵ. We prove this by constructing a

finite and distinct sequence [ti, t
1
i , · · · , tki , t′i] such that

k∑
j=0

l(tji , t
j+1
i ) +

k∑
j=0

l(tj+1
i , tji ) ≤ ϵ. (2)
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This is suffice for V (ti, t
′
i) + V (t′i, ti) ≤ ϵ since V (ti, t

′
i) and V (t′i, ti) are the lower bound for∑k

j=0 l(t
j
i , t

j+1
i ) and

∑k
j=0 l(t

j+1
i , tji ) respectively.

Initially, we rewrite the LHS of Equation (2) by using the definition of the function l(·, ·).

k∑
j=0

l(tji , t
j+1
i ) +

k∑
j=0

l(tj+1
i , tji )

=

k∑
j=1

(
wj+1

i vi(ψ(t
j+1
i ), rmj+1

i )− wj+1
i vi(ψ(t

j
i ), rm

j+1
i )

)
+

k∑
j=0

(
wj

i vi(ψ(t
j
i ), rm

j
i )− wj

i vi(ψ(t
j+1
i ), rmj

i )
)

=

k∑
j=0

wj+1
i (LLMθj+1 − LLMθj ) · rmj+1

i +

k∑
j=0

wj
i (LLMθj − LLMθj+1) · rmj

i

=

k∑
j=0

(LLMθj+1 − LLMθj ) · (wj+1
i rmj+1

i − wj
i rmj

i )

=

k∑
j=0

∑
x∈T∗

(LLMθj+1(x)− LLMθj (x))(wj+1
i rmj+1

i (x)− wj
i rmj

i (x)).

In the above equations, θj = ψ(tji ) for 0 ≤ j ≤ k.

By the assumption, when −→rm−i, w⃗−i and θinit are fixed, there exits δ > 0 such that if
maxx∈T∗ |wirmi(x) − w′

irm
′
i(x)| ≤ δ, then maxx∈T∗ |LLMθ(x) − LLMθ′(x)| ≤ ϵ

4w̄ , where
θ := ψ((rmi,

−→rm−i), (wi, w⃗−i); θinit) and θ′ := ψ((rm′
i,
−→rm−i), (w

′
i, w⃗−i); θinit).

We construct the sequence P as follows: we set k = 2n, n ≥ w̄
δ + 1 and let t0i = ti, t

k+1
i = t′i. For

each 0 ≤ j ≤ n,

wj
i = w0

i = wi, rmj
i = rmj−1

i + j(
rm∗ − rm

n
).

And for each n+ 1 ≤ j ≤ 2n+ 1,

wj
i = w2n+1

i = w′
i, rmj

i = rm∗ + (j − n− 1)(
rm′ − rm∗

n
).

In this construction, any rmj
i is either an weighted average of rm and rm∗ or rm′ and rm∗. This

ensures that all reward models in the sequence are valid (normalized and non-negative). We can then
divide the above equation into three parts, making the wi the same in the first and the last parts.

k∑
j=0

∑
x∈T∗

(LLMθj+1(x)− LLMθj (x))(wj+1
i rmj+1

i (x)− wj
i rmj

i (x))

=

n−1∑
j=0

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))(rmj+1
i (x)− rmj

i (x)) (a)

+
∑
x∈T∗

(LLMθn+1(x)− LLMθn(x))(w′
irm

n+1
i (x)− wirmn

i (x)) (b)

+

2n∑
j=n+1

∑
x∈T∗

w′
i(LLMθj+1(x)− LLMθj (x))(rmj+1

i (x)− rmj
i (x)) (c)

We first show that (b) equals to 0 by proving θn = ψ((rm∗,−→rm−i), (wi, w⃗−i); θinit) =
ψ((rm∗,−→rm−i), (w

′
i, w⃗−i); θinit) = θn+1. By contradiction, if θn ̸= ψ((rm∗,−→rm−i), (w

′
i, w⃗−i); θinit)
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and the uniqueness of the optimal point, we have that

∑
x∈T∗

w′
irm

∗(x) +
∑
j ̸=i

wirmj(x)

LLMθn+1(x)− λEx∼LLMθinit
f(

LLMθn+1

LLMθinit

)

>
∑
x∈T∗

w′
irm

∗(x) +
∑
j ̸=i

wirmj(x)

LLMθn(x)− λEx∼LLMθinit
f(

LLMθn

LLMθinit

).

Note that rm∗(x) = 1
|T∗| (or 1) for all x ∈ T ∗, we can calculate that

∑
x∈T∗(w′

i −

wi)rm∗(x)LLMθ(x) =
w′

i−wi

|T∗| (or w′
i − wi). Thus, the above equation can rewritten as:

w′
i − wi

|T ∗|
+
∑
x∈T∗

wirm∗(x) +
∑
j ̸=i

wirmj(x)

LLMθn+1(x)− λEx∼LLMθinit
f(

LLMθn+1

LLMθinit

)

>
w′

i − wi

|T ∗|
+
∑
x∈T∗

wirm∗(x) +
∑
j ̸=i

wirmj(x)

LLMθn(x)− λEx∼LLMθinit
f(

LLMθn

LLMθinit

).

This contradicted the optimality of θn. Therefore, θn and θn+1 must be identical, which means that
(b) equals to 0.

Then we turn to (a). By the construction, for any x ∈ T ∗ and 0 ≤ j ≤ n − 1, |wj
i rmj

i (x) −
wj

i rmj+1
i (x)| ≤ w̄

n ≤ δ, so that |LLMθj (x) − LLMθj+1(x)| ≤ ϵ
4w̄ holds for all x. Then we can

derive that:

n−1∑
j=0

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))(rmj+1
i (x)− rmj

i (x))

=

n−1∑
j=0

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))
rm∗(x)− rmi(x)

n

≤
n−1∑
j=0

∑
x∈T∗

wi
ϵ

4w̄

|rm∗(x)− rmi(x)|
n

≤
∑
x∈T∗

ϵ

4
|rm∗(x)− rmi(x)|

≤
∑
x∈T∗

ϵ

4
(rm∗(x) + rmi(x))

=
ϵ

2
.

The case is similar to (c). By the construction, for any x ∈ T ∗ and n+ 1 ≤ j ≤ 2n, |wj
i rmj

i (x)−
wj

i rmj+1
i (x)| ≤ w̄

n ≤ δ, so that |LLMθj (x) − LLMθj+1(x)| ≤ ϵ
4w̄ holds for all x. Then we can
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derive that:
2n∑

j=n+1

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))(rmj+1
i (x)− rmj

i (x))

=

2n∑
j=n+1

∑
x∈T∗

wi(LLMθj+1(x)− LLMθj (x))
rm′

i(x)− rm∗(x)

n

≤
2n∑

j=n+1

∑
x∈T∗

wi
ϵ

4w̄

|rm′
i(x)− rm∗(x)|

n

≤
∑
x∈T∗

ϵ

4
|rm′

i(x)− rm∗(x)|

≤
∑
x∈T∗

ϵ

4
(rm′

i(x) + rm∗(x))

=
ϵ

2
.

Combining the results from (a), (b), and (c), we have that under this construction,
k∑

j=0

l(tji , t
j+1
i ) +

k∑
j=0

l(tj+1
i , tji ) ≤

ϵ

2
+
ϵ

2
= ϵ.

By the arbitrariness of ϵ > 0, this is suffice to demonstrate that V (ti, t
′
i) + V (ti, t

′
i) ≤ 0.

Therefore, it is proven that
V (ti, t

′
i) + V (ti, t

′
i) = 0.

which means that V (ti, t
′
i) = −V (t′i, ti). By Lemma C.1, this is a sufficient condition for the

payment equivalence of ψ.

Proposition C.2. The assumption in Theorem 3.5 holds for SW-Max training rules with reg-
ularizations KL-divergence, fKL(p(x)/q(x)) = p(x)/q(x) log p(x) /q(x), and L2 distance,
f2(p(x)/q(x)) = (p(x)/q(x)− 1)2.

Proof. (1) For fKL(p(x)/q(x)) = p(x)/q(x) log p(x) /q(x) (KL-divergence), since T ∗ is a finite
set, we can rewrite the training rule ψ as an optimization problem as follows:

ψ(−→rm, w⃗, θinit) = argmax
θ∈Θ

∑
x∈T∗

(
LLMθ(x)

n∑
i=1

wirmi(x)− λLLMθ(x) log
LLMθ(x)

LLMθinit(x)

)
s.t.

∑
x∈T∗

LLMθ(x) = 1

LLMθ(x) ≥ 0 ∀x ∈ T ∗.

Since we have assumed that the optimal point is unique, and the optimal model LLMθ satisfies that
LLMθ(x) > 0, for all x ∈ T ∗. The necessary condition for an optimal θ is that there exists µ ∈ R,
such that

n∑
i=1

wirmi(x)− λ log
LLMθ(x)

LLMθinit(x)
− λ = µ ∀x ∈ T ∗.

Similarly, for the input (−→rm′, w⃗′), there exists µ′ ∈ R, such that the optimal θ′ satisfies
n∑

i=1

w′
irm

′
i(x)− λ log

LLMθ′(x)

LLMθinit(x)
− λ = µ′ ∀x ∈ T ∗.

For convenience, we define ∆(x) =
∑n

i=1 w
′
irm

′
i(x) −

∑n
i=1 wirmi(x). Then the relationship

between LLMθ(x) and LLMθ′(x) is given by

LLMθ′(x) = LLMθ(x)e
1
λ (∆(x)+µ−µ′).
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Note that we also have the condition∑
x∈T∗

LLMθ′(x) =
∑
x∈T∗

LLMθ(x)e
1
λ (∆(x)+µ−µ′) = 1.

Since
∑

x∈T∗ LLMθ(x)e
1
λ (∆(x)+µ−µ′) = e

1
λ (µ−µ′)

∑
x∈T∗ LLMθ(x)e

1
λ∆(x), we can infer that

1 = e
1
λ (µ−µ′)

∑
x∈T∗

LLMθ(x)e
1
λ∆(x) ≤ e

1
λ (µ−µ′) max

x∈T∗
e

1
λ∆(x),

1 = e
1
λ (µ−µ′)

∑
x∈T∗

LLMθ(x)e
1
λ∆(x) ≥ e

1
λ (µ−µ′) min

x∈T∗
e

1
λ∆(x).

This is equivalent to

min
x∈T∗

∆(x) ≤ µ′ − µ ≤ max
x∈T∗

∆(x).

Thus, the difference for LLMθ(x) and LLMθ′(x) can be bounded by

|LLMθ′(x)− LLMθ(x)| =
∣∣∣1− e

1
λ (∆(x)+µ−µ′)

∣∣∣LLMθ(x)

≤
∣∣∣1− e

1
λ (∆(x)+µ−µ′)

∣∣∣
≤ max{max

x∈T∗
e

2∆(x)
λ − 1, max

x∈T∗
1− e

2∆(x)
λ }.

For any δ > 0, when we set maxx∈T∗ |∆(x)| ≤ min{λ
2 log 1

1−δ ,
λ
2 log(1 + δ)}, we have

|LLMθ′(x)− LLMθ(x)| ≤ max{max
x∈T∗

e
2∆(x)

λ − 1, max
x∈T∗

1− e
2∆(x)

λ } ≤ δ.

(2) For f2(p(x)/q(x)) = (p(x)/q(x)− 1)2 (L2 distance), since T ∗ is a finite set, we can rewrite the
training rule ψ as an optimization problem as follows:

ψ(−→rm, w⃗, θinit) = argmax
θ∈Θ

∑
x∈T∗

(
LLMθ(x)

n∑
i=1

wirmi(x)− λ
(LLMθ(x)− LLMθinit(x))

2

LLMθinit(x)

)
s.t.

∑
x∈T∗

LLMθ(x) = 1

LLMθ(x) ≥ 0 ∀x ∈ T ∗.

Since we have assumed that the optimal point is unique, and the optimal model LLMθ satisfies that
LLMθ(x) > 0, for all x ∈ T ∗. The necessary condition for an optimal θ is that there exists µ ∈ R,
such that

n∑
i=1

wirmi(x)− 2λ
LLMθ(x)− LLMθinit(x)

LLMθinit(x)
= µ ∀x ∈ T ∗.

Similarly, for the input (−→rm′, w⃗′), there exists µ′ ∈ R, such that the optimal θ′ satisfies
n∑

i=1

w′
irm

′
i(x)− 2λ

LLMθ′(x)− LLMθinit(x)

LLMθinit(x)
= µ′ ∀x ∈ T ∗.

For convenience, we define ∆(x) =
∑n

i=1 w
′
irm

′
i(x)−

∑n
i=1 wirmi(x) Then the relationship between

LLMθ(x) and LLMθ′(x) is given by

LLMθ′(x) = LLMθ(x) +
LLMθinit(x)

2λ
(∆(x) + µ− µ′).

Note that we also have the condition∑
x∈T∗

LLMθ′(x) =
∑
x∈T∗

LLMθ(x) +
LLMθinit(x)

2λ
(∆(x) + µ− µ′) = 1.
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Since
∑

x∈T∗ LLMθ(x) = 1, we can infer that∑
x∈T∗

LLMθinit(x)

2λ
(∆(x) + µ− µ′) = 0.

This is equivalent to

µ′ − µ =
∑
x∈T∗

LLMθinit(x)∆(x).

Thus, the difference for LLMθ(x) and LLMθ′(x) can be bounded by

|LLMθ′(x)− LLMθ(x)| =
∣∣∣∣LLMθinit(x)

2λ
(∆(x) + µ− µ′)

∣∣∣∣ ≤ 1

λ
max
x∈T∗

|∆(x)|

For any δ > 0, when we set maxx∈T∗ |∆(x)| ≤ λδ, we have

|LLMθ′(x)− LLMθ(x)| ≤
1

λ
max
x∈T∗

|∆(x)| ≤ δ.

Corollary 3.6. Under the assumption in Theorem 3.5, for each training rule ψ ∈ ΨSW , the revenue-
maximizing payment rule p∗ under a distribution F whose support is R×W that implements ψ in
both DSIC and IR is given by

p∗i (
−→rm, w⃗, θinit) = pAFF

i (−→rm, w⃗, θinit) + inf
rm′

i∈R,w′
i∈W

ui((rm′
i,
−→rm−i), (w

′
i, w⃗−i);ψ, p

AFF , rm′
i, w

′
i).

Proof. Given the payment equivalence of ψ and we know that pAFF satisfies DSIC, we can formulate
the problem of finding the revenue-maximizing DSIC and IR payment rule as a programming problem.
Because of the symmetricity, we only consider the payment for agent i here.

max
hi

E(−→rm,w⃗)∼F

[
pAFF
i (−→rm, w⃗, θinit) + hi(

−→rm−i, w⃗−i, θinit)
]

s.t. pAFF
i (−→rm, w⃗, θinit) + hi(

−→rm−i, w⃗−i, θinit) ≤ wivi(ψ(
−→rm, w⃗, θinit); rmi) ∀rmi ∈ R, wi ∈ W.

The solution of this programming can be trivially given by,

hi(
−→rm−i, w⃗−i, θinit) = inf

rm′
i∈R,w′

i∈W
w′

ivi(ψ((rm
′
i,
−→rm−i), θinit); rm′

i)− pAFF
i ((rm′

i,
−→rm−i), (w

′
i, w⃗−i); θinit)

=: inf
rm′

i∈R,wi∈W
ui((rm′

i,
−→rm−i), (w

′
i, w⃗−i);ψ, p

AFF , rm′
i, w

′
i).

Therefore, the revenue-maximizing payment is

pi((rmi,
−→rm−i), (wi, w⃗−i), θinit) =p

AFF
i ((rm′

i,
−→rm−i), (w

′
i, w⃗−i); θinit)

+ inf
rm′

i∈R,w′
i∈W

ui((rm′
i,
−→rm−i), (w

′
i, w⃗−i);ψ, p

AFF , rm′
i, w

′
i).

Lemma C.3. For any rm, rm′, if maxx∈T∗ |rm(x)− rm′(x)| = ϵ, then for any model θ, we have

|v(θ; rm)− v(θ; rm′)| ≤ ϵ

Proof. We can derive that

|v(θ; rm)− v(θ; rm′)| = |
∑
x∈T∗

LLMθ(x)(rm(x)− rm′(x))| ≤
∑
x∈T∗

LLMθ(x)|rm(x)− rm′(x))|

≤
∑
x∈T∗

LLMθ(x)ϵ = ϵ.
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Lemma C.4. Under the condition in Theorem 3.7, when the training rule ψ ∈ ΨSW , the loss in
social welfare is bounded by

ASW (−→rm, w⃗, ψ(
−→
r̂m, w⃗, θinit); θinit) ≥ ASW (−→rm, w⃗, ψ(−→rm, w⃗, θinit); θinit)− 2ϵ

n∑
i=1

wi.

Proof. Let θ̂ = ψ(
−→
r̂m, w⃗, θinit) and θ = ψ(−→rm, w⃗, θinit).

ASW (−→rm, w⃗, θ̂; θinit) =

n∑
i=1

wivi(θ̂; rmi)− λEx∼LLMθinit
f(

LLMθ̂(x)

LLMθinit(x)
)

(1)

≥
n∑

i=1

wi

(
vi(θ̂; r̂mi)− ϵ

)
− λEx∼LLMθinit

f(
LLMθ̂(x)

LLMθinit(x)
)

= ASW (
−→
r̂m, w⃗, θ̂; θinit)−

n∑
i=1

wiϵ

(2)

≥ ASW (
−→
r̂m, w⃗, θ; θinit)−

n∑
i=1

wiϵ

=

n∑
i=1

wivi(θ; r̂mi)− λEx∼LLMθinit
f(

LLMθ(x)

LLMθinit(x)
)−

n∑
i=1

wiϵ

(3)

≥
n∑

i=1

wi (vi(θ; rmi)− ϵ)− λEx∼LLMθinit
f(

LLMθ(x)

LLMθinit(x)
)−

n∑
i=1

wiϵ

= ASW (−→rm, w⃗, θ; θinit)− 2

n∑
i=1

wiϵ.

(1) and (3) can be directly induced by Lemma C.3, and (2) holds by the definition of θ̂.

θ̂ = ψ(
−→
r̂m, w⃗, θinit) = argmax

θ∈Θ
ASW (

−→
r̂m, w⃗, θ; θinit).

Theorem 3.7. In the approximate valuation model, assuming maxx∈T∗,r̂mi∼Fi(·|rmi) |r̂mi(x) −
rmi(x)| ≤ ϵ for all i ∈ [n], when w⃗ is truthfully reported, the mechanism (ψ, pAFF ) that ψ ∈ ΨSW

is maxi∈[n] 2wiϵ-DSIC.

Proof. Recall that the calculation of payment in pAFF is

pAFF
i (−→rm, w⃗, θinit) = ASW−i(

−→rm, w⃗, ψ(−→rm−i, w⃗−i, θinit); θinit)

−ASW−i(
−→rm, w⃗, ψ(−→rm, w⃗, θinit); θinit).

Let w⃗ = (wi, w⃗−i), the utility function can be written as:

ui((rm′
i,
−→rm−i), w⃗;ψ, p, rmi, wi) = wivi(θ; rmi)− pAFF

i ((rm′
i,
−→rm−i), w⃗, θinit)

= wivi(θ; rmi)−ASW−i(
−→rm, w⃗, θ−i; θinit) +ASW−i(

−→rm, w⃗, θ; θinit)

= ASW (−→rm, w⃗, θ; θinit)−ASW−i(
−→rm, w⃗, θ−i; θinit),

where we define θ = ψ((rm′
i,
−→rm−i), w⃗, θinit), and θ−i = ψ(−→rm−i, w⃗−i, θinit). Note that the term

ASW−i(
−→rm, w⃗, θ−i; θinit) is not influenced by the change of rmi or wi.
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Therefore, we can derive that:

Ui((rmi,
−→rm−i), w⃗;ψ, p, rmi, wi) +ASW−i(

−→rm, w⃗, θ−i; θinit)

=Er̂mi∼Fi(·|rmi)

[
ui((r̂mi,

−→rm−i), w⃗;ψ, p, rmi, wi) +ASW−i(
−→rm, w⃗, θ−i; θinit)

]
=Er̂mi∼Fi(·|rmi)

[
ASW (−→rm, w⃗, θ̂; θinit)

]
=Er̂mi∼Fi(·|rmi)

wivi(θ̂; rmi) +
∑
j ̸=i

wjvj(θ̂; rmj)− λEx∼LLMθinit
f(

LLMθ̂(x)

LLMθinit(x)
)


(1)

≥Er̂mi∼Fi(·|rmi)

wivi(θ̂; r̂mi) +
∑
j ̸=i

wjvj(θ̂; rmj)− λEx∼LLMθinit
f(

LLMθ̂(x)

LLMθinit(x)
)

− wiϵ

(2)

≥Er̂mi∼Fi(·|rmi)

wivi(θ; r̂mi) +
∑
j ̸=i

wjvj(θ; rmj)− λEx∼LLMθinit
f(

LLMθ(x)

LLMθinit(x)
)

− wiϵ

(3)

≥Er̂mi∼Fi(·|rmi)

wivi(θ; rmi) +
∑
j ̸=i

wjvj(θ; rmj)−−λEx∼LLMθinit
f(

LLMθ(x)

LLMθinit(x)
)

− 2wiϵ

(4)
=Er̂mi∼Fi(rm′

i)

wivi(θ; rmi) +
∑
j ̸=i

wjvj(θ; rmj)− λEx∼LLMθinit
f(

LLMθ(x)

LLMθinit(x)
)

− 2wiϵ

(5)

≥Er̂mi∼Fi(rm′
i)

wivi(θ̂; rmi) +
∑
j ̸=i

wjvj(θ̂; rmj)− λEx∼LLMθinit
f(

LLMθ̂(x)

LLMθinit(x)
)

− 2wiϵ

=Er̂mi∼Fi(rm′
i)

[
ASW (−→rm, w⃗, θ̂; θinit)

]
− 2wiϵ

=Er̂mi∼Fi(rm′
i)

[
ui((r̂mi,

−→rm−i), w⃗;ψ, p, rmi, wi) +ASW−i(
−→rm, w⃗, θ−i; θinit)

]
− 2wiϵ

=Ui((rm′
i,
−→rm−i), w⃗;ψ, p, rmi, wi) +ASW−i(

−→rm, w⃗, θ−i; θinit)− 2wiϵ.

All the θ̂ in the above inequalities refers to the optimal parameter for input (r̂mi,
−→rm−i), w⃗, θinit,

i.e. θ̂ = ψ((r̂mi,
−→rm−i), w⃗, θinit). Specifically, (1) and (3) come from the bounded

distance between rmi and r̂mi (Lemma C.3). (2) and (5) hold by the definitions:
θ̂ = ψ((r̂mi,

−→rm−i), w⃗, θinit) = argmaxθ′∈ΘASW ((r̂mi,
−→rm−i), w⃗, θ

′; θinit) and θ =
ψ((rmi,

−→rm−i), w⃗, θinit) = argmaxθ′∈ΘASW ((rmi,
−→rm−i), w⃗, θ

′; θinit). And (4) holds since the
inner term is irrelevant to r̂mi.

Therefore, we get

Ui((rmi,
−→rm−i);ψ, p, rmi) ≥ Ui((rm′

i,
−→rm−i);ψ, p, rmi)− 2wiϵ.
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