
QURE: AI-Assisted and Automatically Verified UDF Inlining
(Extended Version)
TARIQUE SIDDIQUI,Microsoft Research, USA

ARND CHRISTIAN KÖNIG,Microsoft Research, USA

JIASHEN CAO, Georgia Tech, USA*

CONG YAN, Snowflake, USA*

SHUVENDU K. LAHIRI,Microsoft Research, USA

User-defined functions (UDFs) extend the capabilities of SQL by improving code reusability and encapsulat-

ing complex logic, but can hinder the performance due to optimization and execution inefficiencies. Prior

approaches attempt to address this by rewriting UDFs into native SQL, which is then inlined into the SQL

queries that invoke them. However, these approaches are either limited to simple pattern matching or require

the synthesis of complex verification conditions from procedural code, a process that is brittle and difficult to

automate. This limits coverage and makes the translation approaches less extensible to previously unseen

procedural constructs. In this work, we present QURE, a framework that (1) leverages large language models

(LLMs) to translate UDFs to native SQL, and (2) introduces a novel formal verification method to establish

equivalence between the UDF and its translation. QURE uses the semantics of SQL operators to automate the

derivation of verification conditions, in turn resulting in broad coverage and high extensibility. We model a

large set of imperative constructs, particularly those common in Python and Pandas UDFs, in an intermedi-

ate verification language, allowing for the verification of their SQL translation. In our empirical evaluation

of Python and Pandas UDFs, equivalence is successfully verified for 88% of UDF-SQL pairs (the rest lack

semantically-equivalent SQLs) and LLMs correctly translate 84% of the UDFs. Executing the translated UDFs

achieves median performance improvements of 23× on single-node clusters and 12× on 12-node clusters

compared to the original UDFs, while also significantly reducing out-of-memory errors.

CCS Concepts: • Information systems→ Query operators; Query optimization.

Additional Key Words and Phrases: UDF, query rewriting, query optimization, formal verification, LLMs.

ACM Reference Format:
Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri. 2025. QURE: AI-

Assisted andAutomatically Verified UDF Inlining (Extended Version). 3, 1 (SIGMOD), Article 66 (February 2025),

38 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Database systems (e.g., PostgreSQL, SQL Server, Spark) offer procedural extensions such as user-

defined functions (UDFs) with support for various programming languages (e.g., Python, T-SQL,

C#) to broaden the scope of declarative SQL. These extensions improve modularity, reusability, and

* Work done while at Microsoft.

Authors’ Contact Information: Tarique Siddiqui, Microsoft Research, USA, tasidd@microsoft.com; Arnd Christian König,

Microsoft Research, USA, chrisko@microsoft.com; Jiashen Cao, Georgia Tech, USA
*
, jiashenc@gatech.edu; Cong Yan,

Snowflake, USA
*
, congyan.me@gmail.com; Shuvendu K. Lahiri, Microsoft Research, USA, shuvendu@microsoft.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM XXXX-XXXX/2025/2-ART66

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

HTTPS://ORCID.ORG/0009-0002-0866-7275
HTTPS://ORCID.ORG/ 0009-0003-2460-5776
HTTPS://ORCID.ORG/0000-0002-0079-2146
HTTPS://ORCID.ORG/0009-0001-3596-4083
HTTPS://ORCID.ORG/0000-0002-4446-4777
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0009-0002-0866-7275
https://orcid.org/ 0009-0003-2460-5776
https://orcid.org/0000-0002-0079-2146
https://orcid.org/0009-0001-3596-4083
https://orcid.org/0000-0002-4446-4777
https://doi.org/10.1145/nnnnnnn.nnnnnnn

66:2 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

Table 1. A while loop and its loop invariants. Analyzing the procedural code to automatically synthesize these
invariants is challenging and error-prone.

// An example while loop doing filtering (extracted from a real UDF)
output_index := 0, loop_index := 0;
while (loop_index < key_list_len) {

c := key_list[loop_index];
if (c == 'A'){

filteredlist[output_index] := c;
output_index := output_index + 1;

}
loop_index := (loop_index + 1);

}
// Loop invariants for the above loop
(1) Valid range of loop_index: 0 ≤ loop_index ≤ key_list_len.

(2) Valid range of output_index: 0 ≤ output_index ≤ loop_index.

(3) Every element in filteredlist up to output_index is "A" and exists in key_list before loop_index:

∀𝑙 ∈ Z, (0 ≤ 𝑙 < output_index) =⇒ (filteredlist[𝑙] = "A" ∧ ∃𝑘 ∈ Z, (0 ≤ 𝑘 < loop_index) ∧ (key_list[𝑘] = filteredlist[𝑙]))

(4) If an element of the key_list is "A" and is located before loop_index, then it must also appear in the filteredlist.

∀𝑘 ∈ Z, ((0 ≤ 𝑘 < loop_index) ∧ (key_list[𝑘] = "A")) =⇒ (∃𝑙 ∈ Z, (0 ≤ 𝑙 < output_index) ∧ (key_list[𝑘] = filteredlist[𝑙]))

(5) The count of "A" elements in key_list up to index loop_index must equal the size of filteredlist:

output_index =
∑loop_index−1

𝑘=0
[key_list[𝑘] = "A"] where [cond] is 1 if the cond is true, and 0 otherwise.

provide easier specification of complex logic. However, UDFs are known to have performance limi-

tations. For one, it is challenging to infer UDF properties, such as output cardinality and execution

cost during query optimization [26]. UDFs can be also slow to execute due to computational and

data transfer overheads, particularly when UDF is written in a language different from the SQL

dialect supported by the database.

Limitations of the state of the art. To address these issues, considerable research has been done

on the translation of UDF into SQL. A large body of work, e.g., [24, 25, 31, 33–35, 50, 51], aims to

directly translate procedural constructs to SQL expressions via pattern matching and rule-based

transformations. Such techniques have low overhead, but due to the complex syntax and semantics

of procedural constructs (e.g., see the while loop in Table 1), these techniques may struggle to

translate them to corresponding built-in SQL operations or functions; e.g., Froid [51] limits the

translation to a set of simple filter and projection expressions. Some techniques [25, 31, 35] can

translate iterative constructs into SQL expressions using recursive CTEs or customized aggregates;

however, avoiding the use of these constructs (where possible) typically results in better performance

(which we demonstrate experimentally in Section 7.3).

In addition, programming language techniques [17, 61, 62] with relatively broader coverage have

been developed that first summarize the semantics of imperative code via Hoare triples [36] and then
check their correctness, resulting in broader coverage of language constructs. Expressions in Hoare

triples are easier to then translate to equivalent SQL than lower-level procedural constructs. As we

discuss in more detail in Section 2.2, a Hoare triple {𝐴} 𝑃 {𝐵} asserts that a program 𝑃 starting with

a state satisfying predicate 𝐴 (the pre-condition) results in a state satisfying predicate 𝐵 (the post-
condition) on termination. If 𝑃 contains loops, the above techniques also synthesize loop invariants,
which are conditions that must hold for any iteration of the loop(s). The correctness of these

verification conditions (e.g., post-conditions, invariants) in Hoare-triples is verified using formal

verification tools that leverage SMT solvers [10] such as Z3 [14]. Once verified, post-conditions are

translated via rules to a SQL query that is equivalent to the original code.

However, the automatic synthesis of verification conditions from procedural code for even seem-

ingly straightforward operations (e.g., row-wise transformations, filters, and aggregation) neces-

sitates complex analysis that can be error prone, fragile, and hard to automate [15, 16, 27]. For

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:3

instance, Table 1 depicts the code for a while loop used in a real UDF that corresponds to a filter

operation in SQL, along with a list of necessary invariants. Inferring these invariants, especially in

(3) and (4), from the loop’s code itself can be challenging.

Another challenge in both rule-based and programming language-based techniques is modeling

rich semantic languages like Python (which is the focus of this work). Python UDFs often involve

diverse procedural constructs such as lists, dictionaries, various loops, DataFrames, and external

library function calls whose source code may be unavailable or highly complex. Additionally, it is

nearly impossible to anticipate all constructs (in both UDF and SQL) in advance, so the framework

must be easily extensible to accommodate new constructs without significant rewrites.

End to end AI-assisted framework for UDF inlining. In this work, we develop QURE (“QUery
REwriting”), a LLM-driven framework that performs automatic inlining of translated UDFs within

SQL queries. Our focus is on translating Python and Pandas [6] UDFs in Apache Spark into equivalent
SparkSQL expressions. Before we describe how QURE addresses the above challenges, we give a

brief overview of its end-to-end functionality.

QURE takes a UDF and a SQL query (the “parent query”) using the UDF as inputs. Initially, an
LLM, such as GPT-4o, translates the UDF into SQL, referred to as UDF SQL. We have developed

few-shot prompting techniques tailored to different categories of UDFs (discussed in Section 2.1)

and use context from the parent query and database schema for translation. After translation, the

system verifies the equivalence of the UDF and the SQL translation, using a novel verification

approach that uses Hoare-triples that leverages the semantics of SQL to address the challenges

of synthesizing verification conditions as we discuss shortly. Upon successful verification, QURE

inlines the UDF SQL with the parent query, creating a final unified SQL query for execution. If the

verification fails, QURE preserves the original UDF, thereby ensuring the correctness of the query’s

results. We now discuss how we address the aforementioned challenges.

LLMs allow for broader coverage of UDF to SQL Translation. Trained on a large corpus of procedural

and declarative code, LLMs excel in code comprehension, synthesis, and translation [45, 46, 54].

Our evaluation (Section 7) shows that LLMs can translate a diverse range of procedural constructs

(e.g., lists, dictionaries, loops, and DataFrames) into equivalent SQL expressions compared to prior

pattern matching-based techniques, e.g., [51]. Developing a comprehensive set of rules to cover all

procedural code patterns for SQL expressions is possible but challenging, as these rules can be brittle,

hard to update, and difficult to compose for complex SQL expressions. In contrast, LLMs continue

to improve (e.g., from GPT-3.5 to GPT-4o) for such translation tasks. However, the challenge lies in

verifying the equivalence between the UDF and the inferred SQL.

Leveraging SQL to automate synthesis of verification conditions. The primary contribution of our work

lies in automatically synthesizing the verification conditions required for equivalence verification

from the logical query plan of the inferred SQL query. Our observation is that, given a candidate SQL

query (which is inferred by LLM in QURE but can be obtained through alternative sources as well),

we can analyze the SQL (instead of the procedural code in the UDF) to infer verification conditions.

Specifically, we compile the SQL query into a logical plan [3] which is represented as an acyclic

graph of (logical) operators (and functions). Since SQL operations in databases have well-defined

semantics, the verification conditions (capturing the relationships between inputs and ouputs) of

SQL operators can be preciselymodeled in advance (offline), and can be functionally composed similar

to operators in a logical plan to synthesize post-conditions and invariants (discussed in detail in

Section 4). This process is simpler and less error-prone, requiring lighter-weight syntactic analysis

of the procedural code. To the best of our knowledge, this is the first approach that addresses the

challenges of automatically verifying equivalence between (LLM-generated) SQLs and UDFs, using

a verification approach that leverages the semantics of SQL.

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:4 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

Modeling of imperative code constructs. Verifying Hoare-triples necessitates representing procedural
code in UDFs in a form amenable to reasoning for verification. We do this by modeling a wide

range of common procedural constructs, such as lists, dictionaries, loops, and DataFrames, in the

intermediate verification language Boogie [55]. Boogie’s backend translates this code into logical

formulas for the SMT solver. We also leverage uninterpreted functions [12] (see in Section 2.3) to

abstract the complexity of procedural constructs, such as library functions, characterizing only the

behavior necessary for verification. Additionally, QURE exposes an expressive function repository
where frequently occurring functions in UDFs and their SQL equivalents (along with necessary

semantics) can be easily registered as uninterpreted functions to facilitate verification.

Extensibility. QURE is extensible in two ways. First, the verification conditions only need to be

specified at the level of SQL operators or functions as discussed above. New operators or functions

can be supported by adding their corresponding (parameterized) verification conditions without

requiring to alter existing operations or the verification approach. Second, the function repository

provides a concise representation to add new functions without affecting the rest of QURE.

Summary of Results. For empirical evaluation, we consider a diverse set of UDFs, targeting

both generic Python as well as variations of Pandas UDFs. We observe that about 84.8% of these

UDFs are correctly translated by LLMs (specifically, GPT-4o). Within this group, QURE verifies

the equivalence of UDFs and their SQL translations in 99% of cases and identifies inaccuracies in

LLM translations with 100% accuracy. When LLM errors are fixed, QURE covers about 88% of the

UDFs, and the rest of the UDFs have no equivalent SQLs. While it is difficult to directly compare

with prior approaches (since they target different systems with different UDF characteristics), our

comparison with related work (see Section 8) shows that (1) QURE provides a wider coverage of

procedural constructs common in Python and Pandas UDFs (see Section 5), (2) can cover more

commonly occurring loop-structures for SQL operations including filters, aggregations, joins and

their combinations, and (3) can be easily extended to previously unseen functions or operators.

Additionally, UDF inling results in significant performance improvements, including a median

improvement of close to 23.7× over single-node configurations and 12.5× in 12-node cluster setups,

with each node equipped with 64 GB RAM and 4 CPU cores. Our approach also significantly

reduces the frequency of out-of-memory errors often seen for Spark queries containing UDFs. The

translation overheads due to LLM inference and formal verification are between 4 to 6 seconds,

and for our benchmark queries, our results show that QURE is useful for long-running analytic

queries in big data systems such as Spark, for which runtime improvements from translations can

be on the order of minutes. QURE is also beneficial in scenarios where queries involving UDFs are

tuned offline, e.g., via a co-pilot, or for recurring queries.

2 Background
We first characterize different types of UDFs supported by Apache Spark and then provide a

background on formal verification techniques used in QURE.

2.1 Characterizing UDFs in Spark
Our focus is on four common types of UDFs: Python Scalar, Pandas Scalar, Pandas Aggregation and

Pandas Map UDFs, which we briefly illustrate in the following. All examples shown are real UDFs,

collected using the methodology described in Section 7.

(1) Python Scalar UDFs. Python Scalar UDFs are often used for row-wise transformations within

SQL queries, maintaining a one-to-one relationship between input and output. Translation of Scalar

UDFs can be challenging due to their use of features not directly supported by SQL (e.g., string

manipulation, dictionary look-ups, function calls to Python libraries, etc.). Example:

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:5

1 SELECT speed(l_shipmode) FROM lineitem

2 def speed(key):
3 key_list = key.split(" ")
4 if key_list [0] == "REG":
5 return "regular"
6 elif key_list [0] in ["AIR", "MAIL"]:
7 return "fast"
8 else:
9 return "slow"

(2) Pandas Scalar UDFs. Pandas Scalar UDFs process entire columns as inputs, enabling more efficient

analysis. Example:

1 SELECT normalize(l_quantity) FROM lineitem

2 def normalize(dfs):
3 return (dfs - dfs.mean()) / dfs.std()

(3) Pandas Aggregation UDFs. Pandas Aggregation UDFs are specialized for complex data summa-

rization tasks, accepting multiple inputs to produce a singular, aggregated output. Use-cases include

group-wise computations. Example:

1 SELECT range_diff(l_quantity) FROM lineitem
2 GROUP BY year(l_shipdate)

3 def range_diff(dfs):
4 return dfs.max() - dfs.min()

(4) Pandas Map UDFs. Pandas Map UDFs take an entire table as input and output a table. Here, the

required table manipulations are typically realized using Pandas DataFrames. Example:

1 SELECT minus_10(l_quantity) FROM lineitem
2 GROUP BY year(l_shipdate)

3 def minus_10(df):
4 l_q_col = df["l_quantity"]
5 return df.assign(l_q=l_q_col - 10)

Summary of observed UDF constructs: Abstracting from examples of the four types of Spark

UDFs we collected (see Section 7), we found them to commonly include row-wise data transforma-

tions, aggregations, string manipulation, regular expressions, dictionaries, and logical conditions.

Statistical analyses and mathematical computations are also common. Pandas UDFs frequently in-

volve DataFrame operations as well as Pandas [6] and NumPy [4] function calls. Complex or nested

loops are less frequent, but one or more non-nested loops were common, usually for row-wise

transformations, filtering, and aggregation. Note that, in contrast to systems like Microsoft SQL

Server and PostgreSQL, which allow the integration of SQL with procedural code within the UDF,

Spark UDFs are predominantly procedural, and instead use DataFrame [13] functions for various

SQL operations. Translation of UDFs containing SQL statements is outside the scope of this work.

2.2 Hoare-Style Verification
Hoare logic is a formal method for reasoning about program correctness using pre-conditions,

post-conditions, and invariants. Consider a simple program to calculate the sum of the first 𝑛

natural numbers:

1 def sum_natural_numbers(n):
2 sum = 0
3 for i in range(1, n+1):
4 sum += i
5 return sum

• Pre-condition: The state that must be true before a program executes, e.g., 𝑛 ≥ 0.

• Post-condition: The state that must be true after a program executes, assuming the pre-condition

was met, e.g., the return value is the sum of the first 𝑛 natural numbers, sum ==
𝑛 (𝑛+1)

2

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:6 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

• Loop Invariant: A condition that remains true a given program point such as the loop head,

e.g., at the start of each loop iteration 𝑖 , sum ==
𝑖 (𝑖−1)

2
.

The core of Hoare Logic is the Hoare Triple: {𝐴} 𝑃 {𝐵} where 𝐴 is the pre-condition, 𝑃 is the

program code, and 𝐵 is the post-condition. It asserts that if 𝐴 holds before 𝑃 executes, and 𝑃

terminates, then 𝐵 will hold afterwards. For the above program, we formulate the following Hoare

Triple for the loop in lines 3-4: {Loop Invariant: sum ==
𝑖 (𝑖−1)

2
∧ 1 ≤ 𝑖 ≤ 𝑛} sum += i {sum ==

𝑖 (𝑖+1)
2

} and for the program: {𝑛 ≥ 0} sum_natural_numbers(𝑛) {sum ==
𝑛 (𝑛+1)

2
}.

Tools for Verification. Several tools [37, 43, 55] provide frameworks for establishing proofs of

correctness in Hoare logic. In this work, we translate Python programs into Boogie [55], and

express pre-conditions, post-conditions, and invariants using the constructs provided by Boogie’s

language. These are then checked using a SMT solver [10] supported by Boogie. To the best of our

knowledge, previous studies have not explored the translation of Python and SQL code into Boogie.

Translating Python, in particular, presents several challenges, which we will discuss in Section 5.

Additionally, synthesizing post-conditions and invariants is a significant challenge, as Boogie does

not automatically infer these elements.

Query-by-Synthesis and Challenges. Prior work, such as QBS [17], synthesizes post-conditions

and invariants from procedural code, and once verified, translates post-conditions into equivalent

SQL expressions via rules. However, automatically inferring invariants and post-conditions, even

for simple loops, is hard, as illustrated in Table 1, making full automation challenging. As we

discuss shortly, we address this challenge by leveraging SQL inferred by LLMs and analyzing the

SQL-derived plan, simplifying the construction of post-conditions and invariants. The semantics of

SQL operators can be precisely modeled in advance (offline) and incorporated into procedural code

through lightweight analysis (e.g., input and output variables in the code segment representing the

operator), bypassing the need for extracting complex logical assertions from the procedural code.

2.3 Uninterpreted Functions
In formal verification and theorem proving, uninterpreted functions are used to model functions

whose complete implementation details are unknown or irrelevant. Specific properties necessary

for verification can be characterized for these functions via axioms, which the verifier can assume

without detailed implementation knowledge. For example, if we need to verify properties such as

commutativity or idempotence for a function 𝑓 (𝑥), we can assert these by adding axioms while

remaining agnostic about its concrete implementation. Uninterpreted functions (over creating

an unconstrained variable for the output) also ensure that if provided with the same arguments,

the results are identical. QURE leverages uninterpreted functions to handle third-party calls in

user-defined functions for verification as well as to improve extensibility as we discuss subsequently.

3 Overview of QURE
QURE provides a framework for translating UDFs within Spark queries into SQL, using the code

translation capabilities of LLMs, and uses formal verification techniques to ensure that LLM-

generated SQL is semantically equivalent to the original UDF. Figure 1 depicts the end-to-end

workflow of QURE highlighting the key steps.

Figure 2 illustrates the verification workflow for a running example featuring a SQL query

(referred to as the parent query), labeled A , using UDF named ‘filter_string’, labeled B , both

of which are input to QURE. QURE first calls a LLM to translate the UDF into SQL, termed UDF
SQL, (step 1), and then verifies the equivalence between the UDF and SQL (steps 2 to 5). Upon

successful verification, QURE inlines the UDF SQL with the parent query, generating a unified SQL

query (referred to as the final SQL query) (not shown in the figure). If the translation is unsuccessful,

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:7

10

PYTHON /
PANDAS UDF
(Translated to

Boogie)

SparkSQL QUERY
TRANSLATED FROM

UDF

INLINE UDF SQL
WITH PARENT

QUERY

LLM

VERIFICATION

z

SPARK SQL
QUERY WITH
INLINED UDF

PARENT SPARKSQL
QUERY USING UDF

Input

Output

z
Translation module

Extraction of logical
properties to verify

Success
Failure

PARENT SPARKSQL
QUERY USING UDF

Output

Fig. 1. QURE Architecture

we retain the original parent query, ensuring the correctness of the query’s result. We now give an

overview of each step in the QURE workflow.

1 Leveraging LLM for UDFs to SQL Translation. QURE uses LLMs such as GPT-4o to translate
complex UDFs – including Python Scalar UDFs, Pandas Scalar UDFs, Aggregation UDFs, and Map

UDFs – into SparkSQL (see Section 7). For example, the UDF filter_string B is translated

to the LLM(-generated) SQL depicted in C . Using LLMs simplifies the translation process and

expands the coverage of SQL query synthesis from procedural code, a task that has presented

considerable challenges in prior work. The process begins by identifying the UDF type from the

query syntax. We have developed few-shot learning prompt templates (capturing instructions

and examples of UDF to SQL translations) for each UDF type (described in Section 2.1) which are

instantiated with input UDF and relevant metadata from the parent query (e.g., table lineitem,
’key’ mapping to the column ‘shipmode’) prior to translation. We present the prompt templates

for each UDF type in our technical report [9]. Note that while QURE uses an LLM for translation,

any other technique can be used to infer SQL without changing the rest of the steps discussed next.

2 Python UDFs to Boogie Translation. As a necessary step for verifying the equivalence

of Python UDFs and the LLM-translated SQL, QURE encodes UDF code into an intermediate

verification language, Boogie, through a multi-step translation process. Each step involves custom

transformations on the abstract syntax tree (AST) of the Python UDF to translate it into Boogie’s

syntax while preserving semantics (see Section 5). Boogie can represent complex programming

constructs and is suitable for formal verification analysis. Boogie code is subsequently translated

by the Boogie back-end into a form suitable for an SMT [10] theorem prover.

𝑐 ∈ constant := true | false | number_literal | string_literal | list | dictionary

𝑡 ∈ types := bool | int | long | real | str
𝑎𝑡 ∈ arry_types := list[t] | DataFrame | Relation | Column
𝑜𝑝 ∈ operators := && | | | | ∼ | ! | + | - | * | / | mod | ** | « | » | == | != | < | <= | > | >= | in

𝑐𝑒 ∈ const_expr := c | 𝑐𝑒1 𝑜𝑝 𝑐𝑒2 | 𝑜𝑝 𝑐𝑒

𝑒 ∈ expression := c | var | 𝑒1 𝑜𝑝 𝑒2 | 𝑜𝑝 𝑒 | var[𝑐𝑒]

𝑠 ∈ statement := pass | var : 𝑡 | var = 𝑒 | if 𝑐 : 𝑠1 else: 𝑠2 | for 𝑒 : 𝑠 | while 𝑒 : 𝑠 | return var | function(𝑒1,. . . ,𝑒𝑛)
Table 2. An approximate summary of supported Python syntax

To illustrate this process, consider the running example with UDF B in Figure 2. The result

of the translation to Boogie is shown in D , with the results of key transformations highlighted:

(a) Boogie is a statically typed language (unlike Python, which is dynamically typed), so types

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:8 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

LLM Call

z
Py2Boogie

Translation Module

CONCAT_WS

FILTER

SPLIT IN

Logical Plan

Verification of Post-conditions
and Invariants

SQL to Logical
Plan Compilation

Generating Verification
Conditions

Repository of (1) Function Mappings,
(2) Operator/Function Properties,

and (3) Equivalence Rules (axioms)

Loop Summary

result == UCONCAT(“”,UFILTER(USPLIT(shipmode, “ “), [“A”, “I”]))

Invariant: UFILTER_PROPS(key_list, loop_counter, output_list,
 output_list_index, [“A”, “I”], 2)

1

2

3

4

5

Mapping Function Calls to Uninterpreted Functions

Variable Declarations

Generator => WHILE loop

Parent SQL Query

UDF

UDF-SQL (LLM INFERRED)

Post-Condition:

(Loop) Invariants:

Boogie Code

A

B

C

D

E

F

G

H

I

BUILT OFFLINE

Fig. 2. Illustration of the Verification Workflow: The arrows (numbered from 1 to 5) indicate the key steps in
QURE, while the letters (A to I) represent the entities that the steps operate on or produce. The final step that
inlines verified UDF SQL with parent SQL is not depicted. Steps 2, 4, and 5 are the focus of this paper.

of all variables need to be declared, (b) the generator [2] iterating over members of key_list is

translated into a while loop, including the required loop initialization, counter increment and

generator output, and (c) functions in Python like JOIN or SPLIT, that have equivalent functions in

SparkSQL, and thus do not require us to explicitly model their semantics, but can be replaced by

uninterpreted functions such as UCONCAT, USPLIT, that are introduced at the top of the Boogie code.
The mapping between Python functions, the equivalen SparkSQL functions and the uninterpreted

functions representing them in Boogie is stored in a repository (H in Figure 2).

An abbreviated overview of the Python grammar for UDFs supported by QURE is given in Table 2

(note that we do not list functions and constructs introduced via libraries, such as Pandas here).
Translation of SQL to Verification Conditions (3 and 4). One of our primary contributions

is synthesizing post-conditions and invariants directly from SQL rather than procedural code. Given

the inferred SQL, QURE compiles it into a logical query plan [3]. If the SQL is equivalent to the UDF

code, the logical plan, represented as an acyclic graph of logical operations, must accurately capture

the data processing within the UDF. Each operation corresponds to a segment of the UDF code, and

the dependencies between operations must mirror the dependencies between code segments. The

mapping between operators and corresponding code segments is automatically explored during

verification, except for loops for which we add invariants from operators (discussed in Section 4).

For our running example, E depicts a simplified logical plan resulting from the compilation

of the query in C . The bottom-up flow of operations (built-in Spark functions in this case) –

SPLIT, then FILTER (taking as input the output of SPLIT, and a conditional IN expression), and

finally CONCAT_WS (taking as input the output of FILTER and a delimiter string) – capture the

corresponding expressions in the UDF (A), as well as the translated Boogie code (D). Note that

in this example, FILTER denotes built-in Spark SQL function (see [11]), which is order-preserving.

The logical operations and functions in SQL have well-defined semantics (referred to in QURE as

properties) and can be precisely modeled offline. These are modeled using uninterpreted functions

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:9

(e.g., UCONCAT for CONCAT_WS, USPLIT for SPLIT, UFILTER for FILTER) and stored in a

repository H . QURE traverses the logical plan and generates the post-conditions as a composition

(following the same flow defined in the logical plan) of the uninterpreted functions (see F).

For many functions, such as CONCAT_WS and SPLIT, which are also expressed as functions in

the original UDF, detailed modeling of properties is not required. Corresponding uninterpreted

functions are generated during the Python-to-Boogie translation and can be matched via name

and parameters. However, for each operator with potential procedural implementations inside

the UDFs (e.g., while loop capturing the FILTER in D), we maintain properties that capture the

semantics of the operation (stored in H) to be verified. As detailed in Section 4.1, the properties are

encapsulated within another uninterpreted function (e.g., UFILTER_PROPS for UFILTER). Through

simple syntactic analysis of the Boogie code used in verification (e.g., the WHILE loop in D), we

can instantiate (e.g., identify parameter values of) the property functions and use them as invariants

(G) for verification. Note that due to space constraints, Figure 1 does not depict the properties in

UFILTER_PROPS, which we list in Section 4.1. Overall, by pre-creating properties for operations

and instantiating them via simple syntactic analysis of the procedural code, we reduce the challenge

of inferring them directly from procedural code. We discuss in more detail in Section 4.

Verification of Equivalence and Final SQL Generation. QURE builds complete Hoare triples

using the post-conditions and invariants sythesized from SQL, and then invokes Boogie’s inbuilt

verifier to confirm their correctness. Upon successful verification, QURE integrates the LLM SQL

with the parent query to generate a single SQL query. This is achieved by adding the UDF SQL as

Common Table Expressions (CTEs) using the WITH clause. CTEs function as temporary result sets

that are named and can be easily referenced. Note that these CTEs are usually non-recursive and

are generally more performant than recursive CTEs.

4 Verification of Equivalence
We consider a user-defined function𝑈 , which accepts parameters 𝑃𝑢 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) and returns

a result 𝑅𝑢 = (𝑟𝑢1 , 𝑟𝑢2 , . . . , 𝑟𝑢𝑚), where each 𝑝𝑖 and 𝑟𝑢𝑖 are lists of values (scalar values are modeled

as singleton lists). Let 𝑝1, . . . , 𝑝𝑛 correspond to columns 𝑐1, . . . , 𝑐𝑛 in an input table 𝑇 . 𝑇 itself may

result from a subquery over one or more tables, where each 𝑐𝑖 may be derived from columns in these

tables or correspsonds a constant. In the context of scalar UDFs, 𝑇 can be viewed as a single-tuple

table. Analogous to the notion of tuples in database tables, we use tuples here to denote the list of

values across lists in 𝑃𝑢 or 𝑅𝑢 at the same offset.

A column in a table is modeled as a list, and tables and DataFrames are modeled as lists of lists.

The types of parameters passed to UDF can be inferred from the parent query and the database

schema. Additionally, in many cases, we can assign an alias type to a variable denoting a table (e.g.,

type T for Table), and expressions within the UDF that operate on tables/columns can be modeled

functionally, with the table name(s) and column name(s) as parameters. This avoids modeling

columns of the table, that are not used in any expressions within the UDF. Unless explicitly ordered

(via operations/functions within the UDF), we consider a list as unordered (i.e., no defined ordering).

Whenever a list is ordered, we maintain additional metadata to denote the ordering. Since lists are

represented using arrays in Boogie, we use lists and arrays interchangeably in this paper.

Using the LLM, we translate 𝑈 to a SQL query 𝑆 . To aid correct translation, we provide the

mappings between the parameter names in 𝑈 and the column names, as well as the table 𝑇

(unavailable in the UDF), used to provide the corresponding parameter values, as part of the LLM

prompt. Let 𝑅𝑠 = (𝑟𝑠1 , 𝑟𝑠2 , . . . , 𝑟𝑠𝑚) denote the result of 𝑆 , where 𝑟𝑠𝑖 denotes a column (modeled as a

list as mentioned above). We define the semantic equivalence between𝑈 and 𝑆 as follows:

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:10 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

Definition 1 (Semantic Eqivalence). The user-defined function𝑈 returning 𝑅𝑢 is semantically
equivalent to the SQL query 𝑆 returning 𝑅𝑠 if, for any possible table 𝑇 with columns (𝑐1, 𝑐2, 𝑐3, . . . , 𝑐𝑛)
passed as (𝑝1, 𝑝2, 𝑝3, . . . , 𝑝𝑛) to𝑈 , 𝑅𝑢 and 𝑅𝑠 correspond to an identical bag of tuples. Additionally, 𝑅𝑢
and 𝑅𝑠 must have the same ordering of tuples if the result ordering is explicitly specified in𝑈 .

Note that when an UDF takes as input or returns ordered tuples (e.g., DataFrames in a Pandas

UDF), many database systems (e.g., Spark, Microsoft SQL Server) do not guarantee that the ordering

is preserved. In such cases, we consider 𝑅𝑢 as unordered. For ease of exposition, we assume in the

following that 𝑃𝑢 , 𝑅𝑢 , and 𝑅𝑠 , each consist of a single list, unless otherwise needed.

4.1 Leveraging SQL for Synthesizing Post-conditions and Invariants
We use Hoare-style verification to establish semantic equivalence between𝑈 and 𝑆 , requiring syn-

thesis of pre-conditions, post-conditions and invariants. Here, the pre-conditions specify allowable

values for UDF parameters (e.g., multi-tuple parameters cannot be empty) and are easy to infer.

Hence, we focus on synthesizing post-conditions and invariants in this section.

Insight. Our observation is that we can compile 𝑆 into a logical query plan, which is an acyclic

graph of logical operators and functions.
1
Since the semantics of these operators and functions

are well-defined and remain constant regardless of the remainder of the SQL query, we can pre-

define them offline. We refer to these semantics as properties, which are logical assertions that

describe how input tuples are transformed into output tuples, as well as the ordering of those

output tuples (discussed further in Section 4.3). Consequently, each operation is modeled offline as

an uninterpreted function along with its associated properties. The uninterpreted functions for

individual operations are then functionally composed, mirroring the composition of operators in

the logical plan, to derive the post-condition that is used to verify equivalence. When loops are

present in the UDF, we use the properties of the corresponding operators (identified by searching

through the logical plan) as loop invariants. Overall, this method requires much lighter syntactic

analysis of the procedural code in the UDF compared to prior work, as the properties are defined

offline and the function compositions are identified through the logical plan.

Example. Our running example in Figure 2 shows the logical query plan/operators (E) that

the translated query (C) is compiled into. The operations CONCAT_WS, SPLIT and FILTER are

captured via the uninterpreted functions UCONCAT, USPLIT, and UFILTER defined below (note: in

Boogie, [int]string denotes a list of strings using int values as index).

function UCONCAT(delimiter: string , strings: [int]string , len: int): string;
function USPLIT(src: [int]string , delimiter: [int]string , len: int): [int]string;
function UFILTER(srcstr: [int]string ,filters: [int]string , filterslen:int):[int]string;

The post-conditions are defined by composing these uninterpreted functions, replacing the

operators in the logical plan with the corresponding uninterpreted functions by looking them up

in the repository H . In our running example (see F), this yields:

result == UCONCAT("", UFILTER(USPLIT(shipmode , " "), ['A', 'I']));

During the translation from Python to Boogie, Python function invocations (like SPLIT and JOIN)

within the UDF are also matched with USPLIT and UCONCAT (as discussed in detail in Section 5),

ensuring equivalence, provided they share the same function signature. However, for functions

like FILTER, which are implemented through lower-level procedural constructs (e.g., conditionals,

loops), it is necessary to specify their behaviour for verification, via properties. The verifier then
confirms the equivalence between the specified properties of the operator and the corresponding

implementation within the UDF.

1
We use "logical operators" and "functions" interchangeably in the context of SQL.

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:11

Modeling properties of operations. We model an operator taking input 𝐼 via the uninterpreted
function 𝐹 (𝐼). To encapsulate the properties 𝐹 (𝐼) must satisfy, we introduce 𝐹_𝑃𝑅𝑂𝑃𝑆 (𝐼 ,𝑂), re-
turning a boolean indicating if the properties 𝑝𝑜1, 𝑝𝑜2, . . . , 𝑝𝑜𝑛 hold for inputs 𝐼 and outputs 𝑂
(from some domain) as follows:

𝑝𝑜1 (𝐼 ,𝑂) ∧ 𝑝𝑜2 (𝐼 ,𝑂) ∧ . . . ∧ 𝑝𝑜𝑛 (𝐼 ,𝑂) =⇒ 𝐹_𝑃𝑅𝑂𝑃𝑆 (𝐼 ,𝑂)

If the properties of the function hold, then the result of applying the operator is equal to the

function’s output

𝐹_𝑃𝑅𝑂𝑃𝑆 (𝐼 ,𝑂) =⇒ 𝑂 == 𝐹 (𝐼)

These properties functions are also stored in the repository (H in Figure 2), and used as loop

invariants for operators implemented using loops in the UDFs. During verification, the parameters

for the properties function are identified through simple syntactic analysis of the loop (discussed in

the next sub-section). This approach simplifies the process of generating verification conditions

compared to deriving conditions directly from the code of the loop.

In our running example, the properties of FILTER are captured using an uninterpreted function

UFILTER_PROPS:

function UFILTER_PROPS(srcstr: [int]string , srclen: int , result: [int]string , resultlen:
int , filters: [int]string , filterslen: int): bool;

with the properties defined (offline) as follows:

• Property 1 (𝑝𝑜1): 0 ≤ 𝑟𝑒𝑠𝑢𝑙𝑡𝑙𝑒𝑛 ≤ 𝑠𝑟𝑐𝑙𝑒𝑛
• Property 2 (𝑝𝑜2): For every character in 𝑠𝑟𝑐𝑠𝑡𝑟 matching a filter, there exists a corresponding character in the

𝑟𝑒𝑠𝑢𝑙𝑡 :

∀𝑖 ∈ [0, 𝑠𝑟𝑐𝑙𝑒𝑛) : (∃𝑘 ∈ [0, 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠𝑙𝑒𝑛) s.t. 𝑠𝑟𝑐𝑠𝑡𝑟 [𝑖] = 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 [𝑘]) ⇒ (∃ 𝑗 ∈ [0, 𝑟𝑒𝑠𝑢𝑙𝑡𝑙𝑒𝑛) s.t. 𝑟𝑒𝑠𝑢𝑙𝑡 [𝑗] =
𝑠𝑟𝑐𝑠𝑡𝑟 [𝑖])

• Property 3 (𝑝𝑜3): Every 𝑟𝑒𝑠𝑢𝑙𝑡 character comes from the 𝑠𝑟𝑐𝑠𝑡𝑟 :

∀𝑗 ∈ [0, 𝑟𝑒𝑠𝑢𝑙𝑡𝑙𝑒𝑛) : (∃𝑖 ∈ [0, 𝑠𝑟𝑐𝑙𝑒𝑛) : 𝑟𝑒𝑠𝑢𝑙𝑡 [𝑗] = 𝑠𝑟𝑐𝑠𝑡𝑟 [𝑖])
• Property 4 (𝑝𝑜4): The order of characters matching filters is preserved in the 𝑟𝑒𝑠𝑢𝑙𝑡 :

∀𝑖, 𝑗 ∈ [0, 𝑠𝑟𝑐𝑙𝑒𝑛) : 𝑖 < 𝑗 ∧ (∃𝑘, 𝑙 ∈ [0, 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠𝑙𝑒𝑛) : 𝑠𝑟𝑐𝑠𝑡𝑟 [𝑖] = 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 [𝑘] ∧ 𝑠𝑟𝑐𝑠𝑡𝑟 [𝑗] = 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 [𝑙]) ⇒
(∃𝑙1, 𝑙2 ∈ [0, 𝑟𝑒𝑠𝑢𝑙𝑡𝑙𝑒𝑛) : 𝑙1 < 𝑙2 ∧ 𝑟𝑒𝑠𝑢𝑙𝑡 [𝑙1] = 𝑠𝑟𝑐𝑠𝑡𝑟 [𝑖] ∧ 𝑟𝑒𝑠𝑢𝑙𝑡 [𝑙2] = 𝑠𝑟𝑐𝑠𝑡𝑟 [𝑗])

The parameters for UFILTER_PROPS is identified through syntactic analysis of the while loop

(described next) in the UDF (E):

UFILTER_PROPS(key_list , loop_counter , output_list , output_list_index , ['A', 'I'], 2);

4.2 Loop Summaries
QURE performs syntactic analysis to extract loop summaries to instantiate parameters of properties

function. A loop summary 𝐿𝑆 = {𝐼 ,𝑂, 𝐿, 𝐿𝑆inner} for a loop construct is defined via:

• Inputs (I): These are comprised of input arrays {𝐼1, 𝐼2, . . . , 𝐼𝑘 }, their lengths {𝑛1, 𝑛2, . . . , 𝑛𝑘 }, and
their ordering semantics {𝑂𝑟𝐼1 ,𝑂𝑟𝐼2 , . . . ,𝑂𝑟𝐼𝑘 } (specifying ordered or unordered). An input list is

ordered, if a function is applied to it that sorts it before the loop, or elements were appended to it

from another ordered list By default, an input is unordered.

• Loop Iteration (L): These are comprised of an iterator variable 𝑖 , its initial value 𝑖0, the incre-

ment/decrement amount Δ𝑖 , and the termination condition𝑇 (𝑖, 𝑜𝑝, 𝐵) which includes the iterator

variable, comparison operator (𝑜𝑝), and loop bound (𝐵).

• Outputs (O):These are comprised of output arrays {𝑂1,𝑂2, . . . ,𝑂𝑙 }, their lengths {𝑚1,𝑚2, . . . ,𝑚𝑙 },
iterator variables { 𝑗1, . . . , 𝑗𝑙 }, ordering semantics {𝑂𝑟𝑂1

, . . . ,𝑂𝑟𝑂𝑙
}, and indicator variables telling

whether elements are hashed to an array (for recognizing loops involving dynamic dictionar-

ies/hash tables) {ℎ1, ℎ2, . . . , ℎ𝑙 }.

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:12 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

• Inner Loop Summary (𝐿𝑆inner): Optionally, QURE supports one level of nesting to support

operations with nested loops (nested-loop inner-join). A nested loop can be represented similarly

to the outer loop using inputs, loop-iteration, and outputs.

Loop summaries are designed to capture the characteristics of common loop constructs that can

be translated into SQL. When we encounter a loop that does not fit our model of loop summary

(e.g., due to additional or missing variables), we fail the verification and execute the original UDF,

ensuring the soundness of our approach.

Ensuring Loop Termination. Loop termination synthesis requires a ranking function (an expres-

sion over loop variables) that decreases with each iteration and remains non-negative [41]. For our

problem, we handle loops with an iterator variable 𝑖 , a per-iteration increment or decrement Δ𝑖 ,
and a bound 𝐵 on 𝑖 . The ranking function 𝑅 is defined as 𝑅 = 𝐵 − 𝑖 for Δ𝑖 > 0, and 𝑅 = 𝑖 − 𝐵 for

Δ𝑖 < 0. While there can be different ways of using 𝑅 for verifying loop termination, one option is

to add an assertion: 𝑎𝑠𝑠𝑒𝑟𝑡 (𝑅 < 𝑅′) at the end of the loop body (where 𝑅′ is the value of 𝑅 at the

start of the loop) as well as add an invariant 𝑅 ≥ 0.

4.3 Equivalence between Loops and Operators
To establish semantic equivalence between a loop and the corresponding SQL (logical) operator,

the properties (i.e., pre-defined logical assertions) of the operators together must completely define

the mapping from input lists to output lists in the loop, as well as capture the output lists ordering
if these are explicitly ordered in the loop.

It is challenging to establish equivalence between arbitrary loop-structures and a SQL operation.

However, QURE currently can establish equivalence for loop structures mapping to SQL operations

of form: [OP1]OP2 (i.e., sequences that either start with OP1 followed by OP2, or begin directly

with OP2), with OP1 and OP2 being one of the following operations:

OP1→ Filter | Inner-Join
OP2→ Filter | Inner-Join | Row-wise Transformation | Aggregation
Row-wise Transformation→ CASE WHEN | Function Calls

Aggregation→ Table Aggregation | Group-by Aggregation

In short, OP1 can be either a Filter or an Inner-Join, while OP2may include Filter, Inner-Join, Row-

wise Transformations, or Aggregations. The latter encompasses both group-based aggregations as

well as table-aggregations (aggregations over the entire table without any grouping of tuples). The

sequences of OP1 followed by OP2 are modeled as a single (fused) operator in QURE.

QURE supports a fixed set of loop structures, each corresponding to a potential physical operator

implementation for a supported logical operation (e.g., hash-aggregation and stream-aggregation

for group-by aggregation). These structures may also involve compositions of functions, where

each function is registered in the function repository. Using static analysis, QURE ensures that

the loop summary for these structures aligns with the expected summaries (one for each possible

physical implementation) for 𝑂𝑃1 or 𝑂𝑃2. If this alignment is not achieved, verification fails.

We now discuss how we create properties that capture the semantic equivalence between a loop

𝐿 and (logical) operator OP (of the form [OP1] OP2 as defined above). For ease of exposition, we

assume that 𝐿 processes a single input list 𝐼1 and produces an output list 𝑂1, although our analysis

generalizes to multiple lists as inputs or outputs. We define 𝑂𝑃 as semantically equivalent to 𝐿

based on the following criteria:

Input to output transformation. The transformation from input 𝐼1 to output 𝑂1 must capture

the following:

• P1: Totality under Constraints: A tuple 𝑟𝑖 in 𝐼1 is either filtered (e.g., using a filtering constraint

𝐶 captured in 𝑂𝑃) or transformed to another tuple 𝑠 𝑗 in 𝑂1, including the case where multiple

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:13

tuples (𝑟𝑖 , 𝑟𝑘 , ..., 𝑟𝑙) in 𝐼1 are together transformed to a single tuple in 𝑂1 (e.g., in aggregations).

For joins, pairs of tuples from the two tables are considered together.

• P2: Surjectivity: No other tuple exists in𝑂1 that is not the result of a transformation satisfying 𝑃1.

• P3: Cardinality: We verify the handling of duplicate tuples in 𝐼1 as well as the presence or absence

of duplicates tuples in 𝑂1, both depending on the operator’s semantics. While this property is

often implicitly covered under properties P1 and P2, it sometimes requires separate verification.

Ordering consistency. The ordering of tuples in 𝑂1 must be consistent with the ordering of the

output from 𝑂𝑃 :

• P4.1: OP applies explicit ordering on the output, or the output order follows the same order as input:
These are explicitly defined as a property for 𝑂𝑃 and verified over 𝐿.

• P4.2: OP results in output that is unordered (i.e., with no defined ordering): QURE performs static

analysis of the loop to ensure there is no explicit ordering within the loop via a function that

might reorder tuples, and that the output tuples do not retain the input tuples’ order. If either

condition is met or the ordering is ambiguous, 𝐿 and 𝑂𝑃 are deemed semantically inequivalent

(since 𝑂𝑃 does not guarantee the ordering in the loop).

Note that when properties are used as loop invariants, the input 𝐼1 and output 𝑂1 lists consist

solely of tuples processed up to the previous loop iteration, tracked via the input and output array

iterators, and there are additional invariants capturing bounds on the size of these variables; we

omit them here for clarity.

Examples. To illustrate, we discuss the properties of a few operations below. Note that the examples

below only illustrate how to model an operator’s behavior (focusing on key aspects) and are not

strict logical representations. In practice, the number and exact formulation of properties may vary

based on strictness requirements, including factors such as null checks, floating-point precision,

ordering. These additional checks can be incorporated (or removed) into an operator’s modeling

without altering the rest of the QURE framework.

Row-wise Transformations. Each input yields a unique output by applying a transformation

function 𝐹 (modeled as uninterpreted function) or using IF-ELSE statements, (𝑟𝑖 denotes tuple at

index 𝑖 in 𝐼1, ∃!𝑠 𝑗 denotes there exists a single output tuple 𝑠 𝑗)
Totality and Surjectivity: ∀𝑟𝑖 ∈ 𝐼1, ∃!𝑠 𝑗 ∈ 𝑂1 s.t. 𝑠 𝑗 = 𝐹 (𝑟𝑖)

Filter. Outputs are determined based on a specified condition 𝐶 . Filter conditions are expressed as

functions for strict matching, thereby avoiding weaker invariants. Certain variants of Filter (e.g.,

the example in Figure 2) output tuples in the same order as input.

Totality (w/ constraints) and Surjectivity: ∀𝑟𝑖 ∈ 𝐼1, ∃!𝑠 𝑗 ∈ 𝑂1 s.t. (𝐶 (𝑟𝑖) ⇔ 𝑠 𝑗 = 𝑟𝑖)
Cardinality: | {𝑠 𝑗 ∈ 𝑂1 | 𝑠 𝑗 = 𝑟𝑖 } | = | {𝑟𝑖 ∈ 𝐼1 | 𝐶 (𝑟𝑖) ∧ 𝑠 𝑗 = 𝑟𝑖 } |
Ordering: If 𝑟𝑖 , 𝑟 𝑗 ∈ 𝐼1 ∧ 𝑖 < 𝑗 ∧𝐶 (𝑟𝑖) ∧𝐶 (𝑟 𝑗), then ∃𝑠𝑘 , 𝑠𝑙 ∈ 𝑂1 s.t. 𝑘 < 𝑙 ∧ 𝑠𝑘 = 𝑟𝑖 ∧ 𝑠𝑙 = 𝑟 𝑗

Group-by Aggregates. Group-by aggregates come in two variants: hashing-based and streaming-

based, which can be distinguished by examining their loop structure.

(A) Hash-Aggregate. Hash-aggregate involves hashing and look-up operations. Here, we assume the

input values are grouped on a key column, and values of val column for each group is aggregated

using a function 𝐴. 𝐾𝑒𝑦𝑠 (𝐼1) is shorthand for all the keys in 𝐼1:
Totality: ∀𝑘 ∈ 𝐾𝑒𝑦𝑠 (𝐼1), ∃!𝑠 𝑗 ∈ 𝑂1 s.t. 𝑠 𝑗 .𝑘𝑒𝑦 = 𝑘

Surjectivity: ∀𝑠 𝑗 ∈ 𝑂1, ∃𝑘 ∈ 𝐾𝑒𝑦𝑠 (𝐼1) s.t. 𝑠 𝑗 .𝑘𝑒𝑦 = 𝑘 ∧ 𝑠 𝑗 .𝑣𝑎𝑙 =𝐴({𝑟𝑖 .𝑣𝑎𝑙 | 𝑟𝑖 ∈ 𝐼1 and 𝑟𝑖 .𝑘𝑒𝑦 = 𝑘 })
(B) Stream-Aggregate: In this variant, the input is already sorted by key column. In addition to the

properties listed above under hash-aggregates, keys in the output are also sorted:

Ordering: ∀𝑟𝑖 , 𝑟 𝑗 ∈ 𝐼1 s.t. 𝑟𝑖 .key ≠ 𝑟 𝑗 .key ∧ 𝑖 < 𝑗, ∃!𝑠𝑘 , 𝑠𝑙 ∈ 𝑂1,

s.t. 𝑠𝑘 .key = 𝑟𝑖 .key ∧ 𝑠𝑙 .key = 𝑟 𝑗 .key ∧ 𝑘 < 𝑙

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:14 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

Table Aggregates. A single output tuple is generated by aggregating over a set of input values

using an aggregation function 𝐴. Below, instead of two input lists, we assume each tuple in 𝐼1 has

two values key and val for simplicity.

Totality and Surjectivity: ∀𝑠 𝑗 ∈ 𝑂1, 𝑠 𝑗 .val = 𝐴({𝑟𝑖 .val | 𝑟𝑖 ∈ 𝐼1})
Cardinality: |𝑂1 | = 1

Inner-Join. Similar to aggregates, the types of inner joins (nested-loop, merge join, and hash join)

can also be inferred from the loop structure. We discuss the properties of nested-loop in detail and

outline how similar properties can be defined for other types of joins.

(A) Nested-Loop. In a nested-loop join, each tuple 𝑟𝑖 from one input 𝐼1 is processed in the outer

loop, while the inner loop iterates over every tuple 𝑟 𝑗 from the other input 𝐼2, evaluating the join

condition 𝐶 (𝑟𝑖 , 𝑟 𝑗). If the join condition is met, the tuples are combined into a new tuple 𝑠𝑎 using a

function 𝐽 (𝑟𝑖 , 𝑟 𝑗) and added to the output 𝑂1.

Outer Loop:
Totality and Surjectivity: ∀(𝑟𝑖 , 𝑟 𝑗) ∈ 𝐼1 × 𝐼2, 𝑠𝑎 ∈ 𝑂1 : (𝑠𝑎 = 𝐽 (𝑟𝑖 , 𝑟 𝑗)) ⇔ 𝐶 (𝑟𝑖 , 𝑟 𝑗) ;
Cardinality: | {𝑠𝑎 ∈ 𝑂1 | 𝑠𝑎 = 𝐽 (𝑟𝑖 , 𝑟 𝑗) } | = | { (𝑟𝑘 , 𝑟𝑙) ∈ 𝐼1 × 𝐼2 | 𝑟𝑘 = 𝑟𝑖 ∧ 𝑟𝑙 = 𝑟 𝑗 } |
Ordering: ∀(𝑟𝑖 , 𝑟 𝑗), (𝑟𝑘 , 𝑟𝑙) ∈ 𝐼1 × 𝐼2, (𝑠𝑎, 𝑠𝑏) ∈ 𝑂1,𝐶 (𝑟𝑖 , 𝑟𝑘),𝐶 (𝑟 𝑗 , 𝑟𝑙), 𝑠𝑎 = 𝐽 (𝑟𝑖 , 𝑟𝑘), 𝑠𝑏 = 𝐽 (𝑟 𝑗 , 𝑟𝑙) :

(((𝑖 < 𝑘) ∨ (𝑖 = 𝑘 ∧ 𝑗 < 𝑙)) ⇒ (𝑎 < 𝑏)) ∧ (((𝑖 > 𝑘) ∨ (𝑖 = 𝑘 ∧ 𝑗 > 𝑙)) ⇒ (𝑏 > 𝑎))
Inner Loop: Let 𝑟𝑖 be the tuple from the outer loop 𝐼1.
Totality and Surjectivity: ∀𝑟 𝑗 ∈ 𝐼2, 𝑠𝑎 ∈ 𝑂1 : (𝑠𝑎 = 𝐽 (𝑟𝑖 , 𝑟 𝑗)) ⇔ 𝐶 (𝑟𝑖 , 𝑟 𝑗) ;
Ordering is similar to outer loop order with 𝑟𝑖 fixed.

(B) Merge Join. In merge join, both input lists are pre-sorted and tuples from the lists with

matching conditions are merged by moving through each list in parallel. Thus, the loop here

consists of two iterators one on each list.

Totality and Surjectivity: ∀(𝑟𝑖 , 𝑟 𝑗) ∈ 𝐼1 × 𝐼2, (𝑠𝑎) ∈ 𝑂1 ×𝑂2) : (𝑠𝑎 = 𝐽 (𝑟𝑖 , 𝑟 𝑗)) ⇔ 𝐶 (𝑟𝑖 , 𝑟 𝑗) ;
Ordering is similar to outer loop ordering in nested loops.

(C) Hash Join. A hash join first constructs a hash table from the one input, then probes it to find

matches. The first step is similar to group-by aggregates, with the aggregation collecting a set of

values based on keys. The probe can be modeled as a nested-loop where the outer loop matches

the key in the hash table, and the inner loop joins all values with matching keys.

Filtered Group-by Aggregates. Here, we apply a filter condition before aggregating the input

values.

∀𝑟𝑖 ∈ 𝐼1 s.t.𝐶 (𝑟𝑖), ∃!𝑠 𝑗 ∈ 𝑂1 s.t. 𝑠 𝑗 .key = 𝑟𝑖 .key

∀𝑠 𝑗 ∈ 𝑂1, 𝑠 𝑗 .val = 𝐴({𝑟𝑖 .val | 𝑟𝑖 ∈ 𝐼1 ∧ 𝑟𝑖 .key = 𝑠 𝑗 .key ∧𝐶 (𝑟𝑖) })
The filtered versions of other operations (e.g., filtered joins) can also be similarly written. Likewise,

inner-join followed by an aggregates is akin to filtered aggregates but include the inner-join

condition 𝐶 (𝑟𝑖 , 𝑟 𝑗) applied to both tables.

Examples of Boogie codemodeling lower-level constructs, such as hash-tables, look-up operations

on hash-tables, as well as loop-invariants can be found in Appendix.

4.4 Limitations in Loop Handling
QURE restricts loop coverage to operators of the form [𝑂𝑃1]𝑂𝑃2 due to the inherent complexity

of verifying semantic equivalence between loops and their corresponding SQL operators. For

these operators, properties can be reliably checked to prevent incorrectly declaring equivalence

between loops and operators when they are not equivalent. Such errors may arise when the verified

properties only partially capture the loop’s behavior. Below we discuss some of the additional

limitations related to loop structures.

• Pre-Loop and Post-Loop Code Segments: QURE assumes that the logic for input to output mapping

(beyond initialization of iterator variables and inputs/outputs) as well as ordering is solely confined

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:15

within the loop body, and thus, can be checked via loop invariants. This assumption implies that

operators with any semantics not solely encapsulated within the loop’s body are not covered.

• Multiple Loops Mapping to a Single Operator: Operations expressed via multiple loops are not

captured, except for the scenarios discussed earlier (e.g., variations of inner joins). The challenge

lies in identifying precise invariants for each loop that covers only part of the operator’s semantics.

• Multiple Operators for a Single Loop: QURE currently only handles fused versions of basic opera-

tions such as filters, joins, and aggregations, but not other uncharacterized operator combinations.

4.5 Discussion

Handling changes in dataflows. In some cases, the query optimizer may generate a logical plan with

an operator ordering that differs from the execution flow in the corresponding UDF code segments.

For instance, the logical plan might specify a flow 𝐴 → 𝐵 → 𝐶 , while the UDF code segments

implement the flow as 𝐴 → 𝐶 → 𝐵, such as in cases involving commutative operators. To address

such scenarios, we introduce equivalence rules that help explore post-conditions and invariants

across different implementations flows within the plan. For example, global equivalence rules, such

as the one below, can assist the verifier in proving equivalence across various combinations of

operator (here, the prefix U denotes uninterpreted function modeling the logical operation):

UStreamAgg(USort(𝑅,𝐺1),𝐺1,UAggFunc(𝐴)) ≡ USort(UHashAgg(𝑅,𝐺1,UAggFunc(𝐴)),𝐺1)

By leveraging axioms that define these equivalence rules, the verifier can reason about the cor-

rectness of post-conditions and invariants, even when the translated post-conditions and invariants

do not perfectly align with the UDF code segments. While QURE currently supports a limited

set of such equivalence rules, these rules have been extensively studied in the context of query

optimization in relational databases, allowing us to reuse them for well-known SQL operators.

Why not use the physical plan from the query optimizer? Database query optimizers apply equivalence

rules to transform logical plans to generate physical plans that might provide the best performance.

However, physical operators providing the best performance might not be the ones used in the UDF.

In many cases, the candidate physical implementation can be identified via lightweight analysis of

the loop as discussed earlier. However, when the implementation is unclear, QURE explores each

physical implementation for the logical operator in the plan for verification.

5 Modeling Python in Boogie
As outlined in Section 3, verifying equivalence between UDFs and translated SQLs requires ex-

pressing the semantics of UDF in Boogie, an intermediate verification language. The translation is

challenging for a number of reasons: (1) Python offers a significantly richer variety of syntactic

constructs (e.g., dictionaries, generators and additional loop types) than Boogie. (2) Python UDFs

commonly invoke functions from libraries such as NumPy [4] and Pandas [6] for which the source-

code is not available, or sufficiently complex to make the verification itself challenging. Thus, most

existing approaches for UDF translation do not handle library functions. However, as the rich set

of libraries available is one of the main reasons for Python use in UDFs, translations framework

should be able to support library functions, and do so without requiring significant re-writes.

(3) A key abstraction in Pandas UDFs are DataFrames [13]. Basic operations over DataFrames

have different semantics than the same operations for other variable types (e.g., addition of two

DataFrames effectively introduces a loop that iterates over all rows in the referenced columns), and

can introduce relational abstractions (e.g., through the .groupby() function [7]). We illustrate

how we address these challenges in the following.

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:16 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

5.1 The AST Transformation Framework
QURE has a custom Python-to-Boogie translation component (see step 2 in Figure 2) which

applies a series of transformations on the Python AST [59] of the UDF to translate it to semantically

equivalent Boogie. Each transformation is defined as a rewrite rule operating on the Python AST

that is triggered when one or more pre-conditions are satisfied. Note that these pre-conditions
can involve the entirety of the AST (e.g., a pre-condition can require that a variable be assigned

to only once). These transformation include: (1) converting lists and dictionaries into Boogie-

compatible arrays, (2) converting different loop types into Boogie-compatible while loops with

explicit conditions and iterators, (3) rewriting generator expressions and list comprehension as loops

with equivalent iterators, (4) translating function and method calls, including library functions, into

Boogie uninterpreted function calls with relevant axioms, (5) translating DataFrame operations

either into equivalent Python code (and, subsequently, through other transformations, to Boogie

code), or modeling relational operators through equivalent uninterpreted functions over special

Relation and Column types, and (6) mapping functions on data types not native to Boogie (e.g.,

DateTime) using uninterpreted functions.

To illustrate the transformation framework, consider a simple UDF, which executes a dictionary
lookup for values in the index, and returns -1 otherwise:

1 def udf_lookup(key):
2 index = { "AIR": 0, "MAIL": 1}
3 if key in index:
4 return index[key]
5 else:
6 return -1

The semantics of the predicate (key in index) and index[key] lookup is modeled via a sequence

of 3 transformations. The first transformation is invoked only if a pre-condition holds that requires

that index acts as a constant, i.e., it is assigned to once, we never invoke a function that modifies

it, and no reference to index is passed. If the pre-condition holds, the transformation replaces

all references to index with the value assigned, resulting in (note that, while all transformations

modify the AST, we show, for clarity, the corresponding Python code):

1 def udf_lookup(key):
2 if key in {'AIR': 0, 'MAIL': 1}:
3 return {'AIR': 0, 'MAIL': 1}[key]
4 else:
5 return -1

The second transformation replaces expressions checking whether a key is IN a constant dictionary

by a disjunct of equality checks:

1 def udf_lookup(key):
2 if (key == 'AIR' or key == 'MAIL'):
3 return {'AIR': 0, 'MAIL': 1}[key]
4 else:
5 return -1

The third transformation replaces key-lookups against a constant dictionary with a function

performing the same logic, again using equality checks. The code below shows the Boogie code
resulting from this transformation, type inference and the final translation:

1 Procedure dict0(key: string) returns (value: int) {
2 if (key == "AIR") { value := 0; return; }
3 if (key == "MAIL") { value := 1; return; }
4 }
5 Procedure udf_lookup(key:string) returns (result:int) {
6 var boogie_value_dict0: int;
7 if (key == "AIR" || key == "MAIL") {
8 call boogie_value_dict0 := dict0(key);
9 result := boogie_value_dict0;
10 return;
11 }
12 else { result := -1; return; }

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:17

13 }

Modeling Dynamic Dictionaries. Dictionaries with dynamic inserts and updates are modeled

using two arrays: one for storing keys and the other for values. The key idea involves modeling the

lookup function using axioms that specify the behavior when a key is present or absent without

providing an explicit implementation. If the key is found, the function returns its index; if not, it

returns the length of the array, indicating that the key is not present.

1 type KeyValue;
2 function getKey(kv: KeyValue): int;
3 function getValue(kv: KeyValue): int;
4 function lookup(ad: [int]int , k: int , len: int) returns (int);
5 axiom (forall ad: [int]int , data: [int]KeyValue , k: int , len: int ::
6 (0 <= lookup(ad, k, len) && lookup(ad, k, len) < len) ==> (getKey(data[lookup(ad ,

k, len)]) == k));
7

8 axiom (forall ad: [int]int , data: [int]KeyValue , k: int , len: int ::
9 (lookup(ad , k, len) == len) <==> (forall i: int :: (0 <= i && i < len) ==> (

getKey(data[i]) != k)));
10

11 axiom (forall ad: [int]int , data: [int]KeyValue , k: int , len: int ::
12 len == 0 ==> (lookup(ad , k, len) == -1));
13

14 axiom (forall ad: [int]int , k1: int , k2: int , len: int ::
15 (0 <= lookup(ad, k1, len) && 0 <= lookup(ad, k2, len) && k1 != k2) ==> (lookup(ad

, k1, len) != lookup(ad, k2, len)));
16

17 axiom (forall ad: [int]int , k1: int , k2: int , len: int , len2: int ::
18 (0 <= lookup(ad, k1, len) && 0 <= lookup(ad, k2, len2) && len <= len2) ==> (

lookup(ad, k1, len) != lookup(ad , k2 , len2)));
19

20 axiom (forall ad: [int]int , k: int , len: int , len2: int ::
21 (0 <= lookup(ad, k, len) && 0 <= lookup(ad , k, len2) && len <= len2) ==> (lookup(

ad, k, len) == lookup(ad, k, len2)));
22

23 procedure udf(data: [int]KeyValue , data_len: int) returns (keys_array: [int]int ,
values_array: [int]int , ad_len: int)

24 requires data_len > 0;
25 {
26 var i, j, k, v: int;
27 ad_len := 0;
28 i := 0;
29 while (i < data_len)
30 {
31 k := getKey(data[i]);
32 v := getValue(data[i]);
33 j := lookup(keys_array , k, ad_len);
34

35 if (j == ad_len){
36 keys_array[ad_len] := k;
37 values_array[ad_len] := v;
38 ad_len := ad_len + 1;
39 }
40 else{
41 values_array[j] := values_array[j] + v;
42 }
43 i := i + 1;
44 }
45 }

Type Inference. Since Boogie is statically typed, unlike Python, the translator needs to infer types

during the translation. Here, the types of input parameters to the UDF are inferred by looking up

the types of corresponding columns from the database schema. The types for variables instantiated

within the UDF are inferred using rules based on the operations and the types of columns on

the right side of the assignment. The return types of functions can be inferred from the function

repository. If the type of any variable is ambiguous, the verification is considered unsuccessful.

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:18 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

5.2 Handling Function Calls
For many commonly used library functions in Python UDFs, there exist equivalent functions in

SQL, which are (typically) correctly identified by LLMs in their UDF translation. To extend the

verification framework to such functions for which no source code is available, QURE uses a function
repository to track the required equivalencies between Python functions and SQL functions, as well

as to capture any additional semantics required for the verification. QURE currently supports more

than 130 frequently used Python and DataFrame functions (see Table 3 for a detailed breakdown).

Table 3. Functions in the QURE repository

Type of function Number
Mathematical expressions 12

String manipulation and counting 17

Type manipulation and special types (e.g., DateTime) 11

Pandas DataFrame specific functions 46

Relational operators 44

Other 2

Concretely, this repository captures the following information for each pair of equivalent Python

and SQL function:

𝑷𝒚_𝒇𝒖𝒏𝒄 : Python function, parameters and their types, return type of the function

𝑺𝑸𝑳_𝒇𝒖𝒏𝒄 : Equivalent SQL function, its parameters and their types

𝒃_𝒇𝒖𝒏𝒄 : Boogie uninterpreted function representing 𝑃𝑦_𝑓 𝑢𝑛𝑐

𝒃_𝒄𝒐𝒅𝒆 : Additional code required to encode 𝑏_𝑓 𝑢𝑛𝑐 in Boogie

𝒂𝒙 𝒊𝒐𝒎𝒔 : If needed, any additional axioms required for verification, e.g., encoding commutativity
Because Python is dynamically typed, and Boogie requires static type declarations associated

with each function, the repository may contain multiple entries of the Python function, each of

which is associated with different parameter types.

Using the repository, QURE (a) can map pairs of equivalent functions in UDF/SQL to a canonical

uninterpreted function in the Boogie code, (b) use axioms to capture necessary or additional

semantics for verification, (c) support composability of functions with other expressions in UDF via

generated Boogie code (which can be multiple lines in order to capture input and output variables).

Since the specification of functions itself is concise, additional library functions with equivalent

SQL can be registered easily and allow for extensibility of QURE without requiring code changes.

5.3 Modeling DataFrames
Since DataFrames are not native to Boogie, verifying UDFs with DataFrames requires modeling

their semantics. A DataFrame passed as input to a UDF corresponds to a table wherein column

labels match the table’s column names. Each column in a DataFrame is modeled as a Boogie array,

e.g., a reference df["lquantity"] to a column lquantity in a Dataframe df is translated to a Boogie
array lquantity. When the UDF does not specify the columns in a DataFrame columns explicitly,

QURE uses the parent SQL query and SQL metadata to infer them. For each column, we also add a

variable representing the number of rows, allowing us to translate row iterators into offset-based

iterators (see example below). Column types are inferred using the process described earlier.

Operations within DataFrames — such as column manipulations, aggregations, filtering, and

transformations — are translated into a equivalent set of Python instructions, which can then be

further translated into Boogie or represented by uninterpreted functions (e.g., df.filter(...) and
df.groupby(...) for relational operations, as well as other functions when full implementation

is not required). Additionally, we can often assign an alias type to a table or DataFrame (e.g., type T
for a table). Expressions within UDFs that operate on these tables are modeled functionally, using

the table name and column names or expressions as parameters. For instance, sort(R1, "A",

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:19

"ASC") represents a sorting operation on Table R1 by column A in ascending order, where R1 can

be defined as type T, without needing to model other columns in 𝑅1. Similarly, since input columns

and their types are inferred from the parent query and database schema, DataFrame functions

operating on these columns within a UDF can use a generic type alias, TCol, for these columns,

instead of defining for each possible data type (e.g., int, real, string).

Example:
1 def udf_0(df):
2 taxmax = -1
3 for _, row in df.iterrows ():
4 taxmax = max(taxmax , row["l_quantity"] * row["l_discount"] * row["l_tax"])
5 return pd.DataFrame ({"l_taxmax": [taxmax]})

Here, a first transformation explicitly maps all referenced columns (e.g., df[’l_tax’]) to indi-

vidual variables (e.g., df_l_tax) representing the column; for the purpose of subsequent Boogie

translation, these are also added as parameters to the Boogie representation of the UDF (since

df is an input parameter). A second transformation changes the DataFrame iterator row into an

offset i_df0 used to track row offsets. Finally, a third transformation changes the FOR loop (not

supported in Boogie) to WHILE, including initialization and increment of i_df0. The resulting

Python code (before subsequent translation to Boogie) is shown below:

1 def udf_0(df_l_discount , df_l_quantity , df_l_tax , df_len):
2 taxmax = -1
3 i_df0 = 0
4 while i_df0 < df_len:
5 taxmax = max(taxmax , df_l_quantity[i_df0] * df_l_discount[i_df0]
6 * df_l_tax[i_df0])
7 i_df0 = i_df0 + 1
8 return taxmax

6 Inlining UDF SQL Using CTEs
For inlining UDF SQL with the rest of the SQL, we place the UDF SQL as a common table expression

(CTE) created using the WITH clause. CTEs serve as temporary named result sets that can be

referenced within the SQL query. Consider a simple UDF designed to filter numerical values:

1 def filter(num):
2 return num < 7

3 SELECT filter(num) FROM tablex

The UDF SQL can be inlined with a CTE, as shown below:

1 WITH tempTable AS (
2 SELECT (l_quantity < 7) AS l_cond FROM tablex)
3 SELECT l_cond FROM tempTable

When UDFs involve more sophisticated logic, such as aggregations or window functions, we

need to accurately reflect these in the CTE. However, the UDF itself might not specify grouping or

ordering directives—these are often declared in the parent query. To ensure the correctness of the

final query, these attributes must be integrated into the CTE.

There are two approaches to this integration:

• Translate the UDF to SQL without specifying grouping or ordering attributes: Initially, the UDF

is translated assuming aggregation over the entire input table. This SQL representation is then

verified. Post-verification, the necessary grouping or ordering attributes from the outer query are

incorporated into the UDF’s SQL representation within the CTE.

• Incorporate grouping or ordering attributes directly into the UDF translation: By providing these

attributes as additional context, the UDF’s SQL representation can be crafted with the correct

grouping or ordering from the outset.

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:20 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

As an example, consider an UDF that standardizes values by subtracting the mean and dividing

by the standard deviation:

1 def udf(df):
2 return (df - df.mean()) / df.std()

which is used in a query grouped by date attributes:

1 SELECT explode(collect_list(udf(l_quantity)))
2 FROM lineitem
3 GROUP BY year(l_shipdate), month(l_shipdate)

The inlined version incorporating this UDF through a CTE is as follows:

1 WITH t AS (
2 SELECT *,
3 (l_quantity - mean(l_quantity) OVER
4 (PARTITION BY year(l_shipdate), month(l_shipdate))) /
5 std(l_quantity) OVER (PARTITION BY year(l_shipdate), month(l_shipdate))

AS udf_0_col
6 FROM lineitem
7)
8 SELECT explode(collect_list(udf_0_col)) FROM t
9 GROUP BY year(l_shipdate), month(l_shipdate)

In this example, the CTE t incorporates the window function logic, applying the UDF within

the context of each partition defined by year(lshipdate) and month(lshipdate). The outer
query then uses the results of this computation.

By representing UDFs as CTEs, SQL queries can maintain simplicity and readability without sac-

rificing performance. This approach allows for the clear expression of complex logic and facilitates

the integration of advanced data transformations into analytical queries, providing a scalable and

maintainable solution for working with UDFs in SQL environments.

7 Empirical Evaluation

UDFBenchmark.We evaluated QURE over a diverse set of UDFs (summarized in Table 4), targeting

both generic Python as well as different variations of Pandas UDFs (see the UDF categories in

Section 2.1). While UDFs for the categories Python and Pandas-Scalar , Pandas-Agg, and Pandas-Map
were are collected by us (from sources such as GitHub and Stack Overflow to ensure their practical

relevance), the benchmark workloads also include 22 TPC-H queries written using Pandas, similar

to the ones used in PyTond [57]. We also have 9 Python-Scalar UDFs based on UDFs shared in

Froid [51], as well as 10 UDFs based on notebooks shared by PyFroid [21]. Because the data for the
original UDFs are largely not available, all UDFs are modeled to use the TPC-H schema, allowing us

to execute them and measure performance improvements. For the UDFs we collected, our goal was

to evaluate QURE’s capability to translate and verify UDFs. Therefore, we prioritized selecting UDFs

where a complete SQL-equivalent translation might exist (although equivalent SQL translations

do not exist for some of them), even if the LLM may not always correctly generate it. Concretely,

this led us to filter out a large number of UDFs containing ML invocations or graphics/plotting

functions, which clearly lack SparkSQL equivalents. The benchmark can be found here [9].

Ground-Truth. To validate the semantic equivalence of a UDF and the SQL inferred by the LLM,

we used both manual inspection of the code as well as execution of the queries containing the

UDFs alongside the UDF-inlined queries to confirm identical results on a TPC-H dataset. Manually

verified queries served as the ground-truth for evaluating the automated verification used in QURE.

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:21

Table 4. Workload characteristics and their impact on translation/verification

Category # queries # lines (min,
avg, median,
max)

operations (min,
avg, median, max)

UDFs with loops #queries trans-
lated correctly
(GPT-4o)

#queries w/ correct
LLM-translations
verified

#queries verified when
given correct translations

Python 27 (4, 19, 18, 42) (3,23,14,129) 6 24 24 24

Pandas-Scalar 19 (3,12,10,38) (2,11,8,32) 7 15 15 15

Pandas-Agg 23 (3,12,13,27) (1,7,6,22) 0 18 18 20

Pandas-Map 15 (3,10,9,26) (2,9,5,35) 8 11 10 12

TPC-H (Pandas) 22 (4,11,10,25) (5,10,10,25) 0 21 21 22

Froid-based 9 (1,7,8,15) (1,7,8,12) 0 9 9 9

PyFroid-based 10 (3,12,11,38) (1,10,7,35) 0 8 8 8

Total 125 (1,16,15,42) (1,10,10,129) 21 106 105 110

0 10 20 30 40 50
UDF lines of code

0

20

40

60

80

100

120

No
. o

f o
pe

ra
tio

ns
 o

r f
un

ct
io

ns
 in

 S
QL

Coverage with varying lines and number of operators
Successfully Translated
Failed Translation or Verification

Fig. 3. Coverage of UDFs with varying lines of code and operations in the translated SQL. The value 0 on the
Y axis denotes that no translation returned by the LLM.

Performance Evaluation. For performance evaluation, we use HDInsight (HDI) clusters (version

5.1, US East 2 region), using Apache Spark 3.3 on E8 V3 nodes, featuring 8 cores and 64 GB RAM.

We vary the number of nodes between 1 and 12, and the TPC-H scale factor between 10 and 100.

7.1 Coverage of UDFs
Table 4 depicts the accuracy of translations performed by LLM (GPT-4o) that we audited manually

and by execution over the TPC-H dataset of scale factor 10. The table also shows which fraction of

queries in each category were successfully verified by QURE; here, we differentiate between the

case (a) where LLM translation was correct, as well as (b) where we added correct SQL translations

to replace LLM mistranslation (where needed).

QURE’s coverage. QURE can verify equivalence between UDFs and SQL for 110 (88%) queries

when given correct translations and 105 queries (84.8%) when not correcting LLM mistakes. As

depicted in Figure 3, QURE achieves a high verification accuracy across UDFs with varying lengths

(between 1 to 40 lines of code) and number of SQL operations
2
.

One reason for the high coverage of QURE is the large number of procedural constructs modeled

in QURE. QURE captures conditional logic (e.g., IF-ELSE statements) and list-based operations

within UDFs (similar to prior work) while also covering UDFs involving dictionaries and look-ups

(lower support in prior work). QURE covers a substantial fraction of UDFs with string manipulations,

function calls along with their composition with other operations, and DataFrame operations, all

common in data transformation and preparation tasks but with limited support in prior work. QURE

also provides coverage of generator expressions [2], supporting the use of anonymous functions

within UDFs. Many loops in Spark UDFs map to row-wise transformations, aggregations, and filter

operations in Spark, and QURE successfully verifies 18 of the 21 UDFs with such loops. QURE can

establish semantic equivalence between loops and operations such as filters, table aggregations,

2
Here, we count each operator, a function call or comparison as 1 operation.

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:22 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

group-by aggregations, inner joins (nested loop, hash join, and merge join), and also extends to

their combinations. Table 5 lists the types of operations for which QURE can establish equivalence.

Besides the volume of procedural constructs and functions, high coverage is facilitated by the
core idea of QURE, namely, to use the logical plan (or query tree) of the SQL translation to functionally
compose the verification conditions (see Section 4 for details). Note that verification conditions for

an operation or function remain the same regardless of the length or complexity of the UDF. The

structure (data flow in the logical plan) helps QURE compose the verification conditions across all

operations in the UDF. As a result, the verification coverage of QURE is not very (anti-)correlated

with UDF length or number of operations (at least for the scale and complexity seen in Apache

Spark UDFs). Instead, QURE’s coverage is more dependent on existence of specific constructs that

can or cannot (e.g., yield operations, no explicit ordering specified in UDF while the SQL operator

assumes one, or missing else parts in conditional statements) be logically modeled, or loops that do

not belong to the loop patterns we cover (see Section 4.2).

Translation Accuracy of LLMs.We note that GPT-4o outperforms GPT-4 and GPT 3.5 models for

our translation task. As a key feature, QURE can leverage improvements in translation accuracy due

to newer LLMs without changes to QURE itself. We observe that LLMs excel in capturing loops and

conditional logic and canmap functions, such as string manipulation, to equivalent SQL, particularly

for operations well-defined within both Python and SQL environments. LLMs are also effective

at translating column-based operations and aggregations, which align closely with operations

inherent to SQL. Among the different categories of UDFs, Pandas-Agg UDFs generally use simpler,

native Pandas API functions, including basic aggregation functions like sum(), mean(), or max(),
which have direct SQL counterparts. Therefore, LLMs demonstrate the highest accuracy for such

UDFs in this category. In contrast, Python, Pandas-Scalar, and Pandas-Map UDFs often incorporate

more complex logic, leading to lower LLM accuracy. A significant portion of errors arises from

incorrect function-to-SQL mappings, especially when SQL lacks direct function equivalents; here,

GPT-4o performs signifcantly better than prior LLMS. Other errors include incorrect ordering of

operations, overly complicated UDF logic, and omission of functions during translation.

Table 5. Coverage of loops corresponding to SQL (logical) operations. QURE supports a fixed set of loop
structures, each corresponding to a potential physical operator implementation for a supported logical
operation (e.g., hash-aggregation and stream-aggregation for group-by aggregation).

Operations Popularity in Spark UDFs Prior Work([17, 51])
Compositions of Functions and SQL

Operations

High No

Projection / Row-wise Column

Transformation

High Yes

Filtering High Yes

Table Aggregation High Partial

Group-by Aggregation Medium No

Filtered Aggregations Medium Partial

Joins (Nested Loop, Hash, Merge) Unseen Nested Loops Only

Filtered Joins Unseen Nested Loops with Filters

Join with Aggregation Unseen Min/Max with Nested Loop

7.2 Performance Improvement
Table 6 depicts the performance improvement after UDF inlining for each category of the UDFs.

Among the UDFs that QURE can verify, UDF inlining results in median performance gains of 23.7×
in single-node configurations and 12.5× in configurations utilizing 12-cluster nodes. We analyze

the performance based on various factors.

Impact on different types of UDFs. Our analysis of a sample of Python UDFs shows that about 20-30%

of the time is spent on data movement and rest on computation. After inlining the UDF, the data

movement overhead is completely eliminated and the computational overhead is reduced by 90%

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:23

Table 6. Speed-up of UDF-inlined queries w.r.t original queries. At a scale factor of 100, the original queries
for Pandas Map run out of memory (OOM), so no speed-up is reported.

Speed-up (minimum, average, median, maximum)

1 node 12 nodes

SF = 10 SF = 100 SF = 10 SF = 100

Python 1.1, 20.6, 20.02, 52 0.76, 35.73, 39.49, 102 0.08, 11.2, 10.8, 24.1 0.05, 14.3, 16.64, 43.72

Pandas-Scalar 0.10, 6.4, 5.5, 16.4 0.02, 5.10, 6.53, 9.7 0.23, 7.98, 8.24, 12.70 0.11, 4.29, 5.94, 8.78

Pandas-Agg 0.96, 10.28, 11.31, 31.51 0.65, 11.3, 9.75, 37.73 0.70, 12.94, 9.89, 21.55 .54, 6.84, 7.6, 22.4

Pandas-Map 21.29, 34.14, 25.22, 157.22 OOM for non-inlined queries 12.0, 41.54, 12.26, 212.12 OOM for non-inlined queries

Froid-based 1.06, 79.23, 83.07, 124.33 1.2, 272.31, 162.97, 327.96 0.85, 37.52, 42.64, 70.89 1.2, 116.86, 93.34, 319.98

PyFroid-based 8.17, 10.21, 24.78, 75.94 0.95, 13.92, 15.91, 23.79 1.51, 22.29, 33.91, 49.61 2.42, 18.40, 15.56, 30.72

for Python UDFs. This results in nearly an order of magnitude improvement in performance for

Python UDFs on a single node and small datasets (10 GB). However, Pandas UDFs benefit from

vectorization (generally one third faster than Python UDFs for small datasets). Inlining reduces

data movement overhead completely and computational overhead by 2× to 5× for most queries.

An exception is seen in Pandas Map UDFs, where data movement overhead is more pronounced as

the JVM communicates with the Python worker through tables, showing better speedup due to

reduction in data movement.

Impact of large datasets and reduction in Out of Memory (OOM) errors. As the dataset size increases,
both data movement overhead and computation time increase, widening the performance gap

between inlined and non-inlined queries. We observe speed-up of 5× to 10× for SF = 100 compared

to SF = 10. The results are more pronounced for queries with Pandas Map UDFs which run OOM

for SF = 100. With inlining, we see a reduction in such OOM errors.

Impact of parallelism. As the number of nodes is increased from 1 to 12, the performance of queries

with UDF improve by 2× to 3× more compared to the corresponding inlined versions due to the

proportional reduction in data and computation overheads. However, parallelization does not

always improve the performance of UDFs, as data transfer overheads start to dominate for some

queries with increasing nodes.

Performance regressions. A few UDFs exhibit performance regressions after inlining. Most of such

queries includes Pandas operations, which benefit from vectorization, but their equivalent window-

based SQL queries run more slowly. Additionally, there are two non-Pandas queries where string-

based data manipulation functions are much faster than their equivalent SQL functions. Moreover,

some queries only exhibit regressions for specific numbers of nodes in the cluster, indicating a

sweet spot where data transfer and computation overheads are minimized for the UDFs.

7.3 Comparison with ByePy
Since, to the best of our knowledge, among the competing techniques, only ByePy is openly

available for testing (via the online interface at https://apfel-db.cs.uni-tuebingen.de/),
we compare the performance of UDFs translated by ByePy with those translated by QURE on

PostgreSQL, using UDFs that do not contain embedded SQL (thereby ruling out the queries in the

ByePy benchmark), as QURE can not cover these.

Setup: We selected 21 UDFs from our benchmark that (a) ByPye is able to translate and (b) QURE

is able to translate and verify. To ensure a representative sample, this workload contains 3+ queries

from each of the UDF categories defined in Section 2.1. Since ByPye input and output are in

PostgreSQL format, we translated the original UDFs by (1) adapting them to use PostgreSQL

syntax and functions and (2), for UDFs that use DataFrames (which PostgreSQL does not support),

translating the corresponding DataFrame columns to arrays and functions to loops over the

DataFrame(s) performing the same computation; for the QURE translations, we had the LLM

produce SQL targeted at PostgreSQL as well. All experiments were then conducted on PostgreSQL

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:24 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

1 2 3 4 5 6 7 8 9 101112131415161718192021

10
2

10
3

10
4

10
5

Q4-Q11 (ByePy) did not terminate after 40 m.

Query ID

E
x
e
c
u
t
i
o
n
T
i
m
e
(
m
s
)

Original UDF QURE ByePy

Fig. 4. ByePy performance comparison

16.3, executing on a Intel(R) Xeon(R) W-2133 CPU (3.60GHz) PC, with 32GB RAM runningWindows

11 Enterprise. For expedience, we aborted any query using over 40 minutes of execution time.

Results: As we can see in Figure 4, the QURE translations outperform the ByePy ones for every

single query, often by multiple orders of magnitude. QURE translations outperform the original

UDFs for all queries except one (Q18
3
), by factors of up to 11x.

The main reasons for the observed improvement lie in QURE’s approach being based on verified
lifting, which seeks to identify efficient operators in the target language that map the source

semantics. In contrast, ByePy relies heavily on the use of recursive CTEs in their translation, which

allows it to translate more complex control flow structures than otherwise possible, but can result

in highly inefficient SQL code. To illustrate this, consider the simplified version of our running

example UDF below written in PL/pgSQL (used by [24, 25]):

1 CREATE FUNCTION Test(key varchar) RETURNS varchar AS
2 DECLARE
3 y varchar := ''; code varchar [];
4 BEGIN
5 code := array['A','I'];
6 FOR i IN 1..2 LOOP
7 IF key = code[i] THEN
8 y := code[i];
9 END IF;
10 END LOOP;
11 RETURN y;
12 END;

After translation (using the online compiler at [5]), the resulting SQL UDF is 62 lines of code, with

a 5 levels of nested SELECT statements (as opposed to the 1-liner generated by QURE in Figure 2),

as depicted in Appendix B.

7.4 Comparison with PyFroid [21] and PyTond [57]
Our results on PyFroid and TPC-H Pandas workload suggest that our coverage is comparable.

QURE is able to translate and verify complex expressions extracted from PyFroid workload and

is able to verify equivalence of all 22 Pandas UDFs and its corresponding SparkSQL statements.

However, the performance speed-ups reported in one system cannot be directly compared with

those in another, especially since the scope of translations differs (e.g., a subset of expressions

within a larger notebook vs. complete UDFs in Spark) which affects the runtimes.

3
Here, the QURE translation performs an additional unnest operator not needed by the UDF, likely accounting

for the increase in latency

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:25

7.5 LLM and Formal Verification Overheads
Typically, the compilation time for Spark queries with UDFs (without QURE) varies in a range

of 0.5 to 2 seconds. In QURE, the overhead from LLM invocations averages around 4 seconds.

Additionally, the formal verification process takes approximately 1 second on average, but can vary

depending on the complexity and length of the translated Boogie code. On average, we find the

total compilation overhead to be approximately 6 seconds.

For queries that process relatively small amounts of data per node, such as those involving

Pandas scalar and aggregate UDFs over smaller datasets (e.g., SF = 10) and/or distributed across

larger clusters (12 nodes), this overhead dominates runtime improvements. However, for analytic

queries in big data systems, processing large amounts of data, the overhead from LLM inference

and formal verification is minor compared to potential runtime improvements in orders of minutes.

Short-running queries, where the compilation overhead dominates, can potentially be identified

using query performance prediction techniques like those described in [58, 60], or even simpler

heuristics that consider estimated data processed per node or UDF (from query optimizer) to mini-

mize performance regressions. For recurring queries, which are prevalent in big data systems [39],

the historical performance data can be utilized to select queries that should be inlined, potentially

performing this inlining offline. Determining for which queries QURE can have significant benefit

up-front and with low latency is an interesting research challenge in its own right and out of scope

for this paper. Finally, QURE can be used in offline query plan optimization or in a co-pilot setting,

assisting users in inlining queries while they are composing or registering the UDFs.

7.6 Limitations of QURE and Future Work
There exist a number of limitations to the current version of QURE, besides the need for improve-

ments to the number of Python constructs modeled.

(1) QURE currently does not try to repair errors in LLM translations; rather, it falls back to the

original query, with a UDF, if verification fails. Reasoning about potential transformations for

correcting SQL when verification fails may improve coverage. A related limitation not shared by

competing techniques is the requirement to translate each UDF in its entirety, which may not be

possible due to limitations of the target language.

(2) QURE is limited in the loop and control-flow complexity it can handle, as we highlight in

Section 4.4; adding additional translation techniques and the corresponding Boogie modeling would

increase QURE’s reach.

(3) Adding pairs of equivalent functions to the function repository (see Section 3) is a manual

process and requires the person matching the functions to understand the semantics and parameters

of the functions added; semi-automated support and testing would be highly useful.

(4) While Apache Spark does not support it, several DBMSs allow SQL within UDFs; extending

verification to these settings involving both SQL and procedural constructs is an interesting and

challenging piece of future work.

(5) A further important area for future work is to provide a quick estimation of (a upper bound on)

performance benefits from translation, allowing one to save translation time where not needed.

8 Related Work

Rule-based Translation (e.g., Froid [51], PyFroid [21], PyTond [57], ByePy [1]). Table 7
outlines the salient features of the different related techniques. While there are differences in

the problem studied (code/script vs UDF to SQL translation) and different target system result

in differences as to what can or cannot be supported, the primary difference lies in the focus

of each technique. QURE’s focus is on verification of equivalence between UDF code and SQL,

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:26 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

Table 7. Comparing QURE with relevant code to SQL translation approaches.

QURE PyFroid [21]/PyTond [57] Froid [51] ByePy [1] QBS [17]

Problem UDF to SQL (Apache
Spark)

Script/code to SQL UDF to SQL (SQL
Server)

UDF to SQL (PostgreSQL) Script/code to SQL (Java)

Core Focus Equivalence verifi-

cation between UDF

and SQL

Synthesis of SQL from

code

Synthesis of SQL

from code

Synthesis of SQL from code Synthesis of SQL-like ex-

pressions (focus) followed

by verification

Approach for Inferring Ver-
ification Conditions

Leverages logical

plan

No (NA) No (NA) No (NA) Analysis of UDF procedural

code

Targets Generic Python Yes No No Yes No (NA)

Pandas DataFrames Yes Yes No No No (NA)

UDFs w/ Embedded SQL No (not supported

in Spark)

No (NA) Yes Yes No (NA)

Maps Multiple Expressions
to a Single Equivalent (In-
trinsic) SQL Operator/Func-
tion

Yes Yes Yes

No (procedural constructs trans-

lated to similar SQL expressions,

and loops to recursive CTE)

Yes

Potential Performance Im-
provement

High High High

Improvement limited when com-

pared with QURE, but translation

extends to code with no direct SQL

function/operator mapping

High

while, for the rest of the techniques, the primary focus is on synthesis of SQL from UDF code, which
requires different innovations. Furthermore, QURE covers both Python and Pandas constructs unlike
PyFroid, or PyTond. While ByePye covers such constructs (but is lacking support for DataFrames),

we address a different problem of translating procedural constructs to (declarative) operations

(also known as verified lifting) while ByePy translates UDF expressions to PostgreSQL expression

without evaluating whether there is a single built-in SQL operator or function that is equivalent to

a set of lines of UDF code. As we show in our ByePy experimental comparison, doing so almost

always results in better performance. We believe the advantage of ByePy lies in cases when there

is no direct mapping to SQL operations/functions, which will lead to non-translation with existing

techniques such as QURE, PyFroid, or PyTond.

Program Synthesis and Formal Verification. In this line of work, QBS [17] is closely related

to QURE, as it involves similar formal verification techniques. The primary difference lies in the

synthesis of verification conditions: while QBS analyzes procedural code to synthesize complex

logical assertions for invariants and post-conditions, QURE leverages the SQL plan, which reduces

complexity by enabling much of the logical assertions to be pre-defined, requiring only lighter

synthesis during online translation. QURE’s verification techniques are particularly useful when

AI or other tools can infer a candidate SQL query but require verification. Additional differences

between QURE and QBS are highlighted in Table 7.

Other techniques use strategies such as counterexample-guided inductive synthesis (CEGIS)

and incremental grammar generation to optimize UDFs within dataflow programs and ORM

applications [18, 22, 30, 38, 52, 62]. Unlike QURE, these approaches do not guarantee equivalence

of translated queries, necessitating human validation. For example, [61] employs bounded model

checking (BMC), which explores programs for counterexamples up to a certain depth, or bound, and
reports that the programs are equivalent within the explored bound. However, this method may

miss discrepancies occurring at deeper states beyond the defined bound.

Compositional Program Synthesis. Compositional program synthesis has been explored to

decompose the UDF-to-SQL translation problem [23, 48, 49], however, the synthesis challenges for

complex expressions and diverse procedural constructs (e.g., different data structures, function calls,

data frame handling) remain. In addition, most of these approaches used CEGIS-based translation

approaches, thus requiring human validations.

DataFrame Parallelization and Translations. While orthogonal to UDF to SQL translation,

techniques for improving scalability of Pandas DataFrame-based operations such as Modin [47],

dask [53], or PySpark [8] have been proposed. However, each is limited to the specific subset of

DataFrame operations parallelized by the framework. A few approaches, such as Grizzly [32] and

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:27

MagPie [40], support a rule-based translator that selectively translates specific DataFrame opera-

tions to SQL. However, they do not generalize well to complex expressions involving combinations

of procedural constructs, e.g., loops, lists, dictionaries, and DataFrames.

SQL Query Optimization. Extensive research on optimizing SQL queries exists, especially those

containing nested sub-queries [19, 20, 28, 29, 42, 44, 56]. While this is orthogonal to UDF to SQL

translation, the translated SQL is often inlined as a subquery or CTEs, and some of these approaches

can be used to optimize the query generated by QURE, which is an interesting area for future work.

9 Conclusion
QURE addresses the performance limitations of UDFs in Apache Spark by leveraging LLMs for

the translation of Python/Pandas UDFs into equivalent Spark-SQL expressions and utilizing the

semantics of operators in SQL plans for verification. By supporting a broader range of operations

and procedural constructs, including third-party function calls and their compositions with SQL

operations, QURE significantly extends the coverage beyond existing systems. Our empirical

evaluation demonstrates that QURE not only achieves higher accuracy in translating and verifying

UDFs but also delivers substantial performance improvements in SparkSQL queries, including

reducing out-of-memory errors. Beyond these results, QURE’s ability to leverage the logical plan

allows extensibility, enabling it to easily support additional functions and operators beyond those

currently integrated into the system.

Acknowledgments
We thank Nico Bruno, Badrish Chandramouli, Surajit Chaudhuri, Vivek Narasayya, Kaushik Rajan,

and Karthik Ramachandra for the insightful discussions and feedback on this work. We also extend

our gratitude to the anonymous reviewers at SIGMOD 2025 for their valuable feedback.

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:28 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

References
[1] Accessed 2025-01-10. Columnstore indexes guide. https://github.com/ByePy/examples.

[2] Accessed 2025-01-10. Generators. https://wiki.python.org/moin/Generators.

[3] Accessed: 2025-01-10. Logical and physical showplan operator reference. https://learn.microsoft.com/en-us/sql/

relational-databases/showplan-logical-and-physical-operators-reference?view=sql-server-ver16.

[4] Accessed: 2025-01-10. NumPy. https://numpy.org/.

[5] Accessed: 2025-01-10. Online UDF Compiler. https://apfel-db.cs.uni-tuebingen.de/.

[6] Accessed: 2025-01-10. Pandas Documentation. https://pandas.pydata.org/pandas-docs/stable/index.html.

[7] Accessed: 2025-01-10. Pandas.DataFrame.groupby. https://pandas.pydata.org/pandas/docs/stable/reference/api/pandas.

DataFrame.groupby.html.

[8] Accessed: 2025-01-10. PySpark Overview. https://spark.apache.org/docs/latest/api/python/index.html.

[9] Accessed: 2025-01-10. QURE - MSR Webpage. https://www.microsoft.com/en-us/research/project/qure/.

[10] Accessed: 2025-01-10. Satisfiability Modulo Theories. https://en.wikipedia.org/wiki/Satisfiability_modulo_theories.

[11] Accessed: 2025-01-10. Spark SQL, Built in Functions. https://spark.apache.org/docs/latest/api/sql/index.html.

[12] Accessed 2025-01-10. Uninterpreted Function. https://en.wikipedia.org/wiki/Uninterpreted_function.

[13] Accessed: 2025-01-10. What is a DataFrame? https://www.databricks.com/glossary/what-are-dataframes.

[14] Accessed: 2025-01-10. Z3 Prover. https://github.com/Z3Prover/z3.

[15] Andreas Blass and Yuri Gurevich. 2001. Inadequacy of Computable Loop Invariants. ACM Trans. Comput. Logic 2, 1
(2001), 1–11. https://doi.org/10.1145/371282.371285

[16] Saikat Chakraborty, Shuvendu Lahiri, Sarah Fakhoury, Madan Musuvathi, Akash Lal, Aseem Rastogi, Nikhil Swamy,

and Rahul Sharma. 2023. Ranking LLM-Generated Loop Invariants for Program Verification. In 2023 Empirical Methods
in Natural Language Processing.

[17] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing database-backed applications with

query synthesis. ACM SIGPLAN Notices 48, 6 (2013), 3–14.
[18] Andrew Crotty et al. 2015. An architecture for compiling udf-centric workflows. Proceedings of the VLDB Endowment

8, 12 (2015), 1466–1477.

[19] Umeshwar Dayal. 1987. Of Nests and Trees: A Unified approach to Processing Queries That Contain Nested Subqueries,

Aggregates, and Quantifiers. In Proceedings of the Very Large Data Bases (VLDB) Conference.
[20] Manoj Elhemali, Cesar A. Galindo-Legaria, Torsten Grabs, and Milind M. Joshi. 2007. Execution Strategies for SQL

Subqueries. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
[21] K Venkatesh Emani, Avrilia Floratou, Carlo Curino, L Tanca, Q Luo, G Polese, L Caruccio, and X Oriol. 2024. PyFroid:

Scaling Data Analysis on a Commodity Workstation.. In EDBT. 61–67.
[22] Gregory Essertel, Ruby Tahboub, James Decker, Kevin Brown, Kunle Olukotun, and Tiark Rompf. 2018. Flare:

Optimizing Apache Spark with Native Compilation for {Scale-Up} Architectures and {Medium-Size} Data. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). 799–815.

[23] John K Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure transformations from input-output

examples. ACM SIGPLAN Notices 50, 6 (2015), 229–239.
[24] Tim Fischer. 2023. To Iterate Is Human, to Recurse Is Divine – Mapping Iterative Python to Recursive SQL. In BTW.

1069–1074.

[25] Tim Fischer, Denis Hirn, and Torsten Grust. 2022. Snakes on a Plan: Compiling Python Functions into Plain SQL

Queries. In Proceedings of the International Conference on Management of Data. Association for Computing Machinery,

New York, NY, USA, 2389–2392.

[26] Kai Franz, Samuel Arch, Denis Hirn, Torsten Grust, Todd C. Mowry, and Andrew Pavlo. 2024. Dear User-Defined

Functions, Inlining isn’t working out so great for us. Let’s try batching to make our relationship work. Sincerely, SQL.

In Conference on Innovative Data Systems Research.
[27] Carlo Alberto Furia and BertrandMeyer. 2010. Inferring Loop Invariants Using Postconditions. Springer Berlin Heidelberg,

Berlin, Heidelberg, 277–300.

[28] Cesar A. Galindo-Legaria andMilind Joshi. 2001. Orthogonal optimization of subqueries and aggregation. In Proceedings
of the ACM SIGMOD International Conference on Management of Data. 571–581.

[29] Robert A. Ganski and Harry K. T. Wong. 1987. Optimization of Nested SQL Queries Revisited. In Proceedings of the
ACM SIGMOD International Conference on Management of Data.

[30] Zhenyu Guo, Xuepeng Fan, Rishan Chen, Jiaxing Zhang, Hucheng Zhou, Sean McDirmid, Chang Liu, Wei Lin, Jingren

Zhou, and Lidong Zhou. 2012. Spotting Code Optimizations in {Data-Parallel} Pipelines through {PeriSCOPE}. In
10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12). 121–133.

[31] Surabhi Gupta, Sanket Purandare, and Karthik Ramachandra. 2020. Aggify: Lifting the curse of cursor loops using

custom aggregates. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 559–573.

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

https://github.com/ByePy/examples
https://wiki.python.org/moin/Generators
https://learn.microsoft.com/en-us/sql/relational-databases/showplan-logical-and-physical-operators-reference?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/showplan-logical-and-physical-operators-reference?view=sql-server-ver16
https://numpy.org/
https://apfel-db.cs.uni-tuebingen.de/
https://pandas.pydata.org/pandas-docs/stable/index.html
https://pandas.pydata.org/pandas/docs/stable/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/pandas/docs/stable/reference/api/pandas.DataFrame.groupby.html
https://spark.apache.org/docs/latest/api/python/index.html
https://www.microsoft.com/en-us/research/project/qure/
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
https://spark.apache.org/docs/latest/api/sql/index.html
https://en.wikipedia.org/wiki/Uninterpreted_function
https://www.databricks.com/glossary/what-are-dataframes
https://github.com/Z3Prover/z3
https://doi.org/10.1145/371282.371285

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:29

[32] Stefan Hagedorn, Steffen Kläbe, and Kai-Uwe Sattler. 2021. Putting pandas in a box. In Conference on Innovative Data
Systems Research (CIDR);(Online). 15.

[33] Denis Hirn. 2023. Data is Data and Control Should be Data, Too -— Compiling Iterative Table-valued PL/SQL UDFs

into Recursive SQL Code. In VLDB PhD Workshop.
[34] Denis Hirn and Torsten Grust. 2020. PL/SQL Without the PL. In Proceedings of the International Conference on

Management of Data. Association for Computing Machinery.

[35] Denis Hirn and Torsten Grust. 2021. One WITH RECURSIVE is Worth Many GOTOs. In Proceedings of the International
Conference on Management of Data. Association for Computing Machinery, 723–735.

[36] C. A. R. Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10 (oct 1969), 576–580.

doi:10.1145/363235.363259

[37] Catalin Hritcu. 2019. Evolution, Semantics, and Engineering of the F Verification System. (2019).

[38] Fabian Hueske, Mathias Peters, Aljoscha Krettek, Matthias Ringwald, Kostas Tzoumas, Volker Markl, and Johann-

Christoph Freytag. 2013. Peeking into the optimization of data flow programs with mapreduce-style udfs. In 2013 IEEE
29th International Conference on Data Engineering (ICDE). IEEE, 1292–1295.

[39] Alekh Jindal et al. 2018. Computation reuse in analytics job service at microsoft. In Proceedings of the 2018 International
Conference on Management of Data. 191–203.

[40] Alekh Jindal, K Venkatesh Emani, Maureen Daum, Olga Poppe, Brandon Haynes, Anna Pavlenko, Ayushi Gupta,

Karthik Ramachandra, Carlo Curino, Andreas Mueller, et al. 2021. Magpie: Python at Speed and Scale using Cloud

Backends.. In CIDR.
[41] Adharsh Kamath, Nausheen Mohammed, Aditya Senthilnathan, Saikat Chakraborty, Pantazis Deligiannis, Shuvendu K

Lahiri, Akash Lal, Aseem Rastogi, Subhajit Roy, and Rahul Sharma. 2024. Leveraging LLMs for Program Verification.

In # PLACEHOLDER_PARENT_METADATA_VALUE#. TU Wien Academic Press, 107–118.

[42] Won Kim. 1982. On Optimizing an SQL-like Nested Query. ACM Transactions on Database Systems (TODS) 7, 3 (1982).
[43] K Rustan M Leino. 2010. Dafny: An automatic program verifier for functional correctness. In International conference

on logic for programming artificial intelligence and reasoning. Springer, 348–370.
[44] Thomas Neumann and Alfons Kemper. 2015. Unnesting arbitrary queries. In Proceedings of the Datenbanksysteme für

Business, Technologie und Web (BTW) Conference.
[45] Erik Nijkamp et al. 2023. CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis.

ICLR (2023).

[46] Erik Nijkamp et al. 2023. CodeGen2: Lessons for Training LLMs on Programming and Natural Languages. ICLR (2023).

[47] Devin Petersohn et al. 2021. Flexible Rule-based Decomposition and Metadata Independence in Modin: A Parallel

Dataframe System. Proc. VLDB Endow. 15, 3 (2021), 739–751.
[48] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program synthesis from polymorphic refinement

types. ACM SIGPLAN Notices 51, 6 (2016), 522–538.
[49] Oleksandr Polozov and Sumit Gulwani. 2015. Flashmeta: A framework for inductive program synthesis. In Proceedings of

the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications.
107–126.

[50] Karthik Ramachandra and Kwanghyun Park. 2019. BlackMagic: Automatic Inlining of Scalar UDFs into SQL Queries

with Froid. Proceedings of VLDB 12, 12 (2019), 1810–1813. https://www.microsoft.com/en-us/research/publication/

blackmagic-automatic-inlining-of-scalar-udfs-into-sql-queries-with-froid/

[51] Karthik Ramachandra, Kwanghyun Park, K Venkatesh Emani, Alan Halverson, César Galindo-Legaria, and Conor

Cunningham. 2017. Froid: Optimization of imperative programs in a relational database. Proceedings of the VLDB
Endowment 11, 4 (2017), 432–444.

[52] Astrid Rheinländer, Martin Beckmann, Anja Kunkel, Arvid Heise, Thomas Stoltmann, and Ulf Leser. 2014. Versatile

optimization of UDF-heavy data flows with sofa. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data. 685–688.

[53] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms and Task Scheduling. In 14th Python in
Science Conference.

[54] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. 2020. Unsupervised translation of

programming languages (NIPS ’20). Red Hook, NY, USA.

[55] K. Rustan and M. Leino. Accessed: 2025-01-10. This is Boogie 2. https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/12/krml178.pdf.

[56] Prakash Seshadri, Hamid Pirahesh, and T. Y. Clarence Leung. 1996. Complex Query Decorrelation. In Proceedings of
the International Conference on Data Engineering (ICDE).

[57] Hesam Shahrokhi et al. 2024. Pytond: Efficient python data science on the shoulders of databases. In 2024 IEEE 40th
International Conference on Data Engineering (ICDE). IEEE, 423–435.

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

https://doi.org/10.1145/363235.363259
https://www.microsoft.com/en-us/research/publication/blackmagic-automatic-inlining-of-scalar-udfs-into-sql-queries-with-froid/
https://www.microsoft.com/en-us/research/publication/blackmagic-automatic-inlining-of-scalar-udfs-into-sql-queries-with-froid/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf

66:30 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

[58] Shivaram Venkataraman et al. 2016. Ernest: Efficient performance prediction for {Large-Scale} advanced analytics. In

13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16). 363–378.
[59] Wikipedia. Accessed: 2025-01-10. Abstract Syntax Tree. https://en.wikipedia.org/wiki/Abstract_syntax_tree.

[60] ZiniuWu et al. 2024. Stage: Query Execution Time Prediction in Amazon Redshift. InCompanion of the 2024 International
Conference on Management of Data. 280–294.

[61] Guoqiang Zhang, Benjamin Mariano, Xipeng Shen, and Işıl Dillig. 2023. Automated Translation of Functional Big Data

Queries to SQL. Proceedings of the ACM on Programming Languages 7, OOPSLA1 (2023), 580–608.
[62] Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig. 2021. UDF to SQL translation through compositional lazy

inductive synthesis. Proceedings of the ACM on Programming Languages 5, OOPSLA (2021), 1–26.

Appendix
(A) Examples of Few-Shot Prompt Templates for Translations
(A.1) Python UDFs
Task: Translate the following Python UDF to a Spark SQL expression. I will provide the UDF, its

table source, attributes, and alias. Below are some examples.

// Example 1

Table Source: lineitem
Attributes: l_quantity
Alias: udf_0_col
Python UDF:

1 def udf(num):
2 return num < 10

Equivalent SQL:
1 SELECT l_quantity < 10 AS udf_0_col
2 FROM lineitem

// Example 2

Table Source: lineitem, orders
Attributes: l_shipmode, o_orderdate
Alias: udf_0_col
Python UDF:

1 def udf(shipmode , orderdate):
2 from date import fromisoformat
3 if shipmode != "MAIL":
4 return False
5 if orderdate < date.fromisoformat("1994 -01 -01"):
6 return False
7 return True

Equivalent SQL:
1 SELECT (l_shipmode = 'MAIL' AND o_orderdate >= DATE '1994 -01 -01') AS

udf_0_col
2 FROM lineitem , orders

// Example 3

Table Source: lineitem
Attributes: l_quantity
Alias: udf_0_col
Python UDF:

1 def not_less_than_10(num):
2 if not num < 10:
3 return True

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

https://en.wikipedia.org/wiki/Abstract_syntax_tree

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:31

4 return False

Equivalent SQL:
1 SELECT l_quantity >= 10 AS udf_0_col
2 FROM lineitem

// UDF

Table Source: lineitem
Attributes: l_quantity
Alias: udf_0_col
Python UDF:

1 @udf(IntegerType ())
2 def udf_0(num):
3 if (num >= 0 and num < 10):
4 return 0
5 elif (num >= 10 and num < 20):
6 return 1
7 elif (num >= 20 and num < 30):
8 return 2
9 elif (num >= 30 and num < 40):
10 return 3
11 else:
12 return 4

Equivalent SQL:

(A.2) Pandas Scalar UDFs
Task: Convert the following Pandas UDF to a Spark SQL expression. I will provide the UDF, its

table source, attributes, alias, and group by columns if needed. Use PARTITION BY when necessary

on provided group by columns. Below are some examples.

// Example 1

Table Source: lineitem
Attributes: l_quantity
Alias: udf_0_col
GroupBy: None
Python UDF:

1 @pandas_udf(DoubleType (), PandasUDFType.SCALAR)
2 def udf_0(df):
3 return df + 1

Equivalent SQL:
1 SELECT l_quantity + 1 AS udf_0_col
2 FROM lineitem

// Example 2

Table Source: lineitem
Attributes: l_quantity
Alias: udf_0_col
GroupBy: year(l_shipdate)
Python UDF:

1 @pandas_udf(DoubleType (), PandasUDFType.SCALAR)
2 def udf_0(df):
3 return df - df.mean()

Equivalent SQL:

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:32 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

1 SELECT l_quantity - mean(l_quantity)
2 OVER (PARTITION BY year(l_shipdate)) AS udf_0_col
3 FROM lineitem

// UDF

Table Source: lineitem
Attributes: l_quantity
Alias: udf_0_col
GroupBy: year(l_shipdate), month(l_shipdate)
Python UDF:

1 @pandas_udf(DoubleType (), PandasUDFType.SCALAR)
2 def udf_0(dfs):
3 return (dfs - dfs.mean()) / dfs.std()

Equivalent SQL:

(A.3) Pandas Agg UDFs
Task: Convert the following Pandas aggregation UDF to a Spark SQL expression. Aggregate

functions should use GROUP BY. Use WHERE instead of HAVING. Below are some examples.

// Example 1

Table Source: lineitem
Attributes: l_quantity
Alias: udf_0_col
Aggregate Attributes: l_shipmode
Python UDF:

1 @pandas_udf(IntegerType (), PandasUDFType.GROUPED_AGG)
2 def udf_0(df):
3 return len(df.value_counts ())

Equivalent SQL:
1 SELECT COUNT(DISTINCT l_quantity) AS udf_0_col
2 FROM lineitem
3 GROUP BY l_shipmode

// Example 2

Table Source: lineitem
Attributes: l_quantity
Alias: udf_0_col
Aggregate Attributes: l_shipmode
Python UDF:

1 @pandas_udf(DoubleType (), PandasUDFType.GROUPED_AGG)
2 def udf_0(df):
3 return df.mean()

Equivalent SQL:
1 SELECT AVG(l_quantity) AS udf_0_col
2 FROM lineitem
3 GROUP BY l_shipmode

// UDF

Table Source: lineitem
Attributes: l_quantity
Alias: udf_0_col

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:33

Aggregate Attributes: None
Python UDF:

1 @pandas_udf(DoubleType (), PandasUDFType.GROUPED_AGG)
2 def udf_0(df):
3 return df.max() - df.min()

Equivalent SQL:

(A.4) Pandas Map UDFs
Task: Convert the following Pandas UDF to a Spark SQL expression. Aggregate functions should

use PARTITION BY over aggregate attributes when necessary. Below are some examples.

// Example 1

Table Source: lineitem
Aggregate Attributes: l_shipmode
Python UDF:

1 @pandas_udf(SCHEMA , PandasUDFType.GROUPED_MAP)
2 def udf_0(df):
3 l_quantity_col = df["l_quantity"]
4 l_discount_mean = df["l_discount"].mean()
5 return df.assign(l_quantity=l_quantity_col - l_discount_mean)

Equivalent SQL:
1 SELECT l_quantity - AVG(l_discount)
2 OVER (PARTITION BY l_shipmode) AS l_quantity
3 FROM lineitem

// Example 2

Table Source: lineitem
Aggregate Attributes: l_shipmode
Python UDF:

1 @pandas_udf(SCHEMA , PandasUDFType.GROUPED_MAP)
2 def udf_0(df):
3 l_discount_col = df["l_discount"]
4 return df.assign(l_discount=l_discount * 1000)

Equivalent SQL:
1 SELECT l_discount * 1000 AS l_discount
2 FROM lineitem

// UDF

Table Source: lineitem
Aggregate Attributes: None
Python UDF:

1 @pandas_udf(SCHEMA , PandasUDFType.GROUPED_MAP)
2 def udf_0(df):
3 l_quantity_col = df["l_quantity"]
4 return df.assign(l_quantity=l_quantity_col - 100)

Equivalent SQL:

(B) Translation from ByePy [5] for the example UDF in Section 7.3
1 CREATE OR REPLACE FUNCTION keytest_start(key varchar) RETURNS varchar
2 AS
3 $$
4 WITH RECURSIVE run("rec?",
5 "label",

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:34 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

6 "res",
7 "key",
8 "y",
9 "code",
10 "i") AS
11 (
12 (SELECT True ,
13 'fori1_head ',
14 NULL :: varchar ,
15 "key",
16 "y_1",
17 "code_1",
18 "i_1"
19 FROM LATERAL (SELECT NULL :: varchar AS "y_4") AS "let11"("y_4"),
20 LATERAL (SELECT NULL :: varchar [] AS "code_5") AS "let12"("code_5"),
21 LATERAL (SELECT NULL :: int4 AS "i_6") AS "let13"("i_6"),
22 LATERAL (SELECT '' AS "y_1") AS "let14"("y_1"),
23 LATERAL
24 (SELECT ARRAY['A','I'] :: text[] AS "code_1") AS "let15"("code_1"),
25 LATERAL (SELECT 1 AS "i_1") AS "let16"("i_1"))
26 UNION ALL
27 (SELECT "result".*
28 FROM run AS "run"("rec?", "label", "res", "key", "y", "code", "i"),
29 LATERAL
30 ((SELECT "ifresult2".*
31 FROM LATERAL (SELECT 2 AS "q2_2") AS "let0"("q2_2"),
32 LATERAL (SELECT "i" <= "q2_2" AS "pred3_2") AS "let1"("pred3_2"),
33 LATERAL
34 ((SELECT "ifresult4".*
35 FROM LATERAL
36 (SELECT "key" = (("code")["i"]) AS "q7_3") AS "let3"("q7_3")

,
37 LATERAL
38 ((SELECT True , 'ifmerge6 ', NULL :: varchar , "key", "y_6", "

code", "i"
39 FROM LATERAL (SELECT ("code")["i"] AS "y_6") AS "let5"("

y_6")
40 WHERE NOT "q7_3" IS DISTINCT FROM True)
41 UNION ALL
42 (SELECT True , 'ifmerge6 ', NULL :: varchar , "key", "y", "

code", "i"
43 WHERE "q7_3" IS DISTINCT FROM True)
44) AS "ifresult4"
45 WHERE NOT "pred3_2" IS DISTINCT FROM True)
46 UNION ALL
47 (SELECT False ,
48 NULL :: text ,
49 "y" AS "result",
50 "run"."key",
51 "run"."y",
52 "run"."code",
53 "run"."i"
54 WHERE "pred3_2" IS DISTINCT FROM True)
55) AS "ifresult2"
56 WHERE "run"."label" = 'fori1_head ')
57 UNION ALL
58 (SELECT True , 'fori1_head ', NULL :: varchar , "key", "y", "code", "i_5"
59 FROM LATERAL (SELECT "i" + 1 AS "i_5") AS "let9"("i_5")
60 WHERE "run"."label" = 'ifmerge6 ')
61) AS "result"("rec?", "label", "res", "key", "y", "code", "i")
62 WHERE "run"."rec?")
63)
64 SELECT "run"."res" AS "res"
65 FROM run AS "run"
66 WHERE NOT "run"."rec?"
67 $$ LANGUAGE SQL;

(C) Boogie code for Nested Loop along with invariants
1 type KeyValue;
2

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:35

3 function getKey(kv: KeyValue): int;
4 function getValue(kv: KeyValue): int;
5 function joinPairs(kv1: KeyValue , kv2: KeyValue): KeyValue;
6 function keysMatch(elem1: KeyValue , elem2: KeyValue): bool;
7 function nestedLoopJoinOuterLoop_Props(data1: [int]KeyValue , len1: int , data2: [int]KeyValue , len2: int

, result: [int]KeyValue , res_len: int , data1totallen: int , old_len: int): bool;
8 function nestedLoopJoinInnerLoop_Props(data1: [int]KeyValue , len1: int , data2: [int]KeyValue , len2: int

, result: [int]KeyValue , res_len: int , data1totallen: int , data2totallen: int , old_len: int
old_len: int): bool;

9

10 axiom (forall elem1: KeyValue , elem2: KeyValue :: (getKey(elem1) == getKey(elem2)) ==> keysMatch(elem1 ,
elem2));

11 axiom (forall elem1: KeyValue , elem2: KeyValue :: (getKey(elem1) != getKey(elem2)) ==> !keysMatch(elem1
, elem2));

12 axiom (forall data1: [int]KeyValue , len1: int , data2: [int]KeyValue , len2: int , result: [int]KeyValue ,
res_len: int , data1totallen: int , old_len: int ::

13 (
14 (len1 == 0)
15 ||
16 ((0 <= len1 && len1 <= len1 <= data1totallen)
17 &&
18 (old_len <= res_len && res_len < old_len + len2)
19 &&
20 !(exists x: int , y: int ::
21 (0 <= x && x < len1) && (0 <= y && y < len2) &&
22 keysMatch(data1[x], data2[y]) &&
23 !existsInResult(data1[x], data2[y], result , 0, res_len)
24)
25 &&
26 !(exists x: int , y: int ::
27 (0 <= x && x < len1) && (0 <= y && y < len2) &&
28 !keysMatch(data1[x], data2[y]) &&
29 existsInResult(data1[x], data2[y], result , 0, res_len)
30)
31 &&
32 (0 == res_len) ==>
33 !(exists x: int , y: int ::
34 (0 <= x && x < len1) && (0 <= y && y < len2) &&
35 keysMatch(data1[x], data2[y])
36)
37 &&
38 ((0 < res_len) ==>
39 (forall z: int :: (0 <= z && z < res_len) ==>
40 (exists x: int , y: int ::
41 (0 <= x && x < len1) && (0 <= y && y < len2) &&
42 keysMatch(data1[x], data2[y]) && result[z] == joinPairs(data1[x], data2[y])
43)
44)
45)
46)
47 ==> nestedLoopJoinOuterLoop_Props(data1 , len1 , data2 , len2 , result , res_len) == true
48);
49

50

51 axiom (forall data1: [int]KeyValue , len1: int , data2: [int]KeyValue , len2: int , result: [int]KeyValue ,
res_len: int , data1totallen: int , data2totallen: int , old_len: int ::

52 (
53 ((len2 == 0)
54 ||
55 ((0 <= len2 && len2 <= data2totallen)
56 &&
57 (old_len <= res_len && res_len < old_len + 1)
58 &&
59 !(exists x: int , y: int ::
60 (x == len1) && (0 <= y && y < len2) &&
61 keysMatch(data1[x], data2[y]) &&
62 !existsInResult(data1[x], data2[y], result , old_len , res_len)
63)
64 &&
65 !(exists x: int , y: int ::
66 (x == len1) && (0 <= y && y < len2) &&
67 !keysMatch(data1[x], data2[y]) &&
68 existsInResult(data1[x], data2[y], result , old_len , res_len)
69)
70 &&
71 (old_len == res_len) ==>
72 !(exists x: int , y: int ::
73 (x == len1) && (0 <= y && y < len2) &&
74 keysMatch(data1[x], data2[y])
75

76)

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:36 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

77 &&
78 ((old_len < res_len) ==>
79 (forall z: int :: (old_len <= z && z < res_len) ==>
80 (exists x: int , y: int ::
81 (x == len1) && (0 <= y && y < len2) &&
82 keysMatch(data1[x], data2[y]) && result[z] == joinPairs(data1[x], data2[y])
83)
84)
85)
86)
87 ==> nestedLoopJoinInnerLoop_Props(data1 , len1 , data2 , len2 , result , res_len , old_len) == true
88);
89

90

91 function existsInResult(data1_element: KeyValue , data2_element: KeyValue , result: [int]KeyValue ,
old_len: int , res_len: int) : bool;

92

93 axiom (forall data1_element: KeyValue , data2_element: KeyValue , result: [int]KeyValue , old_len: int ,
res_len: int ::

94 (exists z: int :: (old_len <= z && z < res_len) &&
95 (result[z] == joinPairs(data1_element , data2_element))
96) ==> existsInResult(data1_element , data2_element , result , old_len , res_len) == true
97);
98

99 axiom (forall data1_element: KeyValue , data2_element: KeyValue , result: [int]KeyValue , old_len: int ,
res_len: int ::

100 !(exists z: int :: (old_len <= z && z < res_len) &&
101 (result[z] == joinPairs(data1_element , data2_element))
102) ==> existsInResult(data1_element , data2_element , result , old_len , res_len) == false
103);
104

105 axiom (forall data1_element: KeyValue , data2_element: KeyValue , result: [int]KeyValue , old_len: int ,
res_len: int ::

106 (old_len == res_len) ==> existsInResult(data1_element , data2_element , result , old_len , res_len) ==
false

107);
108

109 function countJoinPairsRecursive(data1: [int]KeyValue , i: int , data2: [int]KeyValue , len2: int): int {
110 if (i == 0) then 0
111 else countJoinPairsRecursive(data1 , i - 1, data2 , len2) + countInnerPairs(data1[i - 1], data2 , len2

, len2)
112 }
113

114 function countInnerPairs(element: KeyValue , data2: [int]KeyValue , j: int , len2: int): int {
115 if (j == 0) then 0
116 else countInnerPairs(element , data2 , j - 1, len2) + (if (getKey(element) == getKey(data2[j - 1]))

then 1 else 0)
117 }
118

119

120 procedure nestedloopsjoin(data1: [int]KeyValue , len1: int , data2: [int]KeyValue , len2: int)
121 returns (result: [int]KeyValue , res_len: int)
122 requires len1 > 0;
123 requires len2 > 0;
124 {
125 var i, j: int;
126 var old_len: int;
127

128 res_len := 0;
129 i := 0;
130 while (i < len1)
131 invariant nestedLoopJoinOuterLoop_Props(data1 , i, data2 , len2 , result , res_len , len1 , old_len);
132 {
133 j := 0;
134 old_len := res_len;
135 while (j < len2)
136 invariant nestedLoopJoinInnerLoop_Props(data1 , i, data2 , j, result , res_len , len1 , len2 ,

old_len);
137 {
138 if (getKey(data1[i]) == getKey(data2[j]))
139 {
140 result[res_len] := joinPairs(data1[i], data2[j]);
141 res_len := res_len + 1;
142 }
143 j := j + 1;
144 }
145 i := i + 1;
146 }
147 }

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

QURE: AI-Assisted and Automatically Verified UDF Inlining 66:37

(D) Boogie code for Group-By Sum Aggregation
1 type KeyValue;
2 function getKey(kv: KeyValue): int;
3 function getValue(kv: KeyValue): int;
4 function lookup(ad: [int]int , k: int , len: int) returns (int);
5 function isDistinctKeyArray(arr: [int]int , len: int): bool;
6 function containsAllDistinctKeys(data: [int]KeyValue , data_len: int , aggregated_data: [int]int , ad_len:

int): bool;
7 function sumValuesForKeyData(data: [int]KeyValue , keys_array: [int]int , ad_len: int , p: int , len: int):

int;
8 function Groupbysum_Props(data: [int]KeyValue , keys_array: [int]int , values_array: [int]int , ad_len:

int , data_len: int , cur_iter: int): bool
9

10 axiom (forall ad: [int]int , data: [int]KeyValue , k: int , len: int ::
11 (0 <= lookup(ad, k, len) && lookup(ad, k, len) < len) ==> (getKey(data[lookup(ad, k, len)]) == k

));
12

13 axiom (forall ad: [int]int , data: [int]KeyValue , k: int , len: int ::
14 (lookup(ad , k, len) == len) <==> (forall i: int :: (0 <= i && i < len) ==> (getKey(data[i]) != k

)));
15

16 axiom (forall ad: [int]int , data: [int]KeyValue , k: int , len: int ::
17 len == 0 ==> (lookup(ad, k, len) == -1));
18

19 axiom (forall ad: [int]int , k1: int , k2: int , len: int ::
20 (0 <= lookup(ad, k1, len) && 0 <= lookup(ad , k2 , len) && k1 != k2) ==> (lookup(ad, k1, len) !=

lookup(ad, k2, len)));
21

22 axiom (forall ad: [int]int , k1: int , k2: int , len: int , len2: int ::
23 (0 <= lookup(ad, k1, len) && 0 <= lookup(ad , k2 , len2) && len <= len2) ==> (lookup(ad, k1, len)

!= lookup(ad, k2, len2)));
24

25 axiom (forall ad: [int]int , k: int , len: int , len2: int ::
26 (0 <= lookup(ad, k, len) && 0 <= lookup(ad, k, len2) && len <= len2) ==> (lookup(ad, k, len) ==

lookup(ad, k, len2)));
27

28

29

30 axiom (forall arr: [int]int , len: int ::
31 (forall i: int :: (0 <= i && i < len) ==> (lookup(arr , arr[i], i) == -1))
32 &&
33 (forall i, j: int :: (0 <= i && i < j && j < len) ==> (arr[i] != arr[j]))
34 => isDistinctKeyArray(arr , len)
35);
36

37

38 axiom (forall data: [int]KeyValue , data_len: int , aggregated_data: [int]int , ad_len: int ::
39 (forall i: int :: (0 <= i && i < data_len) ==>
40 (lookup(aggregated_data , getKey(data[i]), ad_len) != -1))
41 &&
42 (forall j: int :: (0 <= j && j < ad_len) ==> (exists k: int :: (0 <= k && k < data_len && getKey(

data[k]) == aggregated_data[j])
43 ==> containsAllDistinctKeys(data , data_len , aggregated_data , ad_len)
44);
45

46

47 axiom (forall data: [int]KeyValue , keys_array: [int]int , ad_len: int , data_len: int , cur_iter: int ::
48 ((cur_iter == 0)
49 ||
50 ((0 <= cur_iter && cur_iter <= data_len)
51 &&
52 (0 <= ad_len && ad_len <= cur_iter)
53 &&
54 containsAllDistinctKeys(data , data_len , keys_array , ad_len)
55 &&
56 isDistinctKeyArray(keys_array , ad_len)
57 &&
58 (forall p: int :: 0 <= p && p < ad_len && values_array[p] == sumValuesForKeyData(data ,keys_array

, ad_len , keys_array[p], ad_ cur_iter)))
59 ==> Groupbysum_Props(data , keys_array , values_array , ad_len , data_len , cur_iter) == True;
60

61 axiom (forall data: [int]KeyValue , keys_array: [int]int , ad_len: int , p: int , len: int ::
62 (len == 0) ==> (sumValuesForKeyData(data , keys_array , ad_len , p, len) == 0));
63

64

65 axiom (forall data: [int]KeyValue , keys_array: [int]int , ad_len: int , p: int , len: int ::
66 (len > 0) ==> (sumValuesForKeyData(data , keys_array , ad_len , p, len) ==
67 sumValuesForKeyData(data , keys_array , ad_len , p, len - 1) +
68 (if lookup(keys_array , getKey(data[len - 1]), ad_len) == p then getValue(data[len

- 1]) else 0)));

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

66:38 Tarique Siddiqui, Arnd Christian König, Jiashen Cao, Cong Yan, and Shuvendu K. Lahiri

69

70

71 procedure udf(data: [int]KeyValue , data_len: int) returns (keys_array: [int]int , values_array: [int]int
, ad_len: int)

72 requires data_len > 0;
73 {
74 var i, j, k, v: int;
75 ad_len := 0;
76 i := 0;
77

78 while (i < data_len)
79 invariant Groupbysum_Props(data , keys_array , values_array , ad_len , data_len , i)
80 {
81 k := getKey(data[i]);
82 v := getValue(data[i]);
83 j := lookup(keys_array , k, ad_len);
84

85 if (j == ad_len){
86 keys_array[ad_len] := k;
87 values_array[ad_len] := v;
88 ad_len := ad_len + 1;
89 }
90 else{
91 values_array[j] := values_array[j] + v;
92 }
93 i := i + 1;
94 }
95 }

, Vol. 3, No. 1 (SIGMOD), Article 66. Publication date: February 2025.

	Abstract
	1 Introduction
	2 Background
	2.1 Characterizing UDFs in Spark
	2.2 Hoare-Style Verification
	2.3 Uninterpreted Functions

	3 Overview of QURE
	4 Verification of Equivalence
	4.1 Leveraging SQL for Synthesizing Post-conditions and Invariants
	4.2 Loop Summaries
	4.3 Equivalence between Loops and Operators
	4.4 Limitations in Loop Handling
	4.5 Discussion

	5 Modeling Python in Boogie
	5.1 The AST Transformation Framework
	5.2 Handling Function Calls
	5.3 Modeling DataFrames

	6 Inlining UDF SQL Using CTEs
	7 Empirical Evaluation
	7.1 Coverage of UDFs
	7.2 Performance Improvement
	7.3 Comparison with ByePy
	7.4 Comparison with PyFroid emani2024pyfroid and PyTond pytond
	7.5 LLM and Formal Verification Overheads
	7.6 Limitations of QURE and Future Work

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

