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As cloud service systems grow in scale and complexity, incidents that indicate unplanned interruptions and
outages become unavoidable. Rapid and accurate triage of these incidents to the appropriate responsible
teams is crucial to maintain service reliability and prevent significant financial losses. However, existing
incident triage methods relying on manual operations and predefined rules often struggle with efficiency
and accuracy due to the heterogeneity of incident data and the dynamic nature of domain knowledge across
multiple teams. To solve these issues, we propose Triangle, an end-to-end incident triage system based on
a Multi-LLM-Agent framework. Triangle leverages a semantic distillation mechanism to tackle the issue of
semantic heterogeneity in incident data, enhancing the accuracy of incident triage. Additionally, we introduce
multi-role agents and a negotiation mechanism to emulate human engineers’ workflows, effectively handling
decentralized and dynamic domain knowledge from multiple teams. Furthermore, our system incorporates
an automated troubleshooting information collection and mitigation mechanism, reducing the reliance on
human labor and enabling fully automated end-to-end incident triage. Extensive experiments conducted on
real-world cloud production environment demonstrate that Triangle significantly improves the accuracy of
incident triage more than 20% and reduces the time to engage about 3 time units per incident compared to
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state-of-the-art methods. Triangle has been successfully deployed in a system with tens of millions of users at
a leading global technology company.
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1 INTRODUCTION

As cloud service systems continue to scale and become more complex, incidents within these
systems are inevitable [1, 5, 6, 27-29]. These incidents often indicate unplanned interruptions
and even system outages. Thus, when an incident occurs, it is crucial for the responsible team to
address it promptly to prevent further failures and avoid significant financial losses [29]. However,
in today’s large-scale cloud service systems, even a single system may involve many teams with
different functions. Therefore, incidents should be assigned to the appropriate responsible team, a
process known as Incident Triage [5, 19]. If an incident is assigned to an unsuitable team, the
incident usually can not be solved properly and should be reassigned based on the feedback from
that team until the correct team is identified. A bad incident triage can significantly extend the
time to engage (TTE), increasing the system’s risk exposure. Thus, rapid and accurate incident
triage is critical for reducing recovery time and ensuring service quality.

Traditional incident triage processes typically rely on manual operations combined with pre-
defined rules, where engineers utilize various tools to further investigate issues associated with
the incident. This often involves ad hoc meetings across multiple relevant teams, consuming a
significant amount of human resources and time, and making rapid fault resolution difficult.

To automate the incident triage process, we can draw a direct parallel to the bug triage problem.
Recent research in academia has extensively explored bug triage [8, 12, 14, 18, 21, 24], typically
involving a unified model pre-trained on historical datasets to assign bugs to various teams through a
one-time classification. This approach, however, has limitations and does not meet the performance
requirements for incident triage. The core reason for this issue is that, unlike bug triage, the original
incident information is often either automatically generated by system components following
certain rules or manually submitted by users, resulting in a lack of rich information [5]. Therefore,
directly classifying incidents based on the original data makes it difficult to achieve the accuracy
needed for practical applications.

As shown in Figure 1, a customer reported incident highlights a sign-in issue encountered by a
service client on Mac devices. Initially, the incident is manually triaged to Team A, who attempt to
resolve the issue through various steps, but are ultimately unable to fix it. Consequently, the incident
is transferred to Team B based on their domain knowledge. Team B follows their troubleshooting
guide (TSG), conducts further examinations, but still does not resolve the problem, leading them to
triage the incident to Team C based on the TSG. Team C then uses their specialized tools to collect
domain-specific logs, identify the root cause, and resolve the incident.

This process, which involves three teams and many engineers, can be both time-consuming
and complex. It is not feasible to directly identify Team C as the right team without the thorough
examinations performed by Teams A and B. To address this, our core idea is to replace the teams
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Fig. 1. An illustration of current incident triage system

with an LLM-driven agent. This agent would assimilate domain knowledge and utilize existing
tools to automate the triage process, streamlining and expediting incident resolution.

To develop an incident triage system that meets real-world requirements for efficiency and
accuracy, we conducted an in-depth investigation into the incident management practices of a
leading global technology company’s cloud services. Based on our practical experience, we have
identified three key challenges in achieving efficient and accurate incident triage:

¢ Incident Semantic Heterogeneity: In incident data, semantic expressions closely related
to incident triage often exhibit heterogeneity. Semantic information relevant to incident
triage is usually contained within several key phrases scattered throughout the text data of
an incident. Since these key phrases are not generated from predefined templates, different
incidents can have heterogeneous expressions. This situation leads to incidents with similar
language patterns belonging to different teams, while those with vastly different patterns
may belong to the same team.

e Decentralized and Dynamic Domain Knowledge: Triage of an incident is often difficult
to determine based solely on the domain knowledge of a single team. Effective incident
triage typically requires combining knowledge from multiple teams. Additionally, a team’s
responsibilities are constantly evolving, making the domain knowledge relevant to incident
triage dynamic and ever-changing.

e High Human Labor: Due to the heavy reliance on domain knowledge for incident triage,
injecting this knowledge often incurs significant human labor costs. This not only makes
end-to-end automation of incident triage challenging but also significantly increases the time
to engage.

To address these issues, we designed the TRIANGLE system, an end-to-end incident triage system
based on a Multi-LLM-Agent framework. We developed a semantic distillation mechanism, leverag-
ing the strong semantic understanding capabilities of LLMs to effectively comprehend the semantics
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of incident data and teams’ domain knowledge for triage, thereby addressing incident semantic het-
erogeneity and improving the accuracy of incident triage. Additionally, we emulated the workflow
of human engineers in solving incident triage problems by innovatively designing multi-role agents
and proposing an effective negotiation mechanism. This allows for the distributed and dynamic
handling of multi-team domain knowledge, effectively mitigating the impact of decentralized and
dynamic domain knowledge on triage performance. By utilizing the robust semantic understanding
of LLMs, we designed an automated Team Information Enrichment mechanism throughout the
entire incident triage process, enabling end-to-end triage even in scenarios requiring reassignment,
without additional human labor costs.

We conducted extensive experiments with TRIANGLE using incident triage data collected from a
real-world production environment serving tens of millions of users. The results demonstrate that
TRIANGLE achieves efficient and accurate end-to-end incident triage. Compared to state-of-the-art
methods, our model improves the average accuracy of incident triage by more than 20% and reduces
the time to engage by about 3 time units ! per incident. Our model has been successfully deployed
in a system with tens of millions of users at a leading global technology company.

Our contributions are summarized as follows:

e To the best of our knowledge, TRIANGLE is the first end-to-end incident triage system designed
using a Multi-LLM-Agent framework to automate the incident triage process in large-scale
cloud service environments. This approach improves both efficiency and accuracy, addressing
the specific challenges inherent in incident triage scenarios.

e We propose a novel semantic distillation mechanism that leverages the powerful semantic
understanding capabilities of LLMs to address the issue of incident semantic heterogeneity.
This mechanism enhances the system’s ability to accurately interpret incident data and
domain knowledge, significantly improving triage accuracy.

e We design a multi-role agent framework with an effective negotiation mechanism that emu-
lates the workflow of human engineers in incident triage tasks. This framework dynamically
manages multi-team domain knowledge, effectively mitigating the challenges posed by
decentralized and dynamic domain knowledge.

e We develop an automated Team Information Enrichment mechanism integrated throughout
the entire triage process, which allows TRIANGLE to perform end-to-end triage without
incurring additional human labor costs, even in cases where reassignment is needed.

e We conduct extensive experiments with real-world incident triage data from a production en-
vironment, demonstrating that TRIANGLE significantly outperforms state-of-the-art methods
in terms of triage accuracy, reducing reassignments, and lowering time to engagement. The
system has been successfully deployed in a large-scale environment serving tens of millions
of users at a leading global technology company.

The rest of this paper is organized as follows. In Section 2, we introduce the background of the
incident triage task and the multi-LLM-agent. In Section 3 we provide a detailed description of the
design of our incident triage system, TRIANGLE. Then, we conducted extensive experiments that
demonstrate the outstanding performance of TRIANGLE in Section 4. Moreover, We discuss our
future work and the threats to validity. Then we review related work. Finally, we conclude our
work in Section 7.

1A time unit is a metric used internally by the company to evaluate time to triage. There is a linear correspondence between
a time unit and real-world time. However, due to privacy reasons, we cannot disclose the relationship between the time unit
and actual physical time.
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2 BACKGROUND
2.1 Incident Data
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Fig. 2. An example of incident data after triage and manual processing

Incident data serves as a critical indicator of service quality in large-scale cloud service systems.
An incident is often triggered by anomalies, faults, or unplanned interruptions within a system,
which could lead to significant service degradation or outages. The rapid identification and resolu-
tion of incidents are essential to maintaining high service quality and minimizing financial losses.
However, modern cloud environments are highly complex, often involving numerous intercon-
nected components and teams with distinct functions. This complexity amplifies the challenges
associated with understanding and processing incident data effectively.

Incident data typically comprises system-generated logs, telemetry, alerts, and user reports, which
can vary widely in their format, granularity, and relevance. Incident data are usually semi-structured
data and natural language is the most important data type in incidents, as shown in Figure 2. The
same incident pattern might correspond to different teams depending on subtle contextual factors,
while different patterns might lead to the same team. This variability complicates the classification
and assignment of incidents to the correct teams, impacting the effectiveness of incident triage
systems.

2.2 Incident Triage

Incident triage is the process of quickly and accurately assigning incidents to the appropriate
teams to ensure timely mitigation. In large-scale cloud service environments, a poorly managed
triage can significantly increase Time to Engage (TTE), which is detrimental to both service quality
and customer trust. Traditional approaches to incident triage rely heavily on predefined rules,
human expertise, and manual operations. Engineers often need to investigate incident details using
various tools, collaborate across multiple departments, and adjust triage decisions based on evolving
insights and feedback. Even for human engineers, incident triage remains a very challenging task.
The triage process involves extensive discussions across multiple teams, which results in a very
long TTE in real-world industrial settings, sometimes even stretching to several weeks. We show a
real-word caes in Figure 3. In this example, we calculated the average accuracy of manual incident
triage in a system over six months and the average number of discussion meetings caused by
incidents each month. From this, it is evident that an automated end-to-end incident triage system
is an urgent need in the industry.
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Fig. 3. Empirical study of manual incident triage performance: (a) illustrates the accuracy of manual triage
over a six-month period. (b) shows the average number of discussion meetings per month required for incident
resolution.

Incident triage shares similarities with bug triage, both being multi-class, single-label classifica-
tion problems where different teams represent different classes. However, unlike bug triage, incident
data is often generated automatically by system components or manually by users, lacking the
richness needed for one-time classification models to perform effectively. This lack of context-rich
information necessitates more sophisticated methods that can dynamically incorporate evolving
domain knowledge and adapt to changing system states. For current incident triage systems, the
initial assignment is often based on static rules or simple heuristics. In practice, incidents frequently
need multiple reassignments before they reach the right team, increasing Transfer Hop Counts, TTE
and TTM. This reliance on manual routing and human experience further exacerbates inefficiencies
and inconsistencies, underscoring the need for more automated and intelligent triage systems.

2.3 Multi-LLM-Agent

Large Language Models (LLMs) have emerged as a transformative technology in natural language
processing (NLP), enabling a wide range of applications, from text generation to complex problem-
solving. However, as these models grow in size and complexity, it becomes evident that a single
model, no matter how advanced, may not be sufficient to tackle all tasks optimally. This realization
has led to the development of multi-LLM-agent systems, where multiple LLMs are deployed in a
coordinated manner to enhance performance, robustness, and adaptability.

A multi-LLM-agent system involves the orchestration of several LLMs, each potentially spe-
cialized in different tasks or aspects of a broader problem. By leveraging the strengths of various
models, these systems aim to overcome individual limitations, such as biases, contextual misunder-
standings, or performance degradation on specific tasks. The interaction between these models
can be designed to mirror human teamwork, where different agents contribute their expertise to
achieve a common goal.

The concept of multi-LLM-agent systems also addresses scalability and resource efficiency. In a
rapidly evolving technological landscape, where new models and updates are frequently released,
a multi-agent approach allows for more flexible integration of cutting-edge innovations. This
modularity ensures that the system remains adaptive and can be optimized continuously without
the need to overhaul the entire architecture.
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In recent years, several architectures and frameworks have been proposed to implement multi-
LLM-agent systems, each with its unique approach to coordination, communication, and decision-
making. These systems have demonstrated potential in various domains, including automated
reasoning, dialogue systems, and incident triage, where the synergy between different LLMs can
lead to more accurate and reliable outcomes.

3 APPROACH
3.1 Overall Workflow

The overall workflow of TRIANGLE is illustrated in Figure 4. The core process of TRIANGLE can be
divided into three phases: Semantic Distillation, Team Candidate Selection, and Incident
Assignment Loop.

— Team Candidates Team Candidates Team Manager Discussion Group
T v E o I by LLM £
' . 1sto!
Incident ! Aligned 1 Semantic ... i L
' . Incident ' Key Phrases
Semantic ' +
A R+ DD &@& & & &
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‘ 1. Semantic Distillation 2. Team Candidate Selection 3. Incident Assignment Loop ‘

Fig. 4. The overall workflow of TRIANGLE.

When a new incident arises in the system, it enters the Semantic Distillation phase. In this phase,
we make Analyser Agent to extract semantic information from the incident that is closely related
to triage. The detailed process is described in Section 3.2. The primary goal in this phase is to
effectively extract key phrases semantically relevant to triage in order to reduce the impact of
incident semantic heterogeneity.

In the Team Candidate Selection phase, the Triage Agent receives the semantically distilled
incident information and raw incident. At this point, the Triage Agent attempts to select suitable
team candidates for the current incident according to the historical incident data and team function
documents. This process leverages the language understanding capabilities of LLMs to find the
most semantically similar team. The Triage Agent combines two kinds of team candidates to build
a discussion group.

In the Incident Assignment Loop, the core task is to find correct team for the incident by
negotiation among Team Manager Agents. A intuitive approach is to vote. At this phase, the team
candidates selected by the Triage Decider form a discussion group. Each Team Manager in the
group has the ability to access external monitoring databases and provides enriched discussion
information from their team’s perspective for the current incident. Subsequently, multiple Team
Managers vote to decide the incident assignment, as detailed in Section 3.3. If a suitable team is
successfully selected through voting, this result is considered the final outcome of the triage. If the
voting does not result in a consensus, the discussion results and the enriched incident information
will be sent back to the Triage Decider for another round of team candidate selection. To prevent

, Vol. 1, No. 1, Article . Publication date: February 2025.



8 ZYu, M.Ma, X.Feng, R.Ding, Z.Li, et.al.

infinite loops, we have set the maximum number of reassignment cycles to 5, based on practical
experience. If the reassignment cycles exceed this maximum, the TRIANGLE will directly assign the
incident according to the last voting result and involve engineers in the process.

3.1.1  Multi-Role Agent Corporation. In the TRIANGLE system, there are three different agent roles
with distinct functionalities: Analyser, Triage Decider, and Team Manager, as illustrated in Figure
Figure 4. These three roles work collaboratively to efficiently perform the incident triage task, with
each playing a unique part in the overall process.

Analyser Agent. The primary task of the Analyser is to preprocess incoming incidents and perform
semantic distillation (see more details in Section 3.2). Specifically, when a new incident is introduced
to the system, the Analyser first extracts basic information and preprocesses it by cleaning data,
parsing text, identifying key entities according to the team function documents. Then, the Analyser
conducts semantic distillation to extract the most important key phrases semantically from the
incident data. This agent aims to reduce unnecessary noise while providing more accurate and
concise input data for subsequent decision-making steps.

Triage Decider Agent. The core task of the Triage Decider is essentially singular: to identify
suitable team candidates for the current incident. It is central to triage decision-making. Intuitively,
if an incident is very similar to a historically occurred incident, it is likely that this incident belongs
to the same team as the historical one. Similarly, if an incident closely matches the functional
description of a certain team, it is highly probable that this incident is closely related to that team.

Algorithm 1 shows the pseudocode of the Triage Decider process. Following these two principles,
during the initial assignment, the team triage first calculates the similarity with historical incidents.
We use TF-IDF to vectorize all incident data and use cosine similarity to determine the top K most
similar incidents from history and take their handling teams as candidates (Step 1). Considering time
and computational cost at this stage, we do not use LLM. However, team candidates obtained solely
through TF-IDF similarity calculations are not accurate. Therefore, the Triage Decider also uses
LLM to directly match the current incident with the team’s functional documents and retrieves N
team candidates. Due to context limitations, we pre-compress and summarize the team’s functional
documents with LLM to meet the context length requirements of LLM (Step 2). Subsequently,
the Triage Decider combine K candidates from historical incidents and N candidates from team
function document. The Triage Decider utilizes LLM’s language understanding capabilities to rank
the current candidates based on semantic matching to the current incident (Step 3). At this stage,
we can reduce the compression rate of the team’s functional documents, since we only need to
use K + N teams. Finally, according to the rank of team candidates, Triage Decider select top M
(M < K + N) teams to build a discussion group. Due to the limitation of LLM’s context window
length, in TRIANGLE, we set K = N = M = 5.

During the reassignment process, the Triage Decider performs a similar function; however, it
does not use TF-IDF to select team candidates from historical incidents. Instead, it removes the
incorrect team from the previous round and combines the enriched discussion information obtained
in the last hop to select team candidates from the team’s functional documents.

Team Manager Agent. In the system, each team has a corresponding Team Manager that can
connect to the team’s own monitoring database. The role of the Team Manager is primarily to
determine whether the current incident falls within its area of responsibility and to provide reasons
for either accepting or rejecting it. Team Manager can actively retrieves external monitoring
information using tools and supplements additional information for the current incident from
the team’s perspective by Team Information Enrichment mechanism (see Section 3.3 for more
details). Team Managers exchange their analysis results and reasons to ensure that the final
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Algorithm 1 Triage Decider for Incident Team Assignment

Require: Incident I, Historical Incidents H, Team Documents D
Ensure: Candidate Teams 7 *
1: // Step 1: Compute similarity with historical incidents

2: V « TFIDF(H) > Vectorize H using TF-IDF
3. S(I, H) « cosine(TFIDF(I), V) > Compute similarity
4: T « {teams of top-K(S(I,'H))} > Select top K team candidates
5: // Step 2: Candidate teams refinement using LLM

6: D’ « LLMcompress(D) > Compress team documents, high compress rate
7: T, < {top-N(LLMmatch(I, D’))} > Retrieve top N team candidates
8: // Step 3: Final ranking of candidates

9: D" « LLMcompress(D) > Compress team documents, low compress rate
10: 7% « LLMrank(I, 71 + 73, D", key phrases) > Rank candidates
11: return 7~

assignment decision is the most reasonable one. This negotiation is conducted in a structured
and transparent manner to optimize incident handling efficiency and resource utilization. When a
team’s responsibilities change, engineers only need to update the team’s functional documentation
dynamically, without needing to retrain or fine-tune TRIANGLE. This design not only eliminates
the need for manual intervention but also effectively addresses the problem of decentralized and
dynamic domain knowledge.

This multi-agent design allows the TRIANGLE system to better simulate and execute the actual
operational process of incident triage, improving efficiency and accuracy through automation and
intelligence. Moreover, the independence and complementarity of each agent role provide flexibility
and scalability for the system.

3.1.2  Design of Negotiation Mechanism. To fully leverage the collaborative potential among multi-
ple teams, we designed a voting-based multi-agent negotiation mechanism. In this process, the
Team Manager is the primary participant. When the Triage Decider selects suitable team candidates,
a discussion group is formed among these team candidates. First, each Team Manager invokes
their own Team Information Enrichment capability to extract additional information from their
respective monitoring data and supplement the incident data. The additional enriched discussion
information provided by all teams is then aggregated and appended to the current incident. Subse-
quently, this enriched incident is sent to each Team Manager, allowing each to individually decide
which team in the current discussion group is the best match for the incident. If a voting result
surpasses more than half of the teams in the discussion group, the incident is assigned to that team.
Otherwise, the negotiation fails, and the enriched incident is sent back to the Triage Decider to
reselect team candidates.

The design of the voting-based negotiation mechanism is inspired by real-world practices
of incident triage in the industry. In traditional manual triage, a temporary discussion group is
typically formed by bringing different team candidates into a discussion to collaboratively determine
a responsible team based on their diverse domain knowledge. TRIANGLE uses a Multi-Agent system
to automate this process with LLM, effectively utilizing the domain knowledge of different teams
and enhancing the accuracy of the triage. Experiments demonstrate that the introduction of the
voting-based negotiation mechanism significantly improves the accuracy of both initial assignment
and reassignment.
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3.2 Semantic Distillation

Whether the incident is automatically generated by system or reported manually, the content that
determines the outcome of incident triage constitutes only a small portion of the entire incident.
Therefore, effectively extracting triage-relevant information is crucial for the effectiveness of
incident triage. In traditional manual triage processes, the extraction of triage-related information
is typically done in the minds of skilled engineers [27]. In deep learning based incident triage
methods, the extraction of triage information is reflected in the forward propagation of the network,
where triage-related information is continuously extracted as feature vectors in the hidden layers
of the model until it is finally provided to the classifier [5]. The information extraction capability of
such specially trained deep models heavily depends on the training data and is generally built on
statistical significance, making it difficult to deeply understand the semantic information within an
incident. Therefore, we propose Semantic Distillation, which utilizes statistical methods combined
with the semantic understanding capabilities of LLMs to fully extract information related to triage
from incidents for subsequent triage. This mechanism is designed as a core task of the Analyser
agent. The Semantic Distillation process is mainly divided into two parts: semantic alignment and
key phrase extraction. There is an example of the process on a real-world incident in Figure 5. In
this example, through semantic alignment, we aligned this data with team functional documents
without changing the semantic expression. Following this, we extracted three types of keywords
using a Key Phrase Extraction mechanism. These three types of keywords are the core information
related to incident triage. In the subsequent process, these key phrases will serve as the most critical
information for triage, with the LLM focusing primarily on the key phrases, while the original
incident data will serve as secondary reference material for the LLM.

Raw Incidnet

To type in Japanese, users always select one of some displayed candidate words for chat... However, in XXXX chats and discussion
area, a Japanese word under conversion is unexpectedly copied after clicking the browser window and New XXXX icon in the
taskbar... This issue occurs in desktop app regardless of OS or language... Using the "Use legacy input method" setting avoids the
occurrence of the issue...

Incident after Semantic Alignment

To input in Japanese, users select one of the presented options for conversion... However, in chats and threads within desktop
platform, a Japanese term under conversion is unintentionally duplicated after clicking the web interface and the application icon in
the navigation bar... This issue impacts desktop clients regardless of operating system or application language setting... Utilizing the
"Use previous version of Application XXXX" option prevents the issue...

Location Diagnosis Capability
Japanese word under conversion Debugging multi-platform desktop
desktop version of XXXX, is unexpectedly duplicated, applications, Understanding IME
browser, navigation bar, reduces efficiency of typing (Input Method Editor) handling
channel threads, web Japanese, issue occurs in and integration, Managing Ul
interface, Input Method Editor desktop XXXX regardless of OS thread states and event handling,
or Teams language Expertise in XXXX desktop client
development

Fig. 5. An Example of the Semantic Alignment and Key Phrase Extraction in Semantic Distillation Mechanism.

Semantic Alignment. In Semantic Distillation, the first task is semantic alignment. The goal of
semantic alignment is to align the information in incident data with the team function documents
semantically. The team function documents are texts, maintained by engineers of each team, that
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: : Enriched Disscussion
Incident Monitor Database Monitor Database Incident
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Team Manager Related Monitor Log L ]

Fig. 6. Team Information Enrichment Mechanism.

describe their primary functions in natural language. When human engineers try to read and
understand incident data, this process naturally occurs in the human brain, automatically building
connections with the functions of different teams. Thus, our design mimics the operations of
a human engineer. The Analyser agent traverses all team function documents and generates a
vocabulary. Then, the Analyser provides this vocabulary and the current raw incident data to the
LLM, prompting the model to attempt replacing the text in the current incident with words from
the vocabulary without changing the semantic expression. This process is achieved through prompt
engineering, without the need to train or fine-tune the model. The purpose of this is to make the
incident semantically aligned with the team’s function documents without changing the semantic
information.

Key Phrase Extraction. After completing the alignment, we want the Analyser to extract key
phrases from the incident data related to triage on a semantic level to achieve data distillation based
on semantic information from the incident data. Due to the context length limitations of LLMs,
we cannot provide all team function information to the LLM. Therefore, we combine statistical
methods at this stage. The Analyser calculates the TF-IDF [3] value of each word in the incident
data relative to team function documents. When a word has a high TF-IDF value, it usually indicates
that the word frequently appears in the incident data but rarely in the team function documents.
This likely means that the word is highly relevant to the current incident data but only related to a
few teams’ function descriptions. Therefore, this word has a higher probability of being relevant to
incident triage. The Analyser uses the TF-IDF values as weights for each word, providing the weight
information and the semantically aligned incident data to the LLM. Through prompt engineering,
the LLM is prompted to summarize the incident text like an incident triage expert, extracting three
types of key phrases: those related to the failure location, the symptoms of the failure, and the
capabilities needed to resolve the incident. These three types of key phrases are the core factors
that human engineers consider when performing incident triage.

After completing Semantic Distillation, the Analyser appends the extracted semantic key phrases
to the original incident data and provides it to the subsequent Triage Decider. Experimental results
show that Semantic Distillation effectively extracts triage-related key phrases from raw incident
data, and these key phrases are highly aligned with the team’s function descriptions in terms of
semantic expression, significantly improving the accuracy of incident triage.

3.3 Team Information Enrichment

To address the issue of insufficient information in raw incident data, we propose a Team Information
Enrichment mechanism. In raw incident data, the available information may not be sufficient to
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support accurate assignment. Consequently, during subsequent reassignments, engineers often
take various steps—such as reviewing monitoring logs or consulting system documentation to
provide additional information valuable for triage. We refer to this type of information as “enriched
discussion”. The process of obtaining enriched discussions usually requires significant expert
knowledge and human effort, leading to a notable increase in Time to Triage. The core task of the
Team Information Enrichment mechanism is to automate this process using a LLM and integrate it
into a multi-agent workflow to enable end-to-end incident triage in TRIANGLE.

The Team Information Enrichment mechanism is unique to the Team Manager agent. The
core idea behind our design is to enable the Team Manager to mimic the process of a human
engineer in obtaining enriched discussions. Specifically, the Team Manager automatically queries
the monitoring database for Monitor Logs directly related to the current incident and summarizes
enriched discussions by analyzing the events in both the Monitor Logs and the incident itself. To
facilitate the Team Manager’s access to the monitoring database, we provide each Team Manager
with an interface for querying the monitoring database associated with its team. The Team Manager
extracts the time range and component names from the incident and automatically generates and
executes database queries.

It is worth noting that for manually reported incidents, the component names are often not
automatically recorded by the system, resulting in the absence of certain key fields in the incident
data. In such cases, the Team Manager infers the relevant data based on the database query interface
documentation and the descriptions provided in the incident report. Therefore, even when some
fields are missing in the incident data, the Team Manager can still generate appropriate queries to
retrieve information closer to the system’s underlying details from the monitoring database.

When we obtain the Monitor Log related to the current incident, we do not use it directly as
enriched discussion information. This is because the original Monitor Log is not only very large
in volume but also contains a significant amount of redundant information that is irrelevant to
incident triage. Directly adding it to the incident would consume a large number of tokens and
cause the information related to triage to be overwhelmed by the redundant data. Therefore, after
obtaining the Monitor Log, we use an LLM to infer the relationship between the events described
in the current incident and the actual Monitor Log. The Monitor Log is then summarized into three
parts: what events might have occurred in the Monitor Log, what relevant information the Monitor
Log has with the current incident description, and what troubleshooting suggestions the Monitor
Log provides for the incident. These three parts of information are then added to the incident data
as the final enriched discussion, along with an indication of which team provided the information.

Through the Team Information Enrichment mechanism, we leverage the language understanding
and reasoning capabilities of LLM to effectively extract Monitor Log information from the external
environment and summarize it into enriched discussion. This enriched discussion augments the
original incident information, enabling TRIANGLE to perform automatic reassignment more effec-
tively. Experiments in a real cloud service environment have demonstrated that, with the support
of enriched discussion information, TRIANGLE can achieve end-to-end incident reassignment and
significantly improve the accuracy of incident triage.

4 INDUSTRY EVALUATION

In this study, to fully evaluate the performance of TRIANGLE in incident triage within a real-world
production environment, we aim to address the following research questions:

e RQ1: What is the accuracy of TRIANGLE in the continuous incident triage process within
large-scale cloud service systems?
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e RQ2: What is the contribution of each key component to the overall performance of TRIAN-
GLE?

e RQ3: How efficient is TRIANGLE in terms of time savings during incident triage in real-world
industry scenarios?

4.1 Dataset

To evaluate the performance of TRIANGLE in real-world scenarios, we collected 15 months of
real incident data from large-scale cloud service systems serving tens of millions of users at a
leading global technology company. These cloud services involve hundreds of engineering teams.
To ensure a quantitative and objective experiment, we concentrated solely on incidents that had
been resolved, as their confirmed assignments facilitate an accurate assessment of the incident
triage process. Specifically, we split the data into a 12-month period for historical incident data and
a subsequent 3-month period for evaluating the performance of TRIANGLE. For our experimental
analysis, we concentrated solely on incidents that had been resolved, as their confirmed assignments
facilitate an accurate assessment of the incident triage process. Specifically, we split the data into a
12-month period for building the knowledge base and a subsequent 3-month period for testing the
performance of TRIANGLE.

4.2 Experiment Setup

4.2.1 Metrics. Accuracy and Time to Engage are the two most crucial evaluation metrics in incident
triage. Below, we will provide a detailed introduction to these two metrics.

Accuracy: Accuracy is a widely used metric in classification tasks and is a core indicator for
evaluating the end-to-end performance of incident triage. However, in incident triage, due to
the involvement of reassignment, we further refine the concept of accuracy. We introduce Hop
Accuracy. Its calculation is the same as traditional accuracy, but with a restriction on the number
of hops for reassignment. Hop N Accuracy (N > 1) represents the accuracy when the number of
assignments does not exceed N by the time the model completes the final assignment. This places
a higher requirement on the model’s capabilities.

Time to Engage (TTE): TTE refers to the time elapsed from when an incident is reported to
when it is assigned to the correct team. TTE is a key factor in measuring the efficiency of incident
triage. In practical scenarios, the model’s runtime accounts for a minimal portion of the entire
triage process. This is because, during triage, engineers from different teams may conduct further
analysis of the incident, and there may also be meetings between teams. The time spent by human
engineers in these activities constitutes the majority of the triage process.

4.2.2 Baselines. To evaluate the performance of TRIANGLE, we introduce several baseline methods.

e ContentBased [19]: Uses locality-sensitive hashing to find suitable teams, helping mitigate
cold start issues by identifying patterns in new or sparse data.

e IvertedIndex [26]: Builds a inverted index table re-ranked by IDF scores to rank teams.

e LGBM [13]: Employs a one-vs-all LightGBM model to handle sparse and unstructured data.

e MART [7]: Utilizes a multiple additive regression tree (MART) model, trained with a one-vs-all
FastTree [2] classifier to assign incidents.

o DeepCT [5]: The state-of-the-art incident triage method based on deep learning.

The first four methods are traditional machine and statistical learning methods, that are widely
used in the industry. DeepCT [5] is a state-of-the-art incident triage method based on deep learning.
DeepCT utilizes Convolutional Neural Networks (CNNs) to encode domain-specific discussions. It
then leverages Gated Recurrent Units (GRUs) to capture temporal relations and applies attention
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mechanisms to reduce the impact of noise. This method relies heavily on the availability of extensive
discussions from engineers.

4.3 RQT1: Overall Performance

To verify the effectiveness of TRIANGLE in real-world scenario, we compare the end-to-end incident
triage performance of TRIANGLE with other baseline methods. Based on the maximum hop count
of manual triage in historical incident data, we evaluated the accuracy for hop counts ranging
from 1 to 5. It is worth noting that triage models based on traditional machine learning methods in
DeepTriage [19](ContentBased, InvertedIndex, LGBM and MART) are unable to perform continuous
triage. In contrast, we use the same discussion text as DeepCT to achieve continuous triage results.
As a result, their hop accuracy does not vary across different hops. Additionally, because DeepCT
requires manually provided enriched discussions, we sequentially provided DeepTriage with the
manually added enriched discussions from the incident data in chronological order. In contrast, our
method did not use manually provided enriched discussions, but instead utilized the Team Manager
for automatic generation. The experimental results are shown in Table 1.

Table 1. End-to-end performance of TRIANGLE and baseline methods. The maximum of hop count is 5 according
to the historical manual triage results. TRIANGLE and DeepCT have the capability of continous triage.

Hop Accuracy [%]

Method o T —p < 2P Hop < sy Hop <4 Hop <5

ContentBased 9.43 17.3 219 254 29.6
InvertedIndex 14.4 24.8 344 42.8 49.4
LGBM 3.12 3.65 4.66 5.11 5.96
MART 4.23 6.17 7.28 10.22 13.56
DeepCT 43.4 54.6 60.4 64.4 67.6

TRIANGLE 54.7 70.4 80.5 86.0 91.7

According to the experimental results shown in Table 1, our proposed model, TRIANGLE, shows
outstanding performance compared to traditional machine learning methods and the state-of-the-art
method, DeepCT in end-to-end incident triage. Besides, TRIANGLE shows a significant improvement
in accuracy as the hop count increases. This highlights its capability to handle complex scenarios
involving multiple reassignment hops effectively.

For hop counts up to 1, TRIANGLE achieves an accuracy of 54.7%, surpassing all other methods,
including DeepCT, which stands at 43.4%. As the hop count increases to 5, TRIANGLE maintains its
superior performance, reaching an accuracy of 91.7%, a substantial improvement over DeepCT’s
67.6%. This demonstrates TRIANGLE’s robustness and effectiveness in continuous triage without the
need for manually enriched discussions. The automatic generation of enriched discussions by the
Team Manager in TRIANGLE plays a crucial role in achieving this enhanced performance, making it
a highly effective solution for real-world incident triage scenarios.

Further in-depth analysis reveals that as the Hop Count increases, the performance improvement
of DeepCT is less than that of TRIANGLE. We believe this is due to the forgetting phenomenon
caused by the GRU model in DeepCT when the sequence length increases. In contrast, TRIANGLE
benefits from the powerful memory and comprehension capabilities of the Transformer model
in LLM for long sequences. Therefore, its performance is not affected by the increased sequence
length when the Hop Count increases.
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Fig. 7. Effectiveness comparison among TRIANGLE, ContentBased, Invertedindex, LGBM, MART and DeepCT,
for each studied cloud services (the x-axis represents the number of triage hops and the y-axis presents the
accuracy of incident triage).

To assess the robustness and generalization of TRIANGLE, we randomly selected nine different
services from the system and evaluated the performance of various incident triage models across
these services. The results are illustrated in Figure 7.

The experimental findings reveal that TRIANGLE consistently achieves superior Hop Accuracy
across the majority of services, with notable improvements over baseline methods observed at the
2nd or 3rd hop. This enhancement is attributed to TRIANGLE’s multi-agent negotiation mechanism,
which effectively aggregates information from multiple teams. This process introduces substantial
external information to incidents that initially lack sufficient details, thereby significantly improving
triage performance.

Our experiments demonstrate that TRIANGLE excels in end-to-end incident triage performance
in real-world scenarios.

4.4 RQ2: Ablation Study

To evaluate the contribution of each key components in our approach, we conducted an ablation
study following the experimental setup of Section 4.3. We removed the semantic distillation (w/o ST),
Multi-Agent negoTiation mechanism (w/o MAT), and Team Information Enrichment mechanism
(w/o TIE) respectively. Since multi-agent negotiation is the core operation of incident triage, to
ensure the normal operation of TRIANGLE after removing the multi-agent negotiation mechanism,
we allowed the Triage Decider to directly assign based on the ranking of team candidates. Table 2
shows our experimental results.

From the experimental results presented in Table 2, it is evident that each of the key components
in our proposed approach contributes significantly to the overall performance. The results show
that removing any of the components leads to a decrease in Hop Accuracy across all Hop count
(Hop < 1 to Hop < 5). Specifically, without the Semantic Distillation (w/o ST), the performance
drops notably, achieving only 49.1% Hop < 1 accuracy, which is a 5.6% decrease compared to the
full model. This drop in performance indicates that semantic distillation is crucial for accurate
hop prediction, allowing the system to make more informed decisions based on enriched semantic
information.
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Table 2. Ablation study results of different components of TRIANGLE on Hop Accuracy.

Method ‘ Hop Accuracy [%]

|Hop<1 Hop<2 Hop<3 Hop<4 Hop<5
w/o ST 49.1 62.2 76.8 81.1 86.1
w/o MAT | 42.8 54.6 63.4 67.5 70.4
w/oTIE | 496 60.1 61.7 63.8 65.8
TRIANGLE |  54.7 70.4 80.5 86.0 91.7

The most substantial performance degradation is observed when the multi-agent negotiation
mechanism is removed(w/o MAT). The accuracy drops to 42.8% for Hop < 1, which is almost a
12% reduction compared to the full model. The Hop < 5 accuracy also sees a significant decline
to 70.4%. This demonstrates that the negotiation mechanism is vital for optimizing the triage
decision-making process through collaborative decision-making among agents, rather than relying
on a naive ranking approach.

The absence of the Team Information Enrichment mechanism (w/o TIE) also results in a significant
reduction in performance. The model’s Hop < 2 and Hop < 5 accuracies decrease by 10.3% and
25.9%, respectively, compared to TRIANGLE. These results confirm that enriched discussion is a key
factor for effective incident triage, as it provides crucial context that enhances the decision-making
capability of the multi-agent system.

Notably, Team Information Enrichment has the greatest impact on the performance of TRIANGLE.
This is because the key reason for the inaccuracy in incident triage is the insufficient amount of
information in raw incidents. The role of Team Information Enrichment is to automatically obtain
external relevant information through agents, so the introduction of external information has a
decisive effect on the performance of incident triage.

In contrast, our proposed method, TRIANGLE, consistently outperforms all ablated versions across
all metrics, achieving the highest Hop Accuracy at every threshold. This indicates that the combined
use of semantic distillation, multi-agent negotiation, and team information enrichment provides a
synergistic effect that leads to superior triage performance.

4.5 RQ3: Efficiency of TRIANGLE

Time to Engage (TTE) is an important metric for evaluating the efficiency of incident triage models.
We followed the experimental setup from Section 4.3 to assess the impact of different incident
triage models and various variants of TRIANGLE on TTE. We use Time Unit as the unif of TTE.
As defined, the Time Unit is an internal metric used by the company to evaluate the efficiency of
triage processes. Although the exact relationship between a Time Unit and real-world time cannot
be disclosed, it is a linearly correlated measure, allowing for a fair comparison across different
models. We used the TTE of manual triage as a baseline and tested how much different methods
could reduce TTE. The results are shown in Figure 8.

As shown in Figure 8, the average TTE reductions achieved by different models and variants of
TrRIANGLE demonstrate the superior performance of our proposed method. Notably, TRIANGLE out-
performs all other baseline models with an average TTE reduction of 24.58 time units, significantly
improving the efficiency of incident triage compared to manual triage.

In the baseline models, ContentBased and InvertedIndex achieve moderate improvements in
TTE, reducing it by 7.07 and 16.76 time units, respectively. However, these traditional methods are
limited in their ability to capture complex semantic relationships in the incident data, leading to
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Fig. 8. Average Time to Engage (TTE) Reduction for Different Incident Triage Models and Variants of TRIANGLE.
The TTE of manual triage is used as a baseline.

less substantial TTE reductions compared to more advanced methods. Machine learning-based
models such as LGBM and MART show limited improvements, reducing TTE by only 1.69 and 3.48
time units, respectively. This indicates that while they are able to capture some patterns in the data,
their effectiveness in optimizing the incident triage process is constrained, possibly due to their
reliance on predefined features and shallow architectures.

Among the more advanced methods, DeepCT delivers a notable reduction of 18.51 time units,
underscoring the strength of deep learning approaches in handling unstructured incident data.
However, DeepCT still falls short of the performance of TRIANGLE, suggesting that the Multi-LLM-
Agent framework and additional optimizations introduced in our approach, contribute significantly
to enhancing triage efficiency.

5 DISCUSSION

Lessons learned. To enhance the accuracy of incident triage, we have identified several key lessons
related to improving troubleshooting guides and team documentation [22]. Firstly, it is crucial to
ensure that documentation is clear and detailed, with step-by-step instructions and information on
responsible team, to facilitate easy understanding and reduce resolution times. Regular updates and
reviews are essential to keep the information current and relevant, while incorporating feedback
from users helps identify and address any gaps or ambiguities. Standardizing the format and
terminology of documents ensures consistency and usability. Additionally, leveraging advanced
technology, such as knowledge management systems, can further streamline document updates
and accessibility. By implementing these practices, we aim to simplify the process and enhance
understanding for LLM agents, ultimately leading to more accurate and efficient incident triage.

Auto-mitigation. Effectively managing and triaging an incident is just the beginning of our
process. It’s not merely about directing the issue to the appropriate team; it’s crucial to actively
work towards minimizing the time to mitigation [15, 17]. To address this challenge, we will further
implement TRIANGLE to enhance its capabilities to incorporate an automated mitigation workflow.
This innovation will streamline the incident response process, allowing us to resolve incidents
more swiftly and efficiently. Looking ahead, we envision that these advancements will pave the
way towards achieving a fully autonomous cloud operation, where the system can proactively
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handle and resolve issues with minimal human intervention. This progressive step aims to not
only improve our current operational efficiency but also set the stage for a more self-sufficient and
resilient cloud infrastructure in the future.

Threat to Validity. Internal validity threats mainly stem from the implementation of our method
TRIANGLE and the comparison methods. To mitigate this threat, two authors thoroughly review the
code. Specifically, we implement these methods based on a mature industry framework.

External validity threats primarily concern the subjects used. In our study, we employed data
from several large-scale cloud service systems. Although these data are derived from real industry
applications, the subjects may not fully represent online service systems in other companies. In
future work, we will apply TRIANGLE to a broader range of cloud service systems.

Construct validity threats primarily lie in the choice of parameters and metrics used. To mitigate
the threat from parameters, we employ grid search to optimize the parameters in both TRIANGLE
and the comparison methods. To address the threat from metrics, we utilize the most commonly
used accuracy and time cost metrics in our study. In future work, we plan to incorporate additional
metrics, such as false positive rate and recall, to more comprehensively evaluate the effectiveness
and efficiency of TRIANGLE.

6 RELATED WORK

Bug triage. Research on bug triage for traditional software is extensive , focusing mainly on two
approaches: learning-based and information-retrieval-based methods. Learning-based approaches
treat bug triage as a supervised classification problem, using techniques such as ensemble learning
[12], and deep learning with Convolutional Neural Networks (CNNs) [14, 21] to classify bugs.
Information-retrieval methods focus on leveraging expertise and historical data, with approaches
like Latent Dirichlet Allocation (LDA) [18] to match developers to bugs, topic-modeling [24] to map
bug report terms to topics, and historical bug-fix analysis [8] to link developers, code components,
and bugs. However, incident triage presents a more complex challenge in industry practice because
of the intricate nature of cloud systems.

Incident triage. Recent advancements in incident triage have utilized deep learning to enhance
accuracy and efficiency [4]. DeepTriage [19] uses various machine learning models to automate
triage, improving accuracy by learning from historical data. The most similar work is DeepCT
[5], which performs continuous incident triage using Convolutional Neural Networks (CNNs) to
encode domain-specific text and Gated Recurrent Units (GRUs) to extract temporal relationships,
complemented by attention mechanisms to reduce noise. Its effectiveness depends on extensive
human discussions, which cannot be fully automated. In contrast, our multi-LLM-agent based
solution can collect troubleshooting information and manage negotiation processes like a human.

LLM for cloud systems. In recent years, the integration of Large Language Models (LLMs)
into cloud systems has gained significant traction, reflecting a broader trend toward enhancing
automation and efficiency in cloud operations. Research and practical implementations have
demonstrated how LLMs can be leveraged for various tasks, including incident detection [16, 27],
assessment [11, 30], and diagnosis [1, 6, 9, 10]. For example, RCAgent [23] enhances LLM-generated
root cause reports with a Self-Consistency mechanism and domain-specific knowledge integration.
ReAct [20] applies LLMs to root cause analysis in cloud management, showing high performance
and accuracy with real-world data. DB-GPT [25] merges LLMs with traditional databases to improve
natural language query responses, featuring a retrieval-augmented generation system and adaptive
learning. To the best of our knowledge, no existing multi-LLM-agent solutions have been proposed
specifically for incident triage. TRIANGLE is the first end-to-end multi-LLM-agent based incident
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triage approach. Nonetheless, it is quite natural to leverage LLMs to emulate human capabilities in
performing triage tasks.

7 CONCLUSION

Effective and accurate incident triage is crucial for maintaining service quality and reducing time to
engagement and mitigate in large-scale cloud service systems. In this paper, we present TRIANGLE,
an end-to-end incident triage system designed using a Multi-LLM-Agent framework. We introduce
a novel semantic distillation mechanism that leverages the powerful semantic understanding
capabilities of LLMs to tackle the issue of incident semantic heterogeneity, significantly enhancing
triage accuracy. Additionally, we develop a multi-role agent framework equipped with an effective
negotiation mechanism, allowing the system to dynamically manage multi-team domain knowledge
and simulate the workflow of human engineers. Moreover, TRIANGLE includes an automated team
information enrichment mechanism, enabling end-to-end triage without incurring additional human
labor costs, even in scenarios requiring incident reassignment. Extensive experiments conducted
with real-world incident triage data from a large-scale production environment demonstrate that
TRIANGLE outperforms state-of-the-art methods, improving average triage accuracy more than 20%
and reducing time to engagement. The deployment of TRIANGLE in a production system serving
tens of millions of users at a leading global technology company has shown its effectiveness and
reliability in real-world environments. We believe that our approach can provide valuable insights
and serve as a foundation for future research and development in automated incident triage systems
for large-scale cloud services.

8 DATA AVAILABILITY

The data of our industry experiment is highly confidential that contains private information about
internal systems and services, and therefore, we cannot disclose our data due to company policy.
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