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Abstract
Securing network traffic within data centers is a critical and
daunting challenge due to the increasing complexity and
scale of modern public clouds. Micro-segmentation offers a
promising solution by implementing fine-grained, workload-
specific network security policies to mitigate potential attacks.
However, the dynamic nature and large scale of deployments
present significant obstacles in crafting precise security poli-
cies, limiting the practicality of this approach. To address
these challenges, we introduce a novel system that efficiently
processes vast volumes of network flow logs and effectively
infers the roles of network endpoints. Our method integrates
domain knowledge and communication patterns in a princi-
pled manner, facilitating the creation of micro-segmentation
policies at a large scale. Evaluations with real-world deploy-
ment demonstrate that our solution significantly surpasses
existing algorithms in role inference accuracy. We implement
our solution as an end-to-end system and demonstrate that
it is up to 21.5× more cost-efficient than Apache Flink, a
widely used open-source stream processing system.

1 Introduction

The growth and criticality of public clouds are accompa-
nied by persistent security threats. Prominent security in-
cidents, such as those involving SolarWinds [2], Midnight
Blizzard [71], and Snowflake [68], reveal a spectrum of attack
vectors from compromised credentials to exploited software
providers and trust chains. These incidents often lead to mas-
sive leaks of sensitive data, significant economic losses, and
deterioration of customer trust [1, 86, 87]. Consequently, there
is a pressing need for the development of enhanced security
technologies to protect the integrity of data centers.

One promising solution that has emerged is micro-
segmentation [89], a technique grounded in the zero-trust
security model [63, 78]. Recognizing that preventing every
cyberattack is a nearly unattainable task, micro-segmentation

* These authors contributed equally.

operates under the assumption that every endpoint can be com-
promised. It therefore aims to contain the impact of potential
breaches by creating isolated µsegments within the network.
Under this model, resources in different µsegments can only
communicate with each other if explicitly permitted by a set
of fine-grained, workload-specific policies. This restrictive
approach significantly limits the potential damage of a breach.
Several vendors have already introduced micro-segmentation
offerings [28, 41, 55, 88]. The market for micro-segmentation
is worth several billion dollars in annual revenue and boasts a
robust growth rate of over +20% year-over-year [25].

However, two significant challenges arise when implement-
ing micro-segmentation on a large scale: precise security
policies and cost-effective monitoring. First, existing solu-
tions [28, 41, 55, 88] rely on human administrators to assign
a µsegment label to every endpoint. This µsegment creation
process necessitates a deep understanding of the workloads
and continuous updates to keep up with changes in software
or environment. This manual approach does not scale for large
systems that leverage millions of resources [72] and have large
teams owning different parts of cloud software [19, 33, 45].
Mislabeling or outdated labels can result in legitimate access
being denied or unnecessary exposure to potential attacks.
Second, a micro-segmentation solution necessitates the capa-
bility to observe and monitor network behavior. This involves
the near real-time gathering and analysis of network telemetry,
a process that can inflate costs significantly. Indeed, leading
solutions [28, 55] add a substantial extra cost to the infrastruc-
ture, such as virtual machines (VMs) and containers, ranging
from 16% to as high as 71%. This financial burden presents a
considerable obstacle to their extensive adoption.
Objectives and Techniques. We introduce ZTS (Zero Trust
Segmentation), a novel micro-segmentation system designed
for large-scale public cloud networks. The objective of ZTS is
to facilitate the creation of precise, scalable security policies,
while also offering a cost-effective solution for gaining visibil-
ity into network behavior and conducting efficient monitoring.
ZTS consists of two core components:

(1) Deployment-Specialized Auto-Segmentation: To gen-



erate µsegments on a large scale, we introduce a novel auto-
segmentation algorithm predicated on the inference of net-
work endpoints’ roles. Our algorithm is grounded in the obser-
vation that within a large deployment, a multitude of network
nodes often fulfill identical roles, such as replicas, microser-
vices, lambdas, etc. These roles can be designated as the
µsegments, as nodes performing the same function can adhere
to the same network security policy. A key insight under-
pinning our role inference algorithm is that the definition of
role varies across different functionalities and deployments.
As such, our algorithm judiciously combines domain-specific
knowledge, communication patterns, and deployment-specific
information. This approach then generates an autoencoder
that is uniquely tailored to each deployment, thereby enhanc-
ing its accuracy in inferring roles and µsegments.

(2) Cost-Effective Communication Graph Generator: To
minimize the costs of observing and monitoring network be-
havior, we carefully design a unique system architecture that
efficiently generates a complete communication graph from
a large volume of network flow logs at a very low cost. Our
architecture leverages compute endpoints (e.g., VMs) to pro-
cess and batch a substantial number of network flow logs
into a database endpoint (e.g., SQL servers) and employs
advanced query optimization techniques to construct commu-
nication graphs. This design enables our system to accom-
modate large-scale deployments with a minimal amount of
compute, memory, and network resources.
Implementation and Evaluation. We build ZTS as a com-
plete micro-segmentation system that provides continuous
communication graph generation, advanced role inference
for auto-segmentation, and security policy authoring and en-
forcement. To evaluate the accuracy of our auto-segmentation
algorithm, we curate ground truth data across 11 first-party
and third-party deployments, encompassing communication
graphs with tens of thousands of nodes and millions of
edges. Our evaluation demonstrates that our role inference
algorithm significantly outperforms state-of-the-art algo-
rithms [56, 59, 72, 93], achieving an average Adjusted Rand
Index (ARI) [53]1 improvement of 0.37.

To evaluate cost-effectiveness in network observation and
monitoring, we implement an alternative communication
graph generator using Apache Flink [38], a popular open-
source stream processing system. Our evaluation across dif-
ferent deployments shows that ZTS is 7.5× faster than Apache
Flink at only 35% of the cost, making it 21.5× more cost-
efficient. Deploying ZTS only introduces an extra 0.5% of the
cost of the VMs, which is significantly cheaper than existing
micro-segmentation solutions.
Contributions. We make the following contributions:

• We introduce a novel algorithm that infers network end-
points’ roles by incorporating domain-specific knowl-

1ARI is a widely used metric for measuring clustering quality, adjusted
for chance. It ranges from -0.5 for highly discordant clusterings to 1.0 for
identical clusterings.

(a) Without Micro-segmentation (b) With Micro-segmentation

Figure 1: An example of how micro-segmentation prevents
lateral movement by attackers.

edge and deployment-specific information in a princi-
pled manner. This approach significantly enhances the
accuracy and scalability of micro-segmentation.

• We design a cost-effective system architecture for gen-
erating communication graphs from network flow logs,
which reduces resource usage and operational costs in
implementing micro-segmentation at a large scale.

• We build an end-to-end micro-segmentation system and
show significant improvements in role inference accu-
racy and cost-efficiency compared to existing solutions,
validated using large-scale real-world deployments.

2 Background and Motivation

We begin by providing background on micro-segmentation,
followed by a detailed discussion of the major challenges in
realizing this concept in practice.

2.1 Micro-Segmentation
Micro-segmentation [89] is a security technique that in-
volves dividing a network into smaller, more manageable,
so-called, µsegments, each with its own set of security con-
trols. The concept emerged as a response to the increasing
complexity and interconnectivity of modern IT environments,
where traditional perimeter-based defenses proved insuffi-
cient. As illustrated in Figure 1(a), a compromised network
node permits an attacker to propagate laterally across other
nodes without limitations, potentially resulting in significant
data breaches and system damage. However, by implement-
ing micro-segmentation, as depicted in Figure 1(b), each
µsegment effectively minimizes the attack surface. This is
achieved by confining communications to predefined path-
ways, thereby enhancing the containment of breaches. Today,
micro-segmentation is considered a core component of zero-
trust security architectures [63, 78].

Deploying a micro-segmentation solution involves two key
phases to ensure effective implementation and enhanced secu-
rity. The first phase is µsegment definition and policy author-
ing, where administrators conduct a comprehensive assess-



(a) K8s PaaS IP-graph (b) Portal IP-graph (c) KQuery IP-graph

Figure 2: Unsegmented IP-graphs for the three real-world deployments

(a) Simrank segmentation (b) Simrank++ segmentation (c) Conn.-weight. modularity (d) Byte-weighted modularity
Figure 3: Applying other segmentation strategies, inspired by prior work, on K8s PaaS’s IP-graph

ment of the current network architecture and communication
patterns. This is often facilitated by generating a comprehen-
sive communication graph using network flow logs from the
workloads. Following this assessment, administrators define
the relationships between assets and µsegments, authoring
security policies that specify which µsegments can commu-
nicate with each other and under what conditions. A pair
of resources can communicate with each other only if ex-
plicitly allowed by the policies; i.e., the default will be to
deny [34, 39].

The second phase is implementation and monitoring,
where these security policies are enforced using a micro-
segmentation platform, which may involve configuring virtual
firewalls and security controls at the hypervisor or network
level. Once implemented, the system should be continuously
monitored to ensure compliance with the defined policies.
Additionally, µsegments and policies need to be regularly
updated to accommodate changes in configurations, deploy-
ments, and workloads.

2.2 Challenges in Authoring Security Policies
While creating micro-segmentation may appear straightfor-
ward in simple examples, such as in Figure 1, in practice,
creating and maintaining µsegments can be a daunting chal-
lenge for administrators. To illustrate this issue, we examine
three real-world deployments in Table 1.

Figure 2 depicts the unsegmented IP-level communica-
tion graphs for each deployment. As these graphs show, the
number of nodes and communication patterns can quickly
become complex. Our interviews with developers reveal that
even they often do not fully understand these graphs, as com-
munication can be initiated by various layers in a complex
software stack. The current state-of-the-art requires a human

#IPs mon.
Graph Size: #nodes (#edges) #Records
IP Graph IP-port Graph /minute

Portal 4 4K (5K) 13K (13K) 332
K8s PaaS 390 541 (12K) 1.3M (3M) 68K
KQuery 1400 6K (1.3M) 12M (79M) 2.3M

Table 1: Cloud deployments and some aspects of their com-
munication graphs that we built and analyzed in this paper.
The source telemetry is flow-level summaries every minute
with schema as in Table 3.

administrator to manually tag each node with a µsegment
label so that the system can suggest security policies. How-
ever, this approach is neither scalable nor error-free. Our in-
vestigation of real-world deployments (detailed in Table 5)
reveals that only 12% to 23% of network nodes possess useful
information—such as machine functions, tags, or function-
based names—that could potentially serve as µsegment labels.
However, the availability and consistency of such information
exhibit considerable variation across different deployment
scenarios. Furthermore, administrators need to stay updated
on all role changes—such as when workloads migrate, scale
up, or scale down [13], or when a software update alters com-
munication behavior—which occurs frequently in large-scale
deployments.
Study of Existing Role-Inference Algorithms. Could an al-
gorithm assist with µsegment labeling? Fundamentally, there
are far fewer roles than resources in a cloud setting because,
for redundancy and scalability, it is common for multiple re-
sources to share the same role. Intuitively, nodes that play the
same role share communication patterns and may be inferred
based on the similarity of neighbors a resource communicates
with and the nature of the conversation. This is similar to the
role inference problem in the graph mining literature [51, 58].
Figure 3 presents the outcomes using some established tech-



Core # VM Illumio Illumio
vs. VM

Akamai Akamai
vs. VM

2 $549
$354

65%
$390

71%
4 $1,100 32% 35%
8 $2,194 16% 18%

Table 2: Pricing comparison between Azure general-purpose
VMs [7], Illumio Core [14], and Guardicore Segmentation [3].
All pricing represents annual costs, normalized to a single VM
and shown in US Dollars. The pricing for Illumio Core and
Guardicore Segmentation was from Azure Marketplace.

niques on one deployment. There are clear discrepancies
among them, and it is unclear which one is more correct.

To deepen our understanding, we conduct a study utilizing
popular, state-of-the-art role inference algorithms, including
(1) Jaccard: similarity of neighboring nodes [59], (2) Sim-
Rank [56]: graph structural similarity, (3) GAS [93]: struc-
tural embeddings with graph neural networks, and (4) Cloud-
Cluster [72]: grouping nodes based on the adjacency matrix.
We curate ground truth data for 11 real-world deployments
(details in Section 6.2). The full results are summarized in Ta-
ble 6 (Section 6.2). Our findings indicate that, although certain
algorithms demonstrate good performance in specific deploy-
ments, none consistently achieve high performance across a
diverse range of deployments. Additionally, the performance
of all algorithms diminishes as the scale of deployments in-
creases. Overall, existing algorithms tend to produce role
inference results that significantly deviate from the ground
truth, with none achieving an average Adjusted Rand Index
(ARI) greater than 0.5.

Our analysis reveals that effective and consistent role in-
ference for micro-segmentation remains a major challenge
in practice, attributable in part to several factors: (1) The
phenomenon driving role similarity in cloud communication
graphs—namely, identical code executing across multiple re-
sources for redundancy and scalability—does not stem from
human interactions, unlike in social and product recommen-
dation graphs [51]. (2) Structural resemblance within a com-
munication graph does not guarantee role similarity; thus, an
algorithm capable of harnessing additional communication at-
tributes is necessary to differentiate such instances. (3) Given
that the optimal role inference algorithm may vary among
deployments or evolve over time, a dynamic, learning-based
algorithm that adjusts according to feedback could potentially
surpass all static approaches.

2.3 Cost of Micro-Segmentation Solutions

Micro-segmentation is an expanding market with solutions
from multiple vendors [28, 41, 55, 88]. We examine the costs
associated with two leading vendors specializing in micro-
segmentation platforms [28, 55], comparing these expenses
to the infrastructure costs of VMs with varying core counts.

As Table 2 shows, the pricing of both solutions is compa-
rable and incurs significant extra costs, constituting 16% to
71% of the total VM costs. Although licensing fees may not
directly equate to computational costs, this analysis highlights
the substantial financial burden on organizations seeking to
implement micro-segmentation.

Our analysis finds that the primary cost of micro-
segmentation lies in the collection and analysis of network
telemetry to achieve near real-time network visibility. This
involves the continuous processing of extensive network flow
logs to generate a comprehensive view. Initial attempts with
off-the-shelf solutions, such as Apache Flink [38] and Apache
Spark [92], proved to be cost-prohibitive, adding over 10% to
the overall VM expenses.

Summary. The lack of an effective role inference algorithm
for network endpoints, coupled with the high costs of network
behavior monitoring, are significant barriers to achieving the
full potential of micro-segmentation. These challenges form
the core of our design requirements for ZTS.

3 Overview of ZTS

We introduce a novel end-to-end system, ZTS, specifically
designed to facilitate micro-segmentation in public cloud en-
vironments at scale, while maintaining cost efficiency. The
system achieves scalable security policy formulation with an
innovative role inference algorithm, which integrates network
domain knowledge and communication patterns based on the
characteristics of each deployment. The algorithm allows for
effective collaboration with deployment owners or network
administrators to fulfill the diverse requirements of various de-
ployments. Additionally, ZTS minimizes the costs associated
with micro-segmentation through a cost-efficient communi-
cation graph generator. Figure 4 provides an overview of the
ZTS architecture.
Telemetry and Graph Generator. The input to ZTS consists
of network flow telemetry, which periodically summarizes
the network flows generated by cloud assets such as VMs and
containers within a deployment. Most major cloud providers
offer this telemetry with minimal impact on customer work-
loads [10, 11, 17] (Section 5.1 provides more details). This
telemetry stream is processed by ZTS’s communication graph
generator ( 1 in Figure 4) to produce a communication graph,
similar to those in Figure 2, where each node represents an IP
address and each edge summarizes all flows between the cor-
responding IP pairs. Section 5.2 outlines the detailed system
architecture of our communication graph generator.
Policy Authoring. During the security policy authoring phase,
ZTS’s role inference trainer ( 2 in Figure 4) facilitates the
creation of µsegments by inferring the roles of each network
endpoint. The role inference trainer takes into account: (1)
communication patterns from the graphs, (2) detailed infor-
mation from flow telemetry (e.g., communication ports), (3)
information from cloud resources (e.g., asset type), and (4)
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Figure 4: Overview of ZTS.

feedback from the deployment owner (e.g., tags of a subset of
assets). The trainer iteratively collaborates with deployment
owners to stabilize the micro-segmentation and suggests secu-
rity policies for each µsegment based on the auto-segmented
graphs. Section 4 describes the details of our role inference
algorithm.
Implementing and Monitoring. The policy authoring phase
generates a role inference model and a set of security policies.
During the implementation phase, the policy enforcer ( 3
in Figure 4) maps these security policies from the µsegment
level to the IP address level and writes the low-level policies
into network security controllers (e.g., [8]) for enforcement.
ZTS continuously detects role changes and infers roles for
new network endpoints using the role inference model. These
changes are applied by the policy enforcer and sent to deploy-
ment owners for periodic reviews and model retraining.

4 Role Inference

4.1 Problem Formulation
Our data collection procedure described in §5 enables the
construction of a featured IP graph G = (V ,E ,A,X). The
node set V of cardinality |V |= N contains all IP addresses
in the network, and a directed edge in E exists between two
IPs if traffic was measured from one to the other. The total
amount of traffic (measured in bytes) from node i to node j
is encoded by the entry Ai j of the directed adjacency matrix
A ∈ RN×N . Notice that we can interpret the i-th row a⊤i of A
as features associated with node i capturing the total traffic
that this node sent to every other IP in the network. The matrix
X ∈ RN×D contains additional node features, where the i-th
row x⊤i collects the D features associated with IP i. These
features encapsulate information beyond the total traffic sent
to other IPs, which is already encoded in A. This includes
details such as the primary ports used by an IP, statistical
information about the connections—such as the mean and

variance of bytes per connection or bytes per packet—and
even the count of graphlets [26] or motifs [84] within the
communication graph to which a given node belongs. Ad-
ditionally, they encompass system-related information, such
as names and cloud resource SKU information. Our goal is
to leverage the information in G to cluster the IPs into roles
R , where two IPs within the same cluster have similar activ-
ity. Ultimately, this can allow us to perform communication
graph visualization and network management at the role level
(instead of the IP level), thus facilitating the generation of
rules and improving interpretability (§2.1). The procedure to
achieve this goal is detailed next and summarized in Figure 5.

4.2 Infusing Domain Knowledge into Role In-
ference

In principle, we can concatenate ai and xi to generate a sum-
mary of the activity of IP i, and use these representations to
cluster all IPs. However, notice that there is noise and redun-
dancy in these representations, motivating a dimensionality
reduction procedure. To be more precise, even if two IPs have
the same role, we would not expect the corresponding rows
of A to be identical [72]. Instead, we can think of these as
noisy measurements of the canonical activity of that role. In
order to recover these main modes of activity, we can perform
principal component analysis (PCA). Similarly, the different
features in X originate from the traffic data, so we can expect
redundancy among the features, leading to an effectively rank
deficient matrix. Based on these considerations, we perform
a two-step dimensionality reduction procedure where we first
apply a linear method (PCA) followed by a non-linear method
(autoencoder). Formally, we consider the singular value de-
composition (SVD) of X = UΣV⊤ and keep only the top p
components to form X̃ = UpΣp, where Up ∈ RN×p contains
the p leading (left) singular vectors and Σp ∈ Rp×p is a di-
agonal matrix containing the corresponding singular values.
We select p such that the amount of variance that needs to
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be explained is greater than a pre-specified threshold, and
we use 99% as a default value in our experiments. A similar
procedure is followed to obtain Ã∈RN×p. We denote the con-
catenation of the i-th rows of Ã and X̃ by yi = [ãi, x̃i] ∈ R2p.

We further reduce the dimensionality of yi via an autoen-
coder regularized by a contrastive loss. To do so, we assume
that we have access to the true roles of a small subset of the
IPs. This can be achieved either by relying on domain-inspired
rules, such as specific ports associated with pre-established
roles, names given to the virtual machines, or an IP-based
lookup table, or by obtaining feedback from the network
administrator. We denote this partial labeling heuristic as
h : V → R ∪ /0 such that r̂i = h(i) is the estimated role of
node i. Notice that the heuristic might not have enough infor-
mation to determine the role of a given node. In these cases,
r̂i = /0. Let us denote by L the set of nodes assigned some role
label by this heuristic, i.e., L = {i ∈ V | r̂i ̸= /0}. Respectively
denoting by fθ : R2p →Rd and gψ : Rd →R2p the parametric
encoder and decoder (both multi-layer perceptrons) of our au-
toencoder, we train the parameters θ and ψ so as to minimize
the loss

L(θ,ψ) = ∑
i∈V

∥yi −gψ( fθ(yi))∥2 − (1)

α ∑
r∈R

∑
i,i′∈L

h(i)=h(i′)=r

log

 exp(sim( fθ(yi), fθ(yi′))/τ)

∑ i′′∈L
h(i′′ )̸=r

exp(sim( fθ(yi), fθ(yi′′))/τ)

 .

In (1), sim is a pre-specified similarity measure in the embed-
ding space (such as cosine similarity), τ is a scalar temperature
parameter, and α controls the relative weight between both
terms of the loss. Notice that the first term in (1) is the clas-
sical autoencoder loss that seeks to minimize the difference
between the input and output, while the second term pushes
together the embeddings of nodes known to have the same
role (and separates those known to have different roles). De-

noting by θ∗ and ψ∗ the parameters that minimize the loss
in (1), we consider the embedding zi = fθ∗(yi) as our concise
representation of the activity of IP i, which we gather in the
matrix Z ∈ RN×d . Finally, similar to prior work [72], we im-
plement a hierarchical agglomerative clustering algorithm to
Z to obtain our inferred roles for the IPs in the network.

We want to emphasize the following aspects of our role
inference algorithm:

1) User input and feedback: The labeling heuristic h permits
the incorporation of user input into the embeddings Z through
the contrastive loss term in (1). Moreover, after executing
the role inference procedure once, the user can be consulted
regarding the clusters identified, in a manner similar to ac-
tive learning [80]. This could involve querying the user about
clusters that are the least separable. If discrepancies are found
between the clustering output and the user’s understanding,
the user’s knowledge can be fed back seamlessly into h, re-
sulting in improved role inference.
2) Incorporation of domain knowledge: Unlike generic role
inference methods for graphs [58], domain experts have prior
knowledge of what shapes the role of an IP in a network in
terms of, e.g., ports used and traffic statistics. Both the partial
labeling heuristic h and the node features X are ideal vehi-
cles to infuse this domain knowledge into our role inference
method.
3) Relation to existing work: Our pipeline (Figure 5) sub-
sumes most existing methods that cluster nodes based on
structural similarities [49, 72]. For example, the method in
CloudCluster [72] boils down to performing clustering di-
rectly on the rows of Ã, the adjacency matrix after dimen-
sionality reduction. The incorporation of the autoencoder and,
more importantly, the consideration of node features X and
partial labels h constitute key additions with respect to this
baseline. We emphasize their value both with a toy example
(§4.3) as well as in real-world networks (§6.2).
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4.3 Illustrating the value of our proposed
pipeline

Let us consider a simple toy network shown in Figure 6-left,
where the N = 12 nodes have been colored according to their
role and the shapes (circles versus squares) represent the top
and bottom subnetworks. Traffic originates from two classes
of nodes corresponding to different services (blue and orange),
this is then relayed through the green nodes to the red nodes.
This can be an idealistic representation of a microservice
architecture, where the blue and orange nodes are different
microservices, the green nodes are the memory object caching
systems, and the red nodes are the databases.

We first analyze the roles inferred in this toy network based
solely on the adjacency (structural) embeddings Ã in Figure 5.
Recall that, as explained in §4.2, this is effectively the method
proposed in CloudCluster [72]. Assuming that all communi-
cation links in Figure 6 have similar total load, the adjacency
matrix A has four dominant principal components. To see
this, notice that the rows of A encode who a given node is
talking to, and there are four distinct cases in our toy network
(the green circles, the green squares, the red circle, or the red
square). Moreover, in Ã, all the nodes will have an embed-
ding lying on top of one of these four principal components,
as shown in Figure 6. Given this marked separation in Ã,
CloudCluster outputs the (incorrect) role labels in Figure 6-
top right, irrespective of the specific hierarchical clustering
algorithm of choice. This undesirable outcome is resolved
by incorporation of X and h as in our proposed pipeline. For
example, the incorporation of port-based features can help
distinguish the blue from the orange nodes. Similarly, adding
features based on small motifs such as the one illustrated in
Figure 6 can bring the embeddings of all green nodes together
(notice that only green nodes are at the center of these motifs).
Additionally, partial labels of, e.g., blue nodes in the top and
bottom parts of the network will help bring the embeddings of
all blue nodes together through the contrastive loss in (1). As
a result, the 4-dimensional embedding in Figure 6 is more in-

formative than that solely based on Ã, thus ultimately leading
to the correct role inference.

Comparison (and combination) with other baselines. The
description of the example above was centered on highlighting
the benefits of our proposed pipeline with respect to Cloud-
Cluster [72], a state-of-the-art method for extracting roles
developed within the networking community. However, it is
also important to establish our advantages with respect to
more traditional (not domain specific) role inference methods
in graphs. This includes simple algorithms based on Jaccard
similarity [59] as well as more sophisticated structural embed-
dings such as SimRank [56] and GAS [49]. Notice that two
nodes are deemed close to each other by Jaccard if they share
similar neighbors. This essentially means that the similarity
of two nodes is given by the similarity between their corre-
sponding rows of A. Consequently, Jaccard inherits the same
limitations established for CloudCluster in the example above.
Other structural embeddings [30, 49, 56] go beyond compar-
ing similarities in the one-hop neighborhoods and can detect
that, e.g., both pairs of green nodes play a similar role in the
network. Nonetheless, these methods do not incorporate node
features or partial labels, thus falling short of our proposed so-
lution. In our evaluation, we show how our proposed pipeline
improves upon all these baselines in real networks. Finally,
notice that if the structural embeddings output by any of the
existing methods are preferred to the reduced adjacency in
Figure 5, we can simply replace Ã with the embeddings from
any of these methods and implement our pipeline talis qualis.
In this sense, we can think of our pipeline as a principled way
of combining structural embeddings with domain knowledge
through node features and partial labels, irrespective of the
structural embedding of choice.

5 Low-Cost Telemetry and Analytics

In this section, we discuss the rationale behind our choice of
telemetry and our experience in building a cost-effective and
scalable communication graph generator for ZTS.



Figure 7: Illustrating how one can capture connection summaries with zero impact to VMs in a public cloud.

Time Local Remote #Packets #Bytes
IP Port IP Port Sent Rcvd. Sent Rcvd.

Table 3: Schema of connection summaries.
Azure AWS GCP

Name NSG Flow Logs VPC Flow Logs
Agg. Intrvl 1 min 1 min 5s or higher
Content As illustrated in Table 3
Sampling N/A N/A 3% of Pkts, 50% of Flows
Price about 0.5$/GB to collect

Table 4: Details on available connection summaries at three
large cloud providers.

5.1 Telemetry Source

As Section 3 mentions, the telemetry source for ZTS is net-
work flow (or connection) summaries [10, 11, 17]. Tables 3
and 4 depict the data format and key details. We select this
telemetry source because it (i) can be gathered with mini-
mal disruption to customer workloads, (ii) is cost-effective,
allowing for continuous collection, and (iii) is tamper-proof.
Consequently, connection summaries are readily accessible to
all customers across major cloud providers. Rather than devel-
oping a custom telemetry source, we opportunistically use the
widely available connection summaries, which contributes to
the practical viability of our system.

Cloud providers typically gather connection summaries
using programmable NICs directly attached to all hosts in
public clouds (Figure 7). These NICs perform various net-
work functions [5, 6, 12, 35, 64, 75]. Connection summaries
are stored in smartNIC memory, and an agent on the host
periodically retrieves and forwards these summaries to a
cloud store or service endpoint. Relative to capturing packet
traces [21], logging in the kernel [62, 79] and sampling pack-
ets on switches [22], the method in Figure 7 has a few ad-
vantages. The size of the logs and memory usage are propor-
tional to the number of concurrent flows. Since these cards
already maintain per-flow state [23, 35], recording a few ad-
ditional counters imposes minimal overhead. Importantly, the
impact on customers is minimal; the performance interfer-
ence from updating a few counters is negligible compared to
the extensive network function processing occurring in net-
work virtualization [23, 24, 43, 47]. Additionally, the same
functionality can be implemented in the software stacks that
handle network virtualization [43].

Collecting packet traces requires the network stack to copy
packets, which is more costly compared to the method of gen-
erating flow summaries described in Figure 7, especially at
NIC speeds reaching 400Gbps. Packet processing elements
in switches typically do not have memory to spare to record

per-flow state [15, 16], so they sample packets and summa-
rize them at the control CPUs [22, 66]. Some cloud providers
use a similar approach, sampling packets and flows to further
reduce costs when generating connection summaries [11].
The cost-effective nature of connection summaries enables
cloud providers to offer telemetry collection services at a
price that makes continuous monitoring required for micro-
segmentation feasible, typically $0.25 to $0.5 per GB of col-
lected telemetry [4, 18, 20]. The total telemetry collection
cost depends on the number of VMs and connection records
generated per hour. In our study, this amounts to approxi-
mately $8 to $19 per VM per year. This telemetry is then
securely stored to prevent tampering by customers, who do
not have access to the host, ensuring availability even if VMs
are breached. Customers incur additional storage costs for
the telemetry, which can be minimized with an appropriate
retention policy. These telemetry collection and storage costs
are common to all micro-segmentation solutions and are in
addition to the costs illustrated in Table 2. It is also possible
that customers have telemetry collection and storage enabled
for other monitoring use cases. Hence, we consider these costs
orthogonal to our study’s scope. Although alternatives like
network stack hooks such as eBPF are beneficial, deploying
agents on every VM in a public cloud is difficult due to the
diverse OS types and the limited control providers have over
guest OSes. Even if these agents are deployed, their teleme-
try can be compromised by malicious code within the VM,
making them less reliable during breaches compared to the
connection summaries used by our system.

5.2 System for Graph Generation

Our primary goal is to use systems that are available in most
large public clouds today to build an analytics system that can
analyze roughly 1000 VMs worth of telemetry (e.g., connec-
tion summaries at one minute granularity) using a handful of
VMs worth of resources. This is roughly a 0.5% surcharge,
and such a low COGS is crucial for extensive adoption.

The structure and volume of our telemetry source present
challenges in designing a scalable, low-cost analytics system.
Cloud providers organize telemetry into numerous small files
(e.g., one JSON file per hour per VM) with connection sum-
maries embedded as delimited strings within nested JSON
structures. The structuring of the telemetry as many small
files is a consequence of the design described in Figure 7,
while the nested JSON keeps files compact in representing
relationships between flows and various cloud resources. The



Figure 8: Our analytics system architected as a software-as-
service (SaaS) that can adapt to load.

analytics system must efficiently process these small files,
unroll nested JSON structures, and parse delimited strings
to extract connection summaries. Additionally, it should in-
tegrate other information streams, such as IP Address Man-
agers (IPAM) and Virtual Network (VNET) configurations, to
enrich the summaries with domain knowledge for the role in-
ference pipeline. The huge volume of connection summaries
thus extracted (e.g., #records/min in Table 1) can result in
very large communication graphs (e.g., an IP graph is roughly
10x to 100x the number of monitored VMs) requiring careful
considerations to keep the processing time and cost low.

Given the telemetry structure, we faced a design choice
between a stream processing system for consuming the large
influx of small JSON files to generate graphs in real time, and
a batch processing system that generates graphs from batched
connection summaries. We chose the latter and separated the
compute-intensive JSON processing from graph generation,
resulting in two processing phases. This approach allows us
to pipeline and parallelize the pre-processing stage, preparing
batched connection summaries in an optimal format for large
batch processing systems, resulting in low-latency processing.

Our system is architected as an always-on, cloud-native
service as shown in Figure 8. We structure our system into
two main components: (1) a pre-processor that leverages scal-
able compute resources to handle the large telemetry vol-
ume, (2) a graph generator based on a batch processing SQL
system [9] to generate the communication graphs from the
batched connection summaries. For low-latency graph gener-
ation, the batch processing system should be able to generate
and complete an efficient query execution plan to process
the connection summary batches into graphs. Naïvely, this is
a group-by-aggregation query. That is, accumulate the byte,
packet, and connection counts between pairs of nodes. The
memory need is proportional to the number of node pairs in
the graph which would be prohibitive for very large graphs.
One mitigation we employ is to focus on the heavy hitters.
That is, remote IPs and ephemeral ports that do not individu-
ally account for a sizable share of traffic are collapsed together.
In fact, the graph sizes in Table 1 collapse IPs contributing less
than 0.1% of bytes, packets or connections into one node in
the IP-graph. Further, we optimize our query to use Common
Table Expressions (CTEs) to eliminate intermediate material-
ization and to effectively use the system query planner. This

approximation and the ability of the SQL system to handle
large graphs by effectively using the available memory and
disk resources allow us to construct communication graphs
on subscriptions with 1000s of VMs in real time using just a
few machines worth of resources.

We iterate over our system design and implementation over
several developer months as shown in Figure 9, introducing
several optimizations: (1) retiring our serverless PaaS system
to a custom implementation of our pre-processor, (2) normal-
izing the tables and related query optimization to improve the
batch processing performance and (3) optimizing resource
management on the batch processing system. Such iterations
enable us to keep pace with some of the large deployments in
in Table 1 and keep cost low (e.g., 3 boxes for 5000 VMs).

Figure 9: Iterative optimizations applied to our analytics sys-
tem.

6 Evaluation

We seek to address the following key questions:
• Does the role inference algorithm developed by ZTS

demonstrate significantly higher accuracy compared to
existing algorithms in real-world applications?

• Does enhanced role inference contribute to the develop-
ment of improved security policies?

• To what extent can ZTS’s graph generator reduce costs
compared to existing alternative systems?

6.1 Methodology
Datasets. To evaluate the effectiveness of our role inference
algorithm, we curate a dataset comprising network telemetry
from 11 real-world deployments within a large public cloud.
This includes both first-party and third-party applications of
varying sizes, patterns, and requirements. Due to infrastruc-
ture differences, the first six deployments utilize telemetry
consisting of 5-tuples and flow summaries, while the latter
five deployments use telemetry consisting of 5-tuples and
process information, and the latter telemetry was also enabled
at a larger scale. We conduct developer interviews to ascer-
tain the role of each IP address in each deployment, which
becomes the ground truth label in the communication graph.
Table 5 summarizes the characteristics of the datasets.



Telemetry
Graph Size

#nodes #edges #roles
Deployment A 200 500 14
Deployment B 200 5,000 28
Deployment C Flow 500 9,000 21
Deployment D summary 200 3,000 28
Deployment E 100 100 12
Deployment F 100 2,000 17
Deployment G 1,500 5,000 30
Deployment H Flow+Process 1,900 17,000 20
Deployment I summary 12,000 150,000 60
Deployment J 25,000 165,000 84
Deployment K 5,200 90,000 87

Table 5: Real-world deployments used in role inference eval-
uation: The graph sizes are rounded to preserve workload
confidentiality.

Role-inference Baselines. We compare ZTS’s role inference
algorithm with four baselines that we discussed in §2.1 and
§4.3: (1) Jaccard [59], (2) SimRank [56], (3) GAS [49], and
(4) CloudCluster [72]. As for clustering algorithms, we use
the hierarchical clustering algorithm described in CloudClus-
ter [72] to infer roles for methods that output node embed-
dings (GAS, CloudCluster, and ours), and we use the Louvain
community detection algorithm [37] for methods that output
similarity scores (Jaccard and SimRank).
Hyperameters. We use the default hyperparameters from the
corresponding papers for the baselines. For our algorithm,
we set α in Equation 1 to 20 and τ to 0.05. Our autoencoder
is a three-layer neural network with an encoded embedding
size that is 2

3 the size of the input embedding. We train our
autoencoder for 1000 epochs with a learning rate of 0.002
and a weight decay of 0.001. To simulate existing asset tags
and deployment of owner feedback, we randomly select 10%
of the labels as h in our training pipeline. We find that our al-
gorithm performs similarly well across a wide range of values
for α, τ, and different autoencoder network architectures.

6.2 Role Inference Performance
Results Summary. Table 6 summarizes the Adjusted Rand
Index (ARI) [53] between each role inference algorithm and
ground-truth role labels. The ARI measures the quality of clus-
tering and is widely used in role inference literature because
it is adjusted for chance. We make three major observations.

First, ZTS’s role inference algorithm significantly outper-
forms all baselines in all but one deployment. The average
ARI of our algorithm is 0.77, while the average ARI for Jac-
card, SimRank, GAS, and CloudCluster are only 0.33, 0.43,
0.39, and 0.34, respectively. This result demonstrates the ef-
fectiveness of ZTS’s role inference algorithm in real-world
deployments. The only deployment where ZTS does not out-
perform the best baseline is Deployment C, where our algo-
rithm achieves an ARI of 0.96 compared to the best baseline’s

ARI of 0.97. This is because the ground truth of Deployment
C is partially derived from the Jaccard method, which makes
the Jaccard method perform particularly well in this deploy-
ment. Despite this, our algorithm still achieves a similar ARI
in this deployment.

Second, the performance of state-of-the-art role inference
algorithms varies drastically across different deployments.
CloudCluster [72] generally performs well for smaller de-
ployments (Deployments A to F) but lags behind other graph
mining methods in larger deployments (Deployments G to K).
This is partly because the adjacency matrix in larger deploy-
ments tends to be more sparse and noisy, and CloudCluster
cannot find structural similarities effectively without diving
deeper into the graph structures. The performance variation
across deployments also underscores the criticality of incor-
porating domain-specific knowledge and developer insights
into role inference processes, as varying deployment environ-
ments display distinct traits, and no single static algorithm
can universally cater to all cases.

Third, all algorithms tend to perform better at smaller scales
(A to F) than at larger scales (G to K). The average ARI of
the baseline algorithms decreases from small to large deploy-
ments by 0.18, 0.19, 0.20, and 0.64 for Jaccard, SimRank,
GAS, and CloudCluster, respectively. ZTS also sees perfor-
mance degradation from small to large deployments, but at a
more moderate 0.14, even with a much better starting point
compared to the baselines. These results highlight the neces-
sity of evaluating role-inference algorithms using large-scale
deployments to better understand performance in practice.
This also means that the performance gap between ZTS and
other baseline algorithms increases with the deployment scale.

6.3 Role Inference and Security Policy

To evaluate the correlation between role inference perfor-
mance and quality of the corresponding security policy, we
conduct an assessment of auto policy generation. We collect
telemetry data from the five larger deployments (Deployments
G to K) over one day as the training set. We then infer the
roles of each node daily using role inference algorithms. Clus-
ter identities are aligned across different days based on node
similarity. Each role is treated as a µsegment, allowing a pair
of µsegments to communicate if such communication exists in
the training set. We subsequently use telemetry data from the
same deployment, four days after the training set, to evaluate
the policy violation rate. This rate is defined as the fraction of
edges that violate the security policy derived from the training
set and the inferred roles. Table 7 summarizes the results.

As Table 7 shows, the security policy generated based on
ZTS incurs a significantly lower policy violation rate than
the policy generated using other baselines. This is mostly
because, while the roles do not change often, the underlying
communicating nodes can vary significantly across different
days (e.g., talking to a different replica of the same role). If



Jaccard SimRank GAS CloudCluster ZTS
Deployment A 0.47±0.00 0.49±0.01 0.50±0.00 0.78±0.00 000...888888±±±000...000444
Deployment B 0.37±0.00 0.33±0.00 0.50±0.09 0.81±0.00 000...888555±±±000...000333
Deployment C 000...999777±±±000...000000 0.93±0.00 0.89±0.00 0.78±0.00 0.96±0.01
Deployment D 0.40±0.00 0.06±0.00 0.16±0.06 0.50±0.00 000...666333±±±000...000555
Deployment E 0.55±0.00 0.60±0.00 0.33±0.14 0.72±0.00 000...777555±±±000...000222
Deployment F 0.32±0.00 0.10±0.00 0.44±0.06 0.73±0.00 000...999000±±±000...000333
Deployment G 0.44±0.00 0.38±0.02 0.41±0.03 0.24±0.00 000...666444±±±000...000000
Deployment H 0.18±0.00 0.14±0.01 0.48±0.01 0.18±0.00 000...666111±±±000...000333
Deployment I 0.41±0.02 0.34±0.01 0.25±0.00 0.06±0.00 000...777000±±±000...000111
Deployment J 0.32±0.00 0.14±0.00 0.10±0.01 −0.01±0.00 000...888555±±±000...000000
Deployment K 0.38±0.00 0.13±0.00 0.11±0.02 −0.09±0.00 000...666555±±±000...000222

Table 6: The Adjusted Rand Index (ARI) between each role inference algorithm and ground-truth role labels. ARI is bounded
below -0.5 for highly discordant clusterings and 1.0 for identical clusterings, being close to 0.0 for random labeling regardless of
cluster or sample size. We report the mean and standard deviation across 10 runs for each experiment.

Jaccard SimRank GAS CloudCluster ZTS
Deployment G 2.1% 11.1% 3.2% 38.4% 0.1%
Deployment H 3.5% 3.8% 2.3% 4.7% 0.2%
Deployment I 6.9% 5.2% 17.3% 6.1% 1.8%
Deployment J 6.5% 9.2% 8% 11.8% 0.7%
Deployment K 7.7% 8.3% 16% 20.7% 2.1%

Table 7: The policy violation rate of auto-generated security
policies using role inference results and observed network
behavior

the role inference algorithm does not assign the µsegment
correctly, these changes will incur many policy violations.
Note this evaluation is meant to assess how role inference
algorithms can facilitate policy authoring, and the system is
not designed to fully automate the process. Hence, a fraction
of policy violations in a fully automated setting is expected.

6.4 Cost Effectiveness

To assess the cost of ZTS’s graph generation system, we con-
ducted a comparative analysis between our batch processing-
based implementation and an alternative solution based on
the open-source stream processing system, Apache Flink [38].
Our Flink implementation jointly handles the JSON file pre-
processing and graph generation. Our choice of Flink for this
alternative solution is based on two considerations. First, Flink
is an enterprise-ready system with strong community support,
making it a practical choice for our large-scale deployment.
Second, we chose Flink over Spark [92], another popular open-
source data processing system, because it has demonstrated
superior performance in both streaming and batch processing
with lower resource consumption [73], which aligns with our
experiences with Spark in this context.

Our evaluation involved real-world telemetry data from re-
gional deployments of two first-party services within a promi-
nent public cloud. The details of these regional deployments
are summarized in Table 8.

deployment #nodes data volume (#recs/hr)
Regional-Portal-Product (D1) 92 1.6M

Regional-K8s Paas (D2) 88 3.9M

Table 8: Characteristics of the regional deployments used
in the evaluation of the analytics system. We use regional
deployments to preserve workload confidentiality.

COGS. We run ZTS on an infrastructure consisting of a single
8-CPU VM with 32G of memory and 1 compute-unit of the
batch processing system that costs in total $845/month. Simi-
larly, Apache Flink runs on a single 64-CPU VM with 256G
of memory, and this infrastructure costs in total $2406/month.
We choose a larger VM for Apache Flink because its paral-
lelism can benefit from more CPUs and memory so that it can
achieve more competitive performance.

Dataset ZTS Flink
D1 (1hr) 78 344
D2 (1hr) 109 590

D1 (10hrs) 444 576
D2 (10hrs) 753 1195

Table 9: Processing completion times (in seconds) for the
regional deployments. We report both single and multi-hour
telemetry processing.

Completion Time. We compare the telemetry processing
completion time for both 1-hour and 10-hour datasets across
regional deployments. Our system consistently outperforms
Apache Flink, as demonstrated in Table 9. Notably, Apache
Flink can process a maximum of 5 hours’ worth of data con-
currently, resulting in its completion time for 10 hours of
telemetry being merely double that of 1 hour. Conversely,
ZTS delivers superior completion times in all instances while
incurring only 35% of the COGS.
Scaling. We also evaluate the scaling behavior of both systems
by scaling the telemetry volume by 10× for the regional de-



ployments. We observe that our system outperforms Apache
Flink even more significantly in this case, as shown in Ta-
ble 10. ZTS is 7.5× faster than Apache Flink with only 35%
of the COGS, or 21.5× more cost efficient. This is because
Apache Flink is not designed to handle such large volumes
of data, and its performance degrades significantly as the vol-
ume of data increases. In contrast, our system is designed to
handle large volumes of data and can scale much better as the
volume of data grows.

Dataset ZTS Flink
D2 (scaled by 10x) 765 5748

Table 10: Processing completion times (in seconds) for the
scaled regional deployment.

It is worth noting that even when utilizing the SQL
query optimizations discussed in Section 5.2, the Flink-based
streaming system is not as cost-effective as our batch pro-
cessing system for the scale of telemetry we consider. While
Flink and Spark are designed for a wider range of use cases,
our results highlight the importance of application-specific
design and implementation to achieve significant cost savings,
addressing a key obstacle to adopting micro-segmentation
systems. We leave the exploration of our batch processing
system’s applicability to other use cases for future work.

7 Related work
Our key contributions are as follows:

• A novel role inference algorithm for nodes in communi-
cation graphs that incorporates domain knowledge and
communication patterns.

• A low-cost system that constructs complete and dynamic
communication graphs in cloud environments.

• Analysis over communication graphs from many large-
scale real deployments.

Here we discuss related work in these areas.
Graph mining and analyses. Existing research on general
temporal graph mining [29, 60, 74, 76] largely focuses on
social networks, with limited studies addressing challenges
in communication networks [57, 83]. Our work tackles novel
issues specific to the networking context by analyzing net-
work structures, communication patterns, and incorporating
domain-specific knowledge to enhance the inference and ap-
plication of security policies.

Network telemetry. Many systems analyze passively
collected network-wide telemetry [42, 62, 65, 79], but have
not achieved widespread deployment or consistent net pos-
itive revenue. Highly accurate and scalable sketching algo-
rithms offer estimated answers to network telemetry queries
[36, 67, 82, 91, 94], yet they lack generality, addressing only
specific query types. Systems like PingMesh [48] and MALT
[70] offer insights into network performance and topology but
do not measure actual communication flow along data paths.
Additionally, most research focuses on packet traces from

a few collection points [32, 44, 54, 61, 69, 81], leaving the
scalability and generalizability of these techniques to provide
network-wide summaries uncertain.
Role inference in graphs and networks. Node embeddings
have been utilized to encapsulate structural similarities within
graphs [58]. These structural embeddings can subsequently
be aggregated through clustering to facilitate role discov-
ery or inference. The majority of existing methods adhere
to a two-step procedure, initially discerning structural at-
tributes associated with each node and subsequently trans-
posing these attributes into an embedding space using vari-
ous techniques [58]. These techniques encompass low-rank
matrix factorization [50, 51], random walk-inspired meth-
ods [27, 77], and approaches based on (graph) neural net-
works [49, 85]. Within the domain of networking, the closest
work CloudCluster [72], is also based on structural similari-
ties. Section 4 and Section 6.2 discuss the shortcomings of
these approaches and evaluate these predominant approaches.
In contrast to these methods, our approach allows for the
flexible integration of domain-specific knowledge through
meticulously crafted node features coupled with a contrastive
loss function. Furthermore, it is worth noting that should any
existing structural embeddings be deemed more appropriate,
our algorithm is designed to integrate them seamlessly into
our processing pipeline.

Other studies have leveraged network traffic to infer at-
tributes of certain segments within the communication graph.
For instance, Xu et al. [90] classify internet hosts according
to traffic similarities, utilizing this classification to identify
malicious activities. In the realm of cloud services, patterns of
network traffic have been instrumental in pinpointing network
nodes or flows that may be compromised [31, 46, 52], as well
as selecting suitable candidates for migration [40].

8 Conclusion
In this work, we show that realizing the vision of micro-
segmentation at a large scale remains a difficult challenge. We
present an end-to-end system that consists of an effective role
inference algorithm for network communication graphs and
a unique system implementation that drastically reduces the
cost of generating communication graphs for network behav-
ior understanding and monitoring. Using 11 large-scale real
deployments, we demonstrate the system’s capability to more
accurately infer roles and generate communication graphs
with minimal expense. We hope the findings and insights
from our work will stimulate further research to ease the bur-
den of securing public clouds with micro-segmentation.

Ethics:The use of production traces in this paper was gov-
erned by an institutional privacy review.
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