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Abstract—Functional near-infrared spectroscopy (fNIRS) is
a brain imaging technique used to estimate neuronal activity
by measuring blood oxygenation. In this paper, we develop and
evaluate an extensive set of fNIRS features for workload estima-
tion, combining them with respiration and heartbeat signals.
Our subject- and session-independent workload estimator is
validated in a virtual flight simulator, where workload is objec-
tively assessed based on task performance. We experiment with
various regression models and feature ablations, identifying the
most effective fNIRS features. The best fNIRS-based model
achieves a correlation of 0.3188 with objective workload labels,
improving to 0.3268 when incorporating breathing signals. This
study demonstrates the value of our novel fNIRS feature set
for workload estimation.

Index Terms—Functional near-infrared spectroscopy, work-
load estimation, adaptive training system.

I. INTRODUCTION

Functional near-infrared spectroscopy (fNIRS) is a non-invasive
brain imaging technique that monitors brain activity by measuring
blood oxygenation in the cerebral cortex. It provides insights into
cognitive processes like mental workload, making it valuable in
fields such as education, healthcare, aviation, and transport. fNIRS
offers advantages over traditional methods like electroencephalog-
raphy (EEG), including greater robustness to movement artifacts
[1], [2], which is crucial for real-time monitoring in dynamic
settings.

While fNIRS shows promise for mental workload estimation
[3], the literature is still developing, with most previous studies
relying on basic statistical measures from fNIRS signals like
mean, skewness, standard deviation (STD), kurtosis, and slope [4]–
[9]. Moreover, workload estimation faces broader challenges as
well. First, most workload estimation approaches tend to classify
data into broad workload categories, typically ranging from two
to four levels, which fail to capture the continuous nature of
mental workload during tasks of varying difficulty levels. Second,
defining workload is inherently difficult. The labels used to train
workload predictors are often noisy and imperfect, either deter-
mined by predefined task difficulties or subjectively assessed by
participants. Lastly, limited efforts have been made to develop
subject-independent workload prediction models, which is crucial
for broader applicability.

This study aims to advance fNIRS processing by exploring
a wide range of novel and established features. Moreover, it
investigates integrating additional physiological signals such as
electrocardiography (ECG) and respiration to enhance performance
in fNIRS-based workload estimation [10]. Building on our previous
work that utilized EEG and eye gaze in flight simulation tasks
[11], we now focus on fNIRS as the primary modality due to its
better resilience to movement artifacts. Unlike traditional methods
relying on subjective questionnaires or coarse workload categories,
our approach generates fine-grained workload scores (0–100) based
on objective performance metrics. By expanding fNIRS features
and combining them with complementary signals, we aim to
develop a robust, neural network-based workload estimator capable
of accurate, real-time monitoring of cognitive workload across
different individuals and settings.

II. METHODS

A. Experimental Setup

The flight simulation experiments for this study were performed
with the Prepar3D flight simulator in virtual reality (VR) mode. The
participants sat on a 6 degrees of freedom (DoF) motion platform,
wearing Varjo VR3 glasses with a custom-made headset that had
20 fNIRS channels (shown in Fig. 1). The fNIRS system was
adapted from the NIRSport2 of NIRx Medical Technologies LLC,
and consisted of 11 light emitting diodes (wavelengths 760/850nm)
and 11 detectors. The Varjo VR3 glasses also had built-in eye-
tracking. In addition, one-channel ECG, galvanic skin resistance,
and breathing signals were measured from each participant.

B. Adaptive Training System for Pilot Training

The experiments involved individual trials in a virtual reality
(VR) flight simulator where pilots performed one of two tasks: (a)
straight-line level flight, maintaining constant speed, course, and
altitude, or (b) glideslope flight, maintaining speed and course while
bringing the plane to the runway. Each trial lasted 2–3 minutes, and
the plane’s position was logged throughout. The root mean squared
error (RMSE) between the real and ideal trajectory was rescaled
to generate a performance score (0–100) [12].



Fig. 1. Configuration of fNIRS optodes and channels.

The adaptive training system (ATS) [13] adjusts the difficulty of
each trial based on past performance. It estimates pilots’ skill levels
and learning rates [14], recommending scenarios that optimize
skill improvement. The difficulty of a scenario can be changed
by incorporating factors such as wind gusts, thermals, and reducing
visibility from clear conditions to fog. Taking into account both the
difficulty of the scenario and the pilot’s current estimated skill level,
the ATS then calculates an expected score for the given task. These
ATS (expected) scores serve as a strong proxy for workload, as
they are derived from the two key factors influencing workload, i.e.
task difficulty and skill level. Unlike raw, trial-to-trial performance
scores, which can be noisy, ATS scores provide a smoother and
more reliable representation of the workload associated with a task.
Higher ATS scores (near 100) indicate low workload, while lower
scores (near 0) signal high workload. These scores were therefore
used as labels for training our workload estimator.

C. Data Collection

Fifteen participants were initially enrolled for data collection
over five consecutive days. The data collection procedure was
reviewed and approved by Microsoft Research Ethical Committee
Review Board. On the first day, participants completed 11 trials.
Over the next four days, each completed 22 trials daily, resulting
in up to 99 trials per participant. Of these 99 trials, some were lost
due to signal quality or participant absence.

D. Pre-Processing and Feature Extraction

Based on the flight logs, the performance scores were computed
for each run. Then, the expected scores estimated by the ATS were
extracted [11], [14] to be used as labels for training the workload
estimator. To avoid bias from near-zero scores, the final training
dataset included the seven participants with more than 27.5%
non-zero scores. For model validation and testing, only the four
participants with at least 40% non-zero scores were included, as
correlations between estimated and real scores are only meaningful
with a fair percentage of non-zero scores.

Artifacts were removed from the raw fNIRS signals. Each of
the 11 channels consists of two signals: the HbO signal (oxy-
genated hemoglobin concentration) and HbR signal (deoxygenated

hemoglobin). The characteristic heartbeat pattern in the HbO signal
indicates a good optode-scalp coupling and can thus be utilized
as an indication of signal quality for the fNIRS channel [15].
The HbO signals were thus segmented into 10-second epochs, and
each segment’s quality was checked by computing its correlation
with the corresponding ECG segment, and the total cardiac power
using spectral analysis. Channels with over 50% bad segments were
discarded. After cleaning the signals, features were extracted to
facilitate further analysis.

The first set of features comprises time-domain statistics derived
from the HbO signal, including the mean, variance, minimum,
maximum, kurtosis, skewness, slope, power, and peak (the maxi-
mum absolute value of the signal). These features, commonly used
in previous fNIRS studies [4]–[9], were calculated from the low-
frequency components of the HbO signal. These components were
first isolated by applying a low-pass filter below 0.5 Hz to remove
the heartbeat from the signal [4], [16].

The second set of features consists of the heart rate power of
the HbO signal, specifically the signal power within the frequency
band corresponding to the heart rate.

The third set of features is based on correlations between fNIRS
and the other physiological signals, namely breathing and ECG.
We computed the correlation and delay between the two fNIRS
signals themselves (HbO correlated with HbR) [6], [17], between
breathing and both HbR and HbO, and ECG and both HbR and
HbO.

The fourth set of features was based on the fNIRS signal
segmented by using the heartbeat timings. After segmenting an
fNIRS channel of a trial using these timings, all segments were
shifted to start at time zero at the R-peak of the ECG QRS complex.
This process, illustrated in Fig. 2 for a single fNIRS channel of a
trial, resulted in a signal with a much higher (though irregular)
sampling frequency, as the overlaid segments were combined. We
applied a moving average strategy to this heartbeat-segmented
fNIRS signal, allowing for detailed analysis of how the fNIRS
signal behaves in relation to each heartbeat. From these heartbeat-
segmented fNIRS signals, the following features were calculated:

1) the peak-to-peak amplitude of the segmented HbO and HbR
signals,

2) the delay between the segmented HbO and HbR signal,
3) the upward and downward slopes of the HbO and HbR signal

after each heartbeat,
4) the exponential decay and increase factors of the HbO and

HbR signal after each heartbeat,
5) the delay of the upward slope and of the downward slope of

both HbO and HbR signals, with respect to each heartbeat
in the ECG,

6) the absolute rise time of both the HbO and HbR signal, and
their relative rise time with respect to the heartbeat length,

7) the STD of the HbO and HbR signals around their respective
averages (the deviation of the individual points around the
moving-average curves seen in Fig. 2).

The features of the fNIRS channels were averaged over each
of the five channel groups based on optode position (see Fig. 1):
the frontal channels (S1-D1, S2-D1, S2-D2), the fronto-central
channels (S3-D3, S3-D4, S4-D3, S4-D4), the back-central channels
(S5-D5, S5-D6, S6-D5, S6-D6, S5-D11, S11-D6, S11-D11), the
central-left channels (S7-D7, S7-D8, S8-D8), and the central-right
channels (S9-D9, S9-D10, S10-D10).



Fig. 2. An example of a heartbeat-segmented fNIRS signal (both
HbO and HbR) for one channel of a trial. An example ECG segment
is overlaid on top of the fNIRS to demonstrate how the two are
related.

The two other physiological signals were processed as follows.
The ECG signal was first band-pass filtered between 0.5 and 40 Hz,
and normalized. From the pre-processed ECG signal, the heart rate
and the heart rate variability were computed. The breathing signal
was band-pass filtered between 0.1 and 0.5 Hz, and normalized
as well. The breathing rate and breathing rate variability were
computed.

E. Machine Learning Experiments

We implemented the following estimators:

1) Fully connected deep neural network (FC DNN),
2) Long-short term memory (LSTM) neural network,
3) Support-vector machine (SVM) with radial basis function

(RBF) kernel,
4) Linear regression model.

Since all estimators above used minimum mean squared error
(MMSE) as cost function, we selected a different metric for
evaluation: the correlation between estimated workload scores and
the labels. This performance criterion evaluates the strength of the
relationship and the structural fit between predictions and labels,
rather than focusing solely on absolute errors. All further design
decision and results are based on this evaluation criterion.

A gridsearch was performed for the FC DNN and LSTM
networks for hyperparameter optimization - number of layers (1 to
3) and number of neurons (exploring powers of 2, from 4 to 128).
The optimal FC DNN architecture consisted of 2 hidden layers
with 64 neurons each and ReLU activation functions. The optimal
LSTM network consisted of a single hidden layer of 64 neurons,
and ReLU activations.

Ablations were performed to estimate the effect of the different
features, and to find the best fNIRS feature set for workload
estimation. Starting from the full feature set, we first removed
different modalities. Then, starting from only the fNIRS features,
we removed one by one the different feature groups, and fNIRS
optode groups. After these ablations, we also performed an iterative
ablation on the fNIRS features to find the best feature set. We
started by grouping the features by channel position, with a total
of five groups. With the features grouped as such, we started

TABLE I
FEATURE ABLATIONS USING THE PHYSIOLOGICAL SIGNAL TO

GROUP FEATURES.

Baseline Ablations: modality
All features Heartbeat Breathing fNIRS
0.1073 0.1286 -0.0149 0.0869

by training our model on all features except one group. Then,
permanently deleting the feature group for which the performance
increase was maximal, we continued this process. After finding the
best channels, we went on to group features by type. Starting with
only the remaining features after the channel ablations, we removed
feature group by feature group with the same iterative process until
the best features were found.

We trained our models on the best fNIRS features found through
iterative ablation, and we experimented with the addition of breath-
ing and heartbeat features by early fusion and late fusion. The early
fusion approach consisted of fusing the other physiological signals’
features with the fNIRS features before feeding them to the model,
and late fusion consisted of training a separate predictor on both
fNIRS and the other features, and then training a linear regression
layer to make a final prediction.

All experiments were conducted using a leave-one-subject-out
cross-validation approach. In each run of cross-validation, one of
the four subjects with more than 40% non-zero scores was used
as the test set, and a different subject from the same group was
used as the validation set. This setup ensured that the validation
and test subjects were not the same in any run. The results were
averaged over 12 runs, covering all possible combinations of test
and validation subjects. In each cross-validation run, the training
dataset consisted of the remaining two subjects (with >40% non-
zero scores), along with three additional subjects with 27.5–40%
non-zero scores who were not included in the validation or test
sets.

III. RESULTS

The results of the ablation studies are presented in Table I and
Table II. Table I shows that the breathing features are especially
informative, with fNIRS in second place. The heartbeat features
proved to be the least informative, as demonstrated by the correla-
tion increase when these features were removed. Table II shows
the fNIRS feature ablations for the different groups of fNIRS
features and for the different fNIRS optode positions. In terms
of feature groups, the time-domain statistics from the HbO signal
were the most informative, followed by the correlations of HbO
and HbR with the ECG. Regarding the optode position groups, the
features from the frontal channels were the most informative for
workload estimation, followed by the fronto-central features. The
back-central channels were the least informative.

The iterative ablation experiment used smaller feature groups,
and showed more insight into which specific features were the
most and least informative. Of the time-domain statistics, only
the kurtosis and slope were removed, so all other features were
informative. The heart rate power was retained too, as was the
correlation with the ECG. The correlation with respiration and
the HbO-HbR correlation were removed. Of the segmented fNIRS
feature group, the features that were retained were all except three:
the upslope of both the HbR and HbO signal, the exponential



TABLE II
FNIRS FEATURE ABLATIONS FOR THE DIFFERENT GROUPS OF FNIRS FEATURES AND THE DIFFERENT OPTODE POSITIONS.

Baseline fNIRS feature group Optode position
All fNIRS fNIRS Correlation Correlation Correlation fNIRS- Heart rate Frontal Fronto- Back- Central- Central-

features statistics respiration ECG HbO-HbR segments power central central left right
0.0728 0.0249 0.2071 0.0240 0.1388 0.0746 0.1125 -0.0564 0.0186 0.1588 0.0887 0.0203

TABLE III
FINAL RESULTS OF WORKLOAD ESTIMATION WITH THE FOUR MACHINE LEARNING MODELS USING THE BEST FNIRS FEATURES,

WITH AND WITHOUT THE HEARTBEAT FEATURES AND BREATHING FEATURES.

Modalities LIN SVM FC DNN LSTM
Only fNIRS fNIRS 0.2463 0.2259 0.3188 0.1857

fNIRS, heartbeat 0.1555 0.1609 0.2049 0.0748
Early fusion fNIRS, breathing 0.2516 0.2534 0.3268 0.0998

fNIRS, heartbeat, breathing 0.1556 0.1872 0.2703 0.0862
fNIRS, heartbeat 0.2136 0.0811 0.2036 0.1899

Late fusion fNIRS, breathing 0.2655 0.2211 0.3144 0.2044
fNIRS, heartbeat, breathing 0.2347 0.0910 0.2796 0.1721

Baseline* EEG 0.1471 0.1204 0.1332 0.2986
* results from [11]

factors of increase and decay, and the absolute and relative rise
times. All other segmented fNIRS features were hence proven to
be informative.

Table III shows the final results of the workload estimation with
the best fNIRS features, with and without the addition of the other
physiological signals. fNIRS managed to outperform the EEG as a
modality for workload estimation [11]. The FC DNN reached the
best results, with a correlation score of 0.3188 for fNIRS features
alone, and a correlation score of 0.3268 for early fusion of fNIRS
with the breathing features. Early fusion outperformed late fusion
for the SVM and FC DNN model, while late fusion outperformed
early fusion for the linear regression model and the LSTM. fNIRS
outperformed the EEG baseline [11] for all models except the
LSTM.

IV. DISCUSSION

This paper proposed novel fNIRS features and demonstrated their
use in workload estimation for adaptive pilot training. Through
extensive ablation experiments, we investigated which features
were the most informative for this task. Our results highlight the
potential of fNIRS for objective, subject-independent, and session-
independent workload estimation, a relatively unexplored machine
learning task.

Several important findings emerged from the ablation studies.
The first key finding is the dominance of frontal channels in
workload estimation, aligning with previous studies that focus on
the prefrontal cortex due to its role in cognitive processing [4]–
[6]. Second, time-domain statistics of the HbO signal were highly
effective for predicting workload, supporting their frequent use in
the fNIRS literature [4]–[9]. Of our novel features, the correlation
between fNIRS and ECG emerged as very informative, as did
several features from the heartbeat-segmented fNIRS signal, in-
cluding the STDs, delays, peak-to-peak amplitude, and downslope.
This demonstrates that the limited set of frequently used fNIRS
features can be expanded to obtain more information from this
rich signal. Lastly, breathing-related features significantly improved
the performance of our fNIRS-based workload estimator, but the

heartbeat features did not help to improve the performance. A
potential explanation is that the fNIRS features already captured
most of the information extracted from the ECG, such as heart
rate being partly reflected in the time constants of the heartbeat-
segmented fNIRS signal. Alternatively, the heartbeat estimation
using the Pan-Tompkins algorithm may not have been robust
enough to handle noise in the signal, as heart rate variability is
highly sensitive to missed heartbeats.

Future research will explore alternative heart rate estimation
methods to enhance ECG utility, and the integration of fNIRS
with modalities like EEG or eye gaze for potentially improved
workload estimation. While our results demonstrate that fNIRS can
outperform EEG in this context, EEG and fNIRS may still offer
complementary information that could enhance overall performance
[4], [18]. Lastly, a crucial next step is to implement our workload
estimator in real-time for adaptive pilot training.

In conclusion, fNIRS proves to be a rich signal that provides
valuable information for workload estimation, with significant
potential in enhancing adaptive training systems and other real-
world brain-computer interface applications.
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